
AiroLAB: Leveraging on Virtualization to

Introduce Controlled Experimentation in

Operational Multi-hop Wireless Networks

Roberto Doriguzzi Corin, Roberto Riggio, Daniele Miorandi, and Elio Salvadori

CREATE-NET, via alla Cascata 56/D, IT - 38100, Povo, Trento, Italy

Abstract. Network Virtualization represents one of the most promising
approach to unlock innovation in current network technologies. This pa-
per presents AiroLAB, a wireless network virtualization solution aimed
at providing Wireless Internet Service Providers with an effective tool
to support experimental testing of novel network–level solutions on pro-

duction networks. In the paper, the design choices which lie at the basis
of AiroLAB are presented and discussed together with a prototype im-
plementation. The outcomes of measurement activities performed on a
small–scale testbed demonstrate the strength of the proposed framework
in preserving guaranteed performance for production traffic while allow-
ing several experimental instances to run on a network in operation.

Key words: network virtualization, multi–hop wireless networks, em-
bedded devices, resource constrained environment

1 Introduction

One of the most promising approaches to enable innovation in today’s network
is Network Virtualization (NV) [1, 2]. In general terms, NV refers to the possi-
bility of pooling together low–level hardware and software resources belonging
to a networked system into a single administrative entity. In such a way net-
work resources could be effectively shared in a transparent way among different
logical network instances. NV differs from ”conventional” virtualization tech-
niques (aimed mostly at virtualizing computing and storage resources) in that
it explicitly addresses low–level resources (e.g., bandwidth), well below the IP
waist. From an academic standpoint, NV can be seen as a tool for evaluating
novel Internet architectures (“clean–slate approaches”) in large–scale realistic
environments. Similarly, from a business perspective, NV can change the func-
tional role of Internet Service Providers (ISPs) by decoupling the provisioning of
the physical infrastructure from the provisioning of communication/computing
resources. This could set the basis for the introduction of new business mod-
els and stakeholders in the Internet ecosystems (i.e. Infrastructure Providers,
Virtual Network Providers and Service Providers). Finally, NV can enable a
smooth and controlled introduction of novel services in an operational network
by providing means to isolate them from already deployed applications, thereby
unlocking innovation in telecommunication networks.



2 R. Doriguzzi et al.

While several NV architectures and solutions have been proposed in recent
years, most (if not all) of them were designed and developed for wired net-
works, characterized by virtually unlimited processing/storage power and link
bandwidth (PlanetLab [3], VINI [4], etc). On the other hand, a particularly
challenging, yet interesting, domain for NV is that of wireless multi–hop net-
works [5, 6] with a particular emphasis on Wireless Mesh Networks (WMNs).
WMNs are a cost–effective access networking paradigm, which represents an in-
teresting solution in scenarios where a fixed wired infrastructure is either not fea-
sible (e.g., in the case of mobile nodes such as vehicular ad hoc networks) or not
economically attractive (e.g., access to Internet in developing countries). How-
ever, despite these expectations, very few studies have been performed, so far,
on virtualization in resource–constrained environments in general, and multi–
hop wireless networks in particular. Furthermore, the available literature on the
theme focuses mainly on comparing how different wireless medium virtualization
techniques affect the overall network slices performance in term of isolation and
stability [7, 8].

The aim of this paper is to introduce AiroLAB, a novel network virtualiza-
tion framework specifically tailored to multi–hop wireless networks [9]. AiroLAB
was designed to provide Wireless Internet service providers (WISPs) with an ef-
fective virtualization solution. In AiroLAB, an innovative mechanism to assess
wireless link capacity and realize soft–performance isolation among virtual net-
works instances allows production traffic to share part of the available network
resources with a variable number of network slices, where novel solutions, such
as new routing protocols, services or network operation tools, can be experimen-
tally tested in a severely controlled yet realistic environment with no impact on
the operational traffic. Compared to [9], which is mainly focused on the descrip-
tion of the objectives and constraints that have driven the design of our Network
Virtualization framework, in this paper we provide a more accurate analysis of
the experimental results obtained in a small–scale wireless testbed.

The paper is organized as follows: Sec. 2 provides an overview of the main
challenges behind Network Virtualization, emphasizing how AiroLAB differen-
tiates from solutions proposed in literature. Section 3 describes the AiroLAB
architecture and protocols. Section 4 presents the results of experimental tests
carried out with a prototypical implementation of AiroLAB while Sec. 5 con-
cludes the paper.

2 Network Virtualization: an Overview

Network Virtualization research main challenge refers to the definition of appro-
priate and efficient algorithms, architectures and protocols to effectively share
a common physical network infrastructure, splitting it into several logical in-
stances (generally referred to as “slices”) composed of virtual links and virtual
network nodes [10]. Network nodes should be fully programmable to allow the
instantiation of several network instances, each one potentially based on a differ-
ent architecture. Several projects worldwide are working on the various aspects



AiroLAB 3

underpinning NV: GENI in USA [11], 4WARD [12], FEDERICA [13] in Europe
and AKARI in Japan [14].

An effective NV solution shall satisfy several requirements [15]: scalability
(performance should not depend on the number of slices), isolation (among
slices), flexibility (fully programmable network elements), efficiency (limited
overhead due to virtualization), manageability (it should work in multi-domain
scenarios) and heterogeneity (in term of underlying technologies, end-users,...).
When network virtualization solutions are used for running concurrent research
experiments in dedicated testbeds, two further requirements are lack of inter–
experiments interference and experiments repeatability.

Most of the research groups proposing NV mechanisms in wireless networks
have been focusing in large–scale testbed scenarios, i.e. ORBIT [16] or GENI [11],
where several experiments could run concurrently on the same physical infras-
tructure. Due to their strong focus on creating a stable testing environment
where experiments should be repeatable and should not affect each other when
running on concurrent slices, most of the works have focused on evaluating wire-
less virtualization techniques to realize performance isolation. This has been ob-
tained by exploring both dimensions of (i) virtualization of the wireless medium
(through multiplexing techniques like SDM, FDM, CDM or TDM [17]) and (ii)
virtualization of the network node. Studies regarding the feasibility of each of
these approaches have been already provided in literature with an analysis of
their pros and cons [7, 8, 18, 19].

Compared to those works, the scenario addressed in this paper is a sort of
intermediate one between such purely research approaches applied to dedicated
testbed network infrastructures, and a conservative approach (pursued so far
by most of the operators) where novel services or recent protocols are tested
on a small-scale testbed separated from the main production network. In fact,
AiroLAB investigates techniques and architectures to provide a NV framework
specifically tailored for production networks, where operational traffic is fully
guaranteed over a “privileged” slice, while all novel (experimental) services and
protocols under test are run on “background” (lower–priority) slices. Our aim
is somehow similar to the ones pursued by solutions such as Cabernet [20, 21]
and generalized in [22] on carrier-class networking equipment; however, given the
specific technological domain under consideration, we are providing an empha-
sis toward the possibility for a Wireless ISP (WISP) to perform experimental
activities in a controlled fashion directly on its production network.

3 The architectural framework of AiroLAB

Multi–hop wireless networks are usually built using commodity components and
are characterized by rather limited computing capabilities. Such a scenario calls
for a radically new approach to network virtualization, where the trade–off be-
tween flexibility and scalability shall, due to pragmatical consideration, drift
towards the latter. Before analyzing the intricacies behind the proposed NV ar-



4 R. Doriguzzi et al.

Fig. 1: Simplified deployment scenario.

chitecture, a simplified network scenario is described in this Section to emphasize
objectives and constraints that have driven the AiroLAB’s design.

Fig. 1 sketches a simplified setup where a network, composed of three nodes
organized in a string topology, is running three distinct slices : one production
slice (A), and two experimental slices (B and C ). In this scenario, links are
symmetric and their capacity is assumed to be time–invariant. Moreover, mesh
routers are equipped with a single radio interface.

In this simplified scenario, the production slice A is assigned 80% of the
resources in the network, while the two experimental slices equally share the
remaining 20% of resources. It is worth noticing that, with our architecture, we
do not aim at supporting hundreds or even tens of concurrent slices, instead
we foresee a scenario where 5 to 10 slices share the overall network resources.
Such limitation is mandated by the computing and storage constraints that
characterized currently used wireless multi–hop networking devices.

Traffic shaping is performed at each node in order to limit the amount of
network resources used by each sliver. In this simplified setup the resources that
each sliver can exploit are upper bounded by a fixed threshold derived from
the relative performance goal given during the planning phase. As a result, slice
A “sees” an 800 Kb/s bidirectional link between node 1 and node 2, while the
available bandwidth between node 2 and node 3 is 1600 Kb/s. In this setup some
bandwidth is voluntary left unused. However scenarios where a sliver can have
full access to all the available bandwidth are also supported.

3.1 Assessing Wireless Link Capacity

Estimating the capacity of a wireless link is not trivial due to the use of a
shared medium; in fact interference coming from external sources, changes in
the propagation characteristics or interference from the same signal traveling
along different paths make the link’s total capacity fluctuate over time. Even
if we limit our attention on communications realized using the IEEE 802.11
facility of standards, an ideal estimator of the link capacity from an Access
Point toward a generic Station should take into account both the the data frame
SNR (measured at the receiving station) and the ACK frame SNR (measured
at the access point). Such a level of precision is difficult to achieve without
introducing additional signaling and/or modifying the standard IEEE 802.11
MAC operations.

In this work we decided to use an indirect way of assessing a link’s total
capacity based on the rate adaption functionalities already available in current



AiroLAB 5

IEEE 802.11 devices. Rate adaptation algorithm aims at dynamically selecting
the transmission rate in order to achieve optimal performance under varying
operating conditions. Rate adaptation is left unspecified by the IEEE 802.11
standard, as a result of the years a considerable number of solutions have been
proposed by both the academic and the industrial worlds.

Our work builds on top of currently available rate–control algorithms for
IEEE 802.11–based wireless networks. In particular we exploit the Minstrel [23]
algorithm. The minstrel rate–control algorithm aims at selecting the transmis-
sion rate that maximizes the throughput. In order to so, the algorithm collects
statistics of all the packets that have been transmitted. This data is then ex-
ploited to compute the probability of a successful transmission Pab between a
pair of nodes, a and b, for each available data–rate. In order to cope with en-
vironmental changes, minstrel uses an Exponential Weighted Moving Average
(EWMA) based approach. EWMA has a smoothing effect, so that new results
have a larger influence on the selected rate. Finally, if Dtx is the time spent
for a single transmission, and B is the packet length, the empirical throughput
Tab that is used by AiroLAB as an estimation of the wireless link capacity is
computed as follows:

Tab =
PabB

Dtx

, (1)

3.2 Providing Soft–Performance Isolation

AiroLAB provides soft–performance isolation between slivers by leveraging on
the Hierarchical Token Bucket (HTB) traffic shaping facilities provided by the
Linux kernels 2.6.x. HTB organizes traffic classes in a tree structure; each class
is assigned an average rate (rate) and a maximum rate (ceil). Three class types
exist: root, inner and leaf. A root class corresponds to a physical link; its band-
width is the one currently available for transmission. Leaf classes, placed at
the bottom of the hierarchy, correspond to a given type of traffic (e.g., TCP-
controlled or VoIP etc.). Two internal token buckets are maintained for each
class. Classes which have not exceeded their rate can unconditionally transmit;
classes which have exceeded their allowed rate but not their upper limit (ceil)
can transmit only borrowing unused bandwidth, if available, from other classes.
In order to borrow bandwidth, a request is propagated upwards in the tree. A
request that would exceed the ceil limit is terminated. A request that would
satisfy the allowed rate is accepted. A request that would not satisfy the allowed
rate constraint but the ceil one is propagated upwards until the procedure is
completed.

Due to the stochastic nature of the wireless links capacity, an HTB scheduler
alone is not able to deliver performance fairness among competing traffic flows in
wireless networks. In order to address such an issues we devised and implemented
a wireless channel monitor which exploits the channel statistics computed by the
wireless driver in order to properly distribute the available bandwidth among the
slivers running in a node. Figure 2, sketches the the architecture of the AiroLAB



6 R. Doriguzzi et al.

Fig. 2: AiroLAB wireless channel monitor architecture.

wireless channel monitor. The overall link capacity Tab is assigned to the HTB’s
root class, while each sliver is associated to a leaf class in the HTB hierarchy.
Available bandwidth is distributed among the slivers according to a set of input
policies. The wireless channel monitor is implemented in the form of a software
process running within each wireless router and periodically updates the HTB’s
configuration in order to reflect the actual channel capacity. HTB’s configuration
is also updated if either a new slice is deployed over the network or if the policies
have changed.

3.3 A description of the Node–Level Architecture

The AiroLAB framework design, whose architecture is sketched in Fig. 3, has
been centered around two open source tools based on GNU/Linux operating sys-
tem: OpenVZ [24] and Click [25]. OpenVZ consists of a modified Linux kernel
tree that supports virtualization, isolation and resource management and a set
of user–level tools that allows the installation, configuration and maintenance of
the virtual environments (also known as containers). Container–based virtual-
ization solutions are typically characterized by reduced overhead and thus better
performance. They also provide good performance isolation (in terms of CPU
cycles, memory consumption, and storage), because processes running within a
container do not significantly differ from processes running in the hosting system.
Thus, it is possible to apply existing resources sharing techniques, such as HTB
for traffic scheduling. The major drawback of container-based virtualization so-
lutions is that, since a single kernel is used for every sliver, kernel modifications
are not allowed.

Within OpenVZ, each Virtual Environment (VE) performs and executes ex-
actly like a stand–alone host; a container can be rebooted independently and
can have root access, users, IP addresses, memory, processes, files, applications,
system libraries and configuration files. Moreover, OpenVZ provides a resource
management system that controls the amount of resources available for the en-
vironments. The controlled resources include parameters such as CPU power,
disk space, and set of memory-related parameters. Furthermore, unlike alterna-
tive container-based solutions such as Linux-VServer [26], OpenVZ provides full
virtualization of the networking subsystem allowing each virtual environment to
create its own internal routing or firewall setups.



AiroLAB 7

Fig. 3: AiroLAB node–level architecture.

Due to the limitations imposed by the use of OpenVZ, namely the impossibil-
ity to run customized kernel images in different slivers, we decided to implement
our virtualization stack in user–space using the Click modular router [25]. Our
approach is not meant to replace OpenVZ, but rather to extend it in order to
support flexible virtualization of the wireless resources. In fact, albeit character-
ized by an higher overhead in comparison to pure kernel–level implementation,
Click–based solutions are highly customizable allowing us to circumvent the flex-
ibility limitations of typical container based solutions [27]. Table 1 summarizes
the trade–offs involved in the most relevant virtualization techniques currently
available, namely containers, hypervisor, and hosted VMM. AiroLAB belongs to
the second columns (Containers w/ Click) in that on the one hand container–
based virtualization is used to achieve performances and scalability, and, on the
other hand, user–space wireless network virtualization delivers high flexibility in
terms of packet processing capabilities.

Click is used both within each sliver (guest click) and at the host operating
system level (host click). More specifically, the Click instance running within a
sliver provides the guest environment with a set of virtual interfaces (ath0, ath1,
. . . , athN ) implemented as Linux TAP devices. A TAP device operates at layer
2 of the traditional ISO/OSI networking stack and simulates an Ethernet device.
User-space process, running within a sliver, can exploit the virtual interfaces to



8 R. Doriguzzi et al.

Table 1: Taxonomy of network virtualization techniques and relevant features [27].

Containers Containers
w/ Click

Hypervisors Hosted
VMM

Scalability Good Good n.a. n.a.

Fault/Security Isolation n.a. n.a. Good Good

Performance Isolation Good Good Good Good

Flexibility Poor Good Good Good

Code Re–Usability n.a. Poor Poor Good

Efficiency Good Good Good n.a.

implement their routing strategy. Communication over the virtual interfaces can
be done using three different frame formats:

– 802.3 headers (Ethernet). Used to expose a standard Ethernet interface.
– 802.11 headers (WiFi). Used to expose a wireless interface complaint with the

IEEE 802.11 protocol. In this case the user–space applications must properly
encapsulate their traffic in 802.11 frames.

– Radiotap. Used to expose a raw wireless interface. In this case the user–space
applications must properly encapsulate their traffic using the radiotap [28]
header format. The radiotap header format is a mechanism to supply addi-
tional information about 802.11 frames, from the driver to user–space appli-
cations, and from a user–space application to the driver for transmission.

In either situation, outgoing traffic is encapsulated by the guest click process
and sent to the host click process through the virtual interface eth0 provided
by the OpenVZ Container. Please note that, if the user-space application is
already using the radiotap header, no additional encapsulation is performed by
the guest click process and the frame is delivered unchanged to the host operating
system. The host click process receives the incoming frame and dispatches it to
the suitable device according to a set of policies maintained by the Link Broker.

The Link Broker is a software module that can expose different connectivity
graphs to the various slivers without requiring that the nodes must be physi-
cally separated (i.e., out of radio range). Connectivity graphs are defined on a
per-slice basis allowing us to define a different topology for each slice. This is
particularly useful to test novel routing strategies on a subset of the nodes. More-
over, if wireless routers are equipped with multiple radio interfaces, it is possible
to create multiple slices (whose cardinality equals the number of radio interfaces)
operating on orthogonal frequency bands, implementing therefore an FDM wire-
less network virtualization solution. Hybrid solutions where only a subset of the
slivers operates on orthogonal frequencies are also supported. Albeit network
connectivity graphs are defined at deployment time, they can change during
the network operations in order to create connectivity scenarios that simulates
different operating conditions (i.e. link failures/outages).



AiroLAB 9

Fig. 4: Network–level configuration: an example with one production slice and one
experimental slice sharing a common physical substrate.

3.4 An Example of Network–Level Configuration

A possible use case of AiroLAB is sketched in Figure 4, where a production
slice exploiting a legacy version of a routing protocol is running in parallel with
an experimental slice where novel routing strategies are being tested. In this
scenario the Link Broker is used to expose two different connectivity graphs to
the production and the experimental slices. On the other hand, the Wireless
Channel Monitor is used to redistribute the available link bandwidth among
the competing slices, 80% to the production slices and 20% to the experimental
slices in this cases. Please note that, a minimum bandwidth, e.g. 1 Mb/s, can
also be allocated to the production slice.

4 Results of the experimental activities

The main objective of the experimental measurements described in this Section
is to prove the effectiveness of the AiroLAB framework in preventing traffic on a
privileged slice being affected by traffic from other (lower–priority) slices, there-
fore guaranteeing a peaceful coexistence between operational and experimental
traffic in a production network.

The wireless routers employed in the experimental set-up are built exploit-
ing the PCEngines ALIX 2C2 (500MHz x86 CPU, 256MB of RAM) processor
board. Operating system and application are stored on a 1 GB Compact Flash.
Connectivity is provided by 2 Ethernet channels, 2 miniPCI slots and one se-
rial port. PCEngines ALIX boards are equipped with two Mikrotik R52 WiFi
IEEE 802.11a/b/g cards based on the Atheros AR2412 chipset. OpenWRT [29]
has been selected as Operating system for our testbed, even though its origi-
nal kernel has been replaced with a kernel provided by OpenVZ. The software
configuration of the wireless routers is summarized in Table 2.

Several experimental scenarios have been set up to demonstrate AiroLAB
performance isolation capabilities. The HTB configuration exploited during the
measurements campaigns creates a traffic class for each sliver. For each traffic



10 R. Doriguzzi et al.

Table 2: AiroLAB wireless routers setup.

Operating System OpenWRT trunk (release 14748)

Linux kernel OpenVZ 2.6.18-028stab056

Wireless drivers MadWiFi trunk (release 2568)

Virtualization tools vzctl-3.0.23, vzquota-3.0.12

Fig. 5: Representation of the packet scheduling process for the case with two slivers.

class, we specify the minimum (rate) and the maximum (ceil) throughput. Fig-
ure 5 shows the node setup for the case of two slivers. The performance metrics
considered in each experimental scenario are throughput and delay. The results
have been obtained by averaging the samples obtained as nuttcp benchmarks
over 300 seconds with an averaging interval of 10 seconds.

In the first scenario, we use two wireless nodes, each one running two con-
current slivers sharing the same wireless interface. The privileged slice (#1) has
higher transmission priority and a minimum guaranteed outbound bandwidth
set to 10 Mb/s, and it provides an offered load of 10 Mb/s. The second slice
(#2) has no minimum guaranteed outbound bandwidth, and it generates traffic
off and on periodically with varying loads. The graph plotted in Fig. 6 shows
the throughput and delay distribution per slice. As expected, when the wireless
link is not saturated (from 0 to 140 secs), AiroLAB correctly limits the impact
of slice (#2) on the privileged slice, by guaranteeing a stable throughput and
averaged delays always below 10 msec. Of course, as soon as the offered load on
Slice #2 leads to link saturation (from 140 to 160 secs), the throughput of Slice
#1 is slightly affected as well as its averaged delay which increases up to 20 msec.
However, compared to a similar test presented in [18], AiroLAB doesn’t show
any “drop to zero” effect when the second slice starts to carry some traffic, thus
showing a more stable environment. It is worth noticing that no CPU reserva-
tion policies provided by OpenVZ have been used on the “priviliged” slice: such
operation would have further limited the impact on the average delay for this
slice, mainly due to some buffer processing delay on each physical node.

In the second scenario, we want to test the ability of the proposed architec-
ture to effectively preserve production traffic in challenging conditions. To this
purpose, the experimental setting sketched in Fig. 7 has been set up. We consid-
ered two wireless nodes, each one running three slivers sharing the same wireless
interface. The experimental setup includes a wireless node connected to a PC
lying on a desk in Office 1. Changes in link quality are emulated by moving the
second node from Office 1 to another room. A continuous UDP flow is generated
among the two nodes; its rate is such that the wireless link is always saturated.



AiroLAB 11

 0

 5

 10

 15

 20

 0  20  40  60  80  100  120  140  160  180
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

T
h
ro

u
g
h
p
u
t 
(M

b
/s

)

D
e
la

y
 (

m
s
)

Time (seconds)

Slice #1 throughput
Slice #2 throughput
Delay Slice #1(ms)
Delay Slice #2(ms)

Fig. 6: Analysis of the cross–coupling effect among a privileged slice (#1) and an
experimental one (#2) in term of throughput and delay.

Fig. 7: The testing setup involved 2 nodes deployed in a typical office environment.

In this scenario, there are two privileged slices (#1 and #2) with higher
transmission priority and a minimum guaranteed outbound bandwidth set to
5 and 3 Mb/s respectively, while the remaining slice (#3) has no guaranteed
bandwidth (one can suppose a WISP having slice #1 for production traffic and
the remaining slices #2 and #3 for, respectively, testing a novel video–streaming
service and for network management and monitoring).Moreover, Slice #1 and
#2 provide an offered load of 5 and 3 Mb/s, while Slice #3 has no upper bounds
on the maximum throughput it can inject in the wireless link. The results plot-
ted in Fig. 8 show the throughput and delay distribution per–slice in different
conditions of available wireless link capacity. As expected, AiroLAB guarantees
that the throughputs of Slice #1 and #2 are only slightly affected by wireless
link conditions to detriment of Slice #3. Results related to throughput mea-
surements are summarized in Tab. 3. The impact on the average delay per slice
is higher mainly due to the saturation conditions of the experimental scenario.



12 R. Doriguzzi et al.

 0

 5

 10

 15

 20

 25

 30

 35

 0  20  40  60  80  100  120  140

T
h
ro

u
g
h
p
u
t 
(M

b
/s

)

Time (seconds)

Slice #1 throughput
Slice #2 throughput
Slice #3 throughput
Channel bandwidth

(a) Throughput

 0

 50

 100

 150

 200

 0  20  40  60  80  100  120  140

D
e
la

y
 (

m
s
)

Time (seconds)

Delay Slice #1
Delay Slice #2
Delay Slice #3

(b) Delay

Fig. 8: Relative performance for the three slices in the second scenario.

Table 3: Throughput statistics.

Slice #1 Slice #2 Slice #3

Average 5 3 8,85

Minimum 3,85 2,42 0,54

Maximum 6,27 3,46 14,6

Std Deviation 0,47 0,14 5,1

Confidence interval (95%) ±0,08 ±0,02 ±0,82

However, it is worth noticing that an average delay lower than 150 msec is toler-
able for video–streaming–based services; while network-management traffic can
tolerate even higher delays [30]. As per the previous test scenario, the impact
on the average delay for the slice running the production traffic could have been
further minimized through an appropriate configuration of the CPU reservation
via OpenVZ.



AiroLAB 13

5 Conclusions

In this paper, we have presented AiroLAB, a novel virtualization framework
specifically tailored to multi–hop wireless networks. AiroLAB has been designed
with the explicit goal to empower WISP with an effective tool to allow pro-
duction traffic to safely share part of the available network resources with a
variable number of network slices where novel solutions, such as new routing
protocols, services or network operation tools, can be experimentally tested in a
severely controlled yet realistic environment. The architecture and protocols at
the hearth of AiroLAB have been presented, discussed and compared with ex-
isting solutions. A first prototypical implementation of AiroLAB capable of sup-
porting performance isolation between concurrent slices is described, together
with experimental measurements obtained in a small–scale wireless testbed.

Despite the encouraging results presented in the paper, the proposed frame-
work requires further development before reaching the stability level needed to
enable its wide adoption. Among the possible research directions to enhance the
current architecture, we believe that the ability of leveraging, by means of appro-
priate FDM approaches, the presence of multiple wireless interfaces (such that,
for example, different slices could associate to dedicated radio channels), could
definitely improve the efficiency and scalability of AiroLAB in realistic scenar-
ios. Moreover, integration with currently available frameworks for automatic NV
resources allocations, such as OMF [31], shall be cosidered for future evolution
of the framework.

References

1. A. Feldmann, M. Kind, O. Maennel, G. Schaffrath, and C. Wehrle, “Network Vir-
tualization An Enabler for Overcoming Ossification,” ERCIM News, vol. 77, pp.
21–22, April 2009.

2. P. Papadimitriou, O. Maennel, A. Greenhalgh, A. Feldmann, and L. Mathy, “Im-
plementing Network Virtualization for a Future Internet,” in Proc. of 20th ITC

Specialist Seminar on Network Virtualization, Hoi An, Vietnam, 2009.
3. Planet Lab project, http://www.planet-lab.org.
4. VINI project, http://www.vini-veritas.net.
5. R. Bruno, M. Conti, and E. Gregori, “Mesh Networks: Commodity Multihop Ad

Hoc Networks,” IEEE Communications Magazine, vol. 43, no. 3, pp. 123 – 131,
Mar. 2005.

6. I. Akyildiz, X. Wang, and W. Wang, “Wireless mesh networks: a survey,” Elsevier

Computer Networks, vol. 47, no. 4, pp. 445 – 487, Mar. 2005.
7. G. Smith, A. Chaturvedi, A. Mishra, and S. Banerjee, “Wireless Virtualization on

Commodity 802.11 Hardware,” in Proc. of ACM WinTECH, Montreal, Quebec,
Canada, 2007.

8. R. Mahindra, G. Bhanage, G. Hadjichristo, I. Seskar, D. Raychaudhuri, and
Y. Zhang, “Space Versus Time Separation for wireless virtualization On an In-
door Grid,” in Proc. of EURO NGI, Krakow, Poland, 2008.



14 R. Doriguzzi et al.

9. R. Doriguzzi Corin, R. Riggio, D. Miorandi, and E. Salvadori, “AiroLAB: A Frame-
work Toward Effective Virtualization of Multi-hop Wireless Networks,” Interna-

tional Journal of Communication Networks and Distributed Systems, 2010, ac-
cepted for publication.

10. J. Evans, D. Raychaudhuri, and S. Paul, “Technical Document on Overview Wire-
less, Mobile and Sensor Networks,” The GENI Project Office, Tech. Rep. GDD-
06-14, 2006.

11. GENI project, http://www.geni.net.
12. 4WARD project, http://www.4ward-project.eu.
13. FEDERICA project, http://www.fp7-federica.eu.
14. AKARI project, http://akari-project.nict.go.jp.
15. N. M. M. K. Chowdhury and R. Boutaba, “Network Virtualization: State of the

Art and Research Challenges,” IEEE Communications Magazine, July 2009.
16. Orbit Lab, http://www.orbit-lab.org/.
17. S. Paul and S. Seshan, “Technical Document on Wireless Virtualization,” The

GENI Project Office, Tech. Rep. GDD-06-17, 2006.
18. S. Singhal, G. Hadjichristo, I. Seskar, and D. Raychaudhuri, “Evaluation of UML

based wireless network virtualization,” in Proc. of EURO NGI, Krakow, Poland,
2008.

19. G. Bhanage, I. Seskar, Y. Zhang, and D. Raychaudhuri, “Evaluation of OpenVZ
for wireless testbed virtualization,” WINLAB Rutgers University, Tech. Rep. 331,
2008.

20. N. Feamster, L. Gao, and J. Rexford, “How to lease the Internet in your spare
time,” ACM SIGCOMM Computer Communications Review, pp. 61–64, January
2007.

21. Y. Zhu, R. Zhang-Shen, S. Rangarajan, and J. Rexford, “Cabernet: Connectivity
architecture for better network services,” in Proc. of Workshop on Rearchitecting

the Internet, 2008.
22. G. Schaffrath, C. Werle, P. Papadimitriou, A. Feldmann, R. Bless, A. Greenhalgh,

A. Wundsam, M. Kind, O. Maennel, and L. Mathy, “Network Virtualization Archi-
tecture: Proposal and Initial Prototype,” in Proc. of ACM SIGCOMM Workshop

on Virtualized Infastructure Systems and Architectures, Madrid, Spain, 2009.
23. Minstrel, http://linuxwireless.org/.
24. OpenVZ, http://openvz.org/.
25. “The click modular router project.” [Online]. Available: http://read.cs.ucla.edu/

click/
26. Linux-VServer, http://Linux-VServer.org/.
27. A. Nakao, R. Ozaki, and Y. Nishida, “Corelab: An emerging network testbed em-

ploying hosted virtual machine monitor,” in Proc. of ACM ROADS, Madrid, Spain,
2008.

28. Linux Radiotap, http://www.radiotap.org/.
29. “OpenWRT Linux Distribution.” [Online]. Available: http://openwrt.org/
30. T. Szigeti and C. Hattingh, End-to-End QoS Network Design: Quality of Service

in LANs, WANs, and VPNs. Cisco Press, 2004.
31. OMF, cOntrol and Management Framework, http://omf.mytestbed.net.


