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Abstract—Network Function Virtualization (NFV) will simplify
deployment and management of network and telecommunication
services. NFV provides flexibility by virtualizing the network
functions and moving them to a virtualization platform. In order
to achieve its full potential, NFV is being extended to mobile or
wireless networks by considering virtualization of radio functions.
A typical network service setup requires the allocation of a
Virtual Network Function - Forwarding Graph (VNF-FG). A
VNF-FG is allocated considering the resource constraints of the
lower infrastructure. This topic has been well-studied in existing
literature, however, the effects of variations of networks over time
have not been addressed yet. In this paper, we provide a model of
the adaptive and dynamic VNF allocation problem considering
also VNF migration. Then we formulate the optimization problem
as an Integer Linear Programming (ILP) and provide a heuristic
algorithm for allocating multiple VNF-FGs. The idea is that
VNF-FGs can be reallocated dynamically to obtain the optimal
solution over time. First, a centralized optimization approach is
proposed to cope with the ILP-resource allocation problem. Next,
a decentralized optimization approach is proposed to deal with
cooperative multi-operator scenarios. We adopt AD3, an ADMM-
based algorithm, to solve this problem in a distributed way. The
results confirm that the proposed algorithms are able to optimize
the network utilization, while limiting the number of reallocations
of VNFs which could interrupt network services.

Index Terms—Network function virtualization, VNF-FG em-
bedding, Multi-domain orchestration, Approximation algorithm,
Distributed optimization

I. Introduction
Network Function Virtualization (NFV) promises to reduce

the cost of deploying and operating large network infras-
tructures. It provides the possibility to migrate complex net-
work functions from dedicated hardware appliances to general
purpose computing, storage, and networking solutions. This
transition is also expected to provide significant benefits to
the 5G mobile network architecture, by allowing flexible and
scalable provisioning of new applications and network services
(software vs. hardware development life-cycles). Moreover,
since NFV allows multiple network services to share the same
physical infrastructure, it enables new business models and/or
economies of scale. In particular, the Network–as–a–Service
(NaaS) business model is expected to play a pivotal role in 5G
mobile networks, allowing Mobile Network Operators (MNOs)
to tap into new revenue streams. Virtualization will allow
MNOs to abstract their physical network infrastructure into
service specific slices, possibly operated by different mobile
virtual network operators (MVNOs) [1][2][3] or over the top
(OTT) providers. The envisioned vertical applications range
from high–definition video delivery to machine–to–machine
applications.

Virtualization and adaptive network service orchestration
are two of the main technical enablers that will allow In-
frastructure Providers (InPs) to cope with the diverse range

of requirements that will characterize future applications and
services. It is worth noticing that in this case, an InP could
either be a traditional MNO that decides to open-up its
networks to third parties or a new actor in the value chain
that focuses only on the deployment and operation of the
network infrastructure (the InP could even be a consortia of
MNOs). Although a rich body of literature exists on VNF
placement [4], virtual network embedding [5], and component
placement [6], most of these works focus on the problem of
mapping an input virtual network request –often in the form of
a VNF Forwarding Graph (VNF-FG) – onto a physical virtual-
ized network substrate – often offering computational as well
as networking resources. Nevertheless, most of these works
either assume that on-boarded VNF-FGs are not changed after
they are mapped onto the substrate network or, when VNF-FG
remapping is allowed, they do not consider the migration cost.
In this work, we address the adaptive allocation of VNF-FG

for realizing network services in mobile and wireless networks.
We model the adaptive and dynamic VNF-FGs allocation
problem considering also VNF migration. Then we formulate
the optimization problem as an Integer Linear Programming
(ILP). As the optimization problem is found to be NP-hard,
we provide a heuristic algorithm for allocating multiple VNF-
FGs, which can provide near-optimal solutions in polynomial
time. We expect MVNOs to specify their requests in terms of
a VNF-FG. Such VNFs include all the typical elements of a
mobile or wireless network plus the typical middleboxes found
in this context, e.g. load–balancers, firewalls, and deep packet
inspection devices. Note that with mobile or wireless network
elements, we address both the radio (virtual base stations) and
the core (virtual Evolved Packet Core) segments of the mobile
network architecture. Practically, the substrate networks could
be comprised of multiple domains which are controlled by
different operators. Therefore, we decompose and distribute the
VNF-FG allocation problem over a set of operators. Thanks
to our proposed distributed scheme, the operators are able to
control their resources and take advantages of extending their
services through collaboration and parallelizing the optimiza-
tion process. This paper extends the work presented in [7]
by considering multi-domain orchestration as well as dynamic
and adaptive allocation. The cost is revised by adding the
migration cost and the transmission cost beside deployment
costs. The objective is to allocate maximum number of VNF-
FGs to physical nodes in substrate networks with an optimal
global cost. The contributions of this paper are threefold:

(i) we formalize the adaptive and dynamic VNF-FG alloca-
tion problem for wireless networks,

(ii) we propose a centralized approximation algorithm,
named A2VF (Adaptive Allocation of Virtual Functions),
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that ensures efficient embedding of VNF-FG in polyno-
mial time, and

(iii) we propose a decentralized optimization algorithm,
named AD3-VA (AD3-based VNF allocation), that en-
ables cooperation between domains to deploy a VNF-
FG, which is the first application and adaptation of the
AD3 algorithm to this very problem, to the best of our
knowledge.

Extensive numerical results show that the proposed centralized
algorithm, A2VF , runs one order of magnitude faster than the
ILP–based placement algorithm, while providing comparable
performance in terms of embedding cost. The decentralized
approximation algorithm, AD3-VA, has a comparable perfor-
mance to A2VF in moderately complex cases.
The rest of this paper is structured as follows. In Section II

we discuss the related work. The adaptive VNF-FG embedding
problem is formulated in Section III. The A2VF approximation
algorithm is introduced in Section IV. Section V presents the
decentralized approximation algorithm AD3-VA. Section VI
provides the performance evaluation. Finally, Section VII
draws the conclusions while pointing out the future work.

II. Related Work

This section presents the related work and some background.
The text below first discusses the VNF-FG embedding in
single and multi-domain scenarios. Then, related work and
background on distributed optimization are provided.

A. Single Domain VNF-FG Embedding
Many works have been proposed in the literature on VNF-

FG embedding in single domain scenarios as in [8], [9], [10],
[11], [12], [13]. In [8], authors propose a heuristic for VNF-
FG embedding onto the underlying physical network. The main
idea of this work is to sort the VNFs according to the ratio of
outgoing flows with regards to the incoming flows, and start
by embedding the VNFs with high ratio first then the low ratio
ones. The problem of VNF-FG embedding is modeled as an
ILP problem in [9] and a heuristic is proposed to solve it. The
main goal of this work is to minimize the utilisation of physical
resources while meeting the QoS requirements of the VNF-
FG. The proposed heuristic decomposes the forwarding graph.
Then, the VNFs of the decomposed graph are embedded onto
the physical network based on a backtracking mechanism.
A concept of hybrid NFV environment is introduced in [10],

where a part of a service is provided by dedicated physical
nodes and the other is provided by a virtual network. The
problem is modeled as an ILP and a heuristic is used to map
the virtual part of the network on the physical resources.
Authors in [11] propose to jointly optimize the VNF-FG

design and VNF-FG embedding. Their proposed approach
exploits the feedback of mapping the VNF-FG to optimize
the VNF-FG design. The objective of this work is to optimize
the total bandwidth consumption.
While many prior works focused on finding efficient meth-

ods to maximize revenue generated for infrastructure providers,
the work presented in [12] considers optimization of energy

consumption, while at the same time, guaranteeing high rev-
enues for the InP. An ILP–based algorithm and a heuristic
algorithm are proposed to solve the VNF-FG embedding prob-
lem with dynamically changing demands, which are modeled
using the Gaussian distribution. Similarly, in [14], the authors
proposed a heuristic algorithm for solving VNF-FG embedding
problem aiming to reduce the global energy consumption. The
extension of this work [13] considered long-term and short-
term QoS constraints besides energy efficiency.
Some works [15], address the problem in two steps i.e. first

VNFs are placed and then chaining is used to steer traffic.
We use joint optimisation which is better than such two-step
solutions, as pointed out and also used in [16]. However, [16]
neither considers dynamic embedding nor distributed scenario,
which is considered in our paper. For more related work,
interested readers are pointed to a survey paper [17].
All the aforementioned algorithms are compared using

criteria such as cost, revenue and service processing time and
do not consider the dynamic embedding and re-embedding of
the VNF-FG. Our work considers this possibility in this paper
and also proposes both centralized and decentralized solutions
for dynamic VNF-FG allocation. The decentralized solution
can be applied to multi-domain VNF-FG embedding which is
discussed in the section below.

B. Multi-domain VNF-FG Embedding
The physical resources providers involved in VNF-FG would

mostly like to keep the information about their resources
confidential, which in turn motivates our distributed solution
for multi-domain VNF-FG allocation.
The NFV reference architecture MANO, proposed by

ETSI [18], does not provide any specifications for VNF-
FG allocation over administratively different infrastructure
domains. A few recent works address VNF orchestration in
multi-domain. Munoz et al. [19] addressed the connectivity
of VNF-FG over multi-technological domains in SDN-based
architecture. However, the proposed integrated SDN/NFV or-
chestration architecture is based on a centralized orchestrator,
which does not fit the case with multi-operators. Cloud-
NFV [20] proposed to orchestrate VNF-FG in a distributed
cloud architecture. Their work differs from our contribution in
the fact that even if the proposed architecture is distributed over
distributed clouds, it is still managed by a single orchestrator
which belongs to the same provider. Other works employ a
distributed orchestrator which replicates a large scale global
view. However such concept has some disadvantages such as
the global view can be inconsistent, complexity is high and
there is the deficiency of confidentiality [21], [22]. Path Com-
putation Engine (PCE) based solutions are proposed in [21]
for mapping virtual optical network in multi-domain networks.
The main drawback of this solution is the fact that the parent
PCE is obliged to compute all inter-domain paths and there is
high signaling overhead.
The X-MANO project [23] proposes a new framework

towards inter-domain orchestration. Authors of this work
proposed a set of interfaces and abstractions to coordinate
the inter-domain orchestration process (including on-boarding,
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scaling, and termination) while preserving the confidentiality
of each domain. A proof of concept of X-MANO is provided
in [24]. However, in this project authors did not propose any
mechanism or approach for the inter-domain orchestration,
they proposed a general framework which can be used by the
community to implement their own mechanisms. Moreover,
the 5-GEx [25] European project proposed a new architecture
which aims to enable cross-domain orchestration of services
over multiple administrations or over multi-domain single
administrations. The objective of this architecture is to enable
end-to-end network and service elements to mix in multi-
vendor, heterogeneous technology and resource environments.
This project proposes a new architecture. More information
about the 5-GEx architecture are provided in the beginning of
Section V.

In this work, we consider the 5-GEx architecture as an
example architecture where our proposal can be applied. We
note that the solution which we propose is generic and can be
adopted in any distributed NFV orchestration architecture.

C. Distributed Cooperative Algorithms and AD3

Allocating VNF-FGs, composed of several network func-
tions, traversing several domains or operators can be viewed
as a decomposition and a distribution of an allocation problem.
Thus, the multiple stakeholders manage their own part of the
problem and cooperate for the collective assignment.

Alternating Direction Method of Multipliers (ADMM) [26]
is a well-known method to decompose and distribute a prob-
lem. ADMM has been adopted to solve several networking
problems such as resource allocation [27]. However, ADMM
was designed for continuous variables and cannot be used
directly for problems which have integer variables. In [28], the
discrete functions are approximated by polynomial continuous
functions; nevertheless, the quality of solution depends on
the accuracy of the approximation. The major advantage
of ADMM is adaptability in various large-scale distributed
problems. However, the slow convergence of ADMM prevents
its application to complex problems such as resource allocation
for VNF-FG embedding in wireless networks.

Recently, a new ADMM-based algorithm, the so-called
AD3 (Alternating Directions Dual Decomposition) has been
proposed in the realm of the machine learning literature
[29]. AD3 has extra interesting features as compared to other
message-passing algorithms in the machine learning literature:
it reaches consensus faster than other algorithms [30], [31],
and it neither has the convergence problems of Max-Product
Linear Programming (MPLP) [32] nor the instability problems
of Norm-Product Belief Propagation [33]. This unveils the
possibility of employing AD3 to approximate constrained
optimization problems. To the best of our knowledge, our paper
is the first study on the application of AD3 to dynamic resource
allocation in wireless networks.

III. VNF-FG Allocation Problem
A. VNF-FG Placement and Chaining

Fig. 1 describes the VNF-FG use case that we target in
this paper. The use case is detailed in [34], where one or

Fig. 1: VNF-FG example

multiple VNF forwarding graphs can be used for implementing
a network service. A VNF connects to another VNF using a
virtual link (VL) through VNF interfaces called connection
points (CP). A VL may be composed of one or several
physical links. A forwarding path (FP) is an ordered list of
CPs forming a sequence or a chain of VNFs which will
be traversed by traffic flows [35]. Finally, a VNF-FG may
consist of multiple FPs. Based on the VNF-FG, a network
connectivity topology (NCT) is formed using a set of virtual
links. It consists of VLs connecting different VNFs as shown in
Figure 1. NCT is instantiated over NFV Infrastructure (NFVI)
while considering the topological constraints as well as VNF
resource requirements. For example, in Fig. 1, there are 2
forwarding paths: red (FP1) and blue (FP2). Assume that FP1
will serve a flow of 3 Mb/s and FP2 will serve a flow of 2
Mb/s. It can be seen in Fig. 1 that both forwarding paths pass
through the VL between the radio access function and VNF1.
Thus, considering these bandwidth requirements, a 5 Mb/s VL
will need to be instantiated in the NCT between radio access
function and VNF1. Other VLs such as the one between VNF1
and VNF2 will be instantiated according the their requirements
i.e. 3 Mb/s for this particular case.
A VNF-FG deployment system at its core implements the

NFV orchestrator and VNF manager defined in the NFV
reference architecture framework [36]. They are responsible
for orchestration and management of resources, lifecycle man-
agement such as instantiation, update, termination, etc. They
invoke the modules defined in the NFV reference architecture
to deploy VNF-FG. An example of steps for VNF-FG deploy-
ment are provided in [35]. First a VNF-FG request arrives. If
the request is valid then a template is generated for NCT trans-
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Notation Description
Ns Set of substrate nodes
Es Set of substrate links
qc(n) Available CPU resources at node n ∈ Ns
qm(n) Available memory resources at node n ∈ Ns
qs(n) Available storage resources at node n ∈ Ns
qr(n) Available radio resources at node n ∈ Ns
qe(e

nm) Available bandwidth resources of link enm ∈ Es
Λc,m,s,rn Cost of each unit of node resources

Λe Cost of each unit of link resources

TABLE I: Substrate network notations

lation, placement and chaining. Then a placement and chaining
algorithm, which is the topic of this paper, is executed. The
algorithm updates the NCT template by specifying where to
place VNFs and which virtual links to instantiate. Then the
VNFs and the forwarding paths are instantiated. Finally, the
requested VNF-FG is ready to be used.

Note that in this paper, we focus on joint VNFs placement
and chaining which is better than tackling placement and
chaining separately, because topological as well as resource
requirements are considered together. Moreover, we focus on
dynamically allocating VNF-FG to the substrate graph (or the
NFV infrastructure) as different requests arrive over time. By
allowing migration of functions, we allocate resources more
efficiently and enhance the utilization of the substrate net-
works, especially when there are multiple VNF-FG demands.
Continuing the above example, based on Fig. 1, it can be seen
that at time t the VNFs are allocated over NFVI. Now another
request arrives. Depending on costs such as that of migration
and gains in terms of resource utilization efficiency, it might
be optimal to migrate some VNFs to other locations in NFVI.
This is for optimization process to find out. In case migration
turns out to be optimal, some VNFs are migrated at t + 1.
Migration is elaborated more later in next sub-section.

Note that we consider two scenarios: in the first, we consider
a single domain VNF-FG deployment, where both infrastruc-
ture and VNF-FG are under control of a single operator. The
second scenario is when a VNF-FG is deployed over multiple
domains, then a cooperative optimization scheme, based on
message passing algorithm, is proposed. These two scenarios
are presented in Section IV and Section V, respectively.

B. Problem Formulation
Our system model is described here and a summary of

the notation used in this paper is provided in Table I. We
assume that VNF-FG requests arrive over time. VNF-FG in
turn will be used for realizing network services. Generally,
the VNF-FG may compose of multiple forwarding paths.
Based on that graph, a network connectivity graph is formed
as a directed graph Gv,ζ = (Nv,ζ , Ev,ζ) in which Nv,ζ is
the set of virtual network functions (VNFs) and Ev,ζ is the
set of virtual links of VNF-FG ζ. VNFs are allocated to
physical nodes in substrate networks so as to optimize the
global cost. Each physical node has four types of resources:
CPU, memory, storage, and radio, while each physical link
has the bandwidth resource. A VNF n′ requests resources

Notations Description
Nv,ζ Set of nodes in VNF-FG ζ
Ev,ζ Set of virtual links in VNF-FG ζ
ωc(n

′) Requested CPU resources of VNF n′
ωm(n′) Requested memory resources of VNF n′
ωs(n

′) Requested storage resources of VNF n′
ωr(n

′) Requested radio resources of n′
ωb(n

′) Requested bandwidth resources of node n′
Ωb(n

′) Reference bandwidth at node n′
ωe(e

nm) Requested bandwidth of linkenm ∈ Ev,ζ
Nb
v,ζ Set of nodes requesting radio resources in bandwidth

Nr
v,ζ Set of nodes requesting radio resources in a fraction

of available radio resource

TABLE II: VNF-FG request notations

with amounts
(
ωc(n

′), ωm(n′), ωs(n
′), ωr(n

′), ωb(n
′)
)
while

a virtual link e′ requests bandwidth resource of amount ωe(e′).
Radio resources can be provided either in terms of fraction
of available radio resources (ωr) or in terms of bandwidth
(ωb). Let us denote Nr

v and N b
v as the nodes request radio

resources in terms of fraction of radio resources and bandwidth
respectively. In the first case, the users identify the fraction
of radio resources allocated at a node. Meanwhile, the users
determine the amount of bandwidth assigned to the node in
the latter case. A reference bandwidth Ωb(n) was introduced
to share radio resources between users equally. Table II sum-
marizes the notations related to VNF-FG. A request of radio
resources can be in the terms of a fraction of available radio
resources (ωr) or an amount of bandwidth ωb. The actual
aggregate throughput of the virtual radio node n′ is denoted
as b(n′), then the effective bandwidth for virtual radio node

ω̃b(n
′) is ω̃b(n′) =

{
ωb(n

′) if b(n′) ≥ Ωb(n
′)

ωb(n
′) b(n′)

Ωb(n′) if b(n′) < Ωb(n
′)

. A

great Ωb(n) will prefer virtual nodes with good aggregate
throughput. Conversely, a small Ωb(n) tends to treat virtual
nodes fairly. The fraction of radio resource can be retrieved
from the effective bandwidth by ωr(n′) = ω̃b(n

′)
b(n′) . Then, the

constraint of radio resource of a radio processing node can be
expressed as follows.∑

n′∈Nbv

ωb(n
′)

Ωb(n′)
Φn

′

n +
∑
n′∈Nrv

ωr(n
′)Φn

′

n ≤ 1,∀n ∈ Ns (1)

We consider a time-slotted model, where the system is
assumed to be unchanged for the duration of one slot. A new
VNF-FG request may arrive in the middle of the slot and will
be assigned to the substrate nodes in the next slot. Although
it could cause additional delay in allocation, an adaptive time-
slot, which will be shortened when a new VNF-FG request
arrives, can mitigate the delay in resource allocation. This
issue is out of scope of this paper and could be considered
in future research. The assignment of VNFs is computed at
the beginning of every slot and we can assume that the time-
slot is much longer than the migration process [37]. Note that
as opposed to our work, the authors of [7] do not consider
dynamic and adaptive allocation. They also do not consider
migration.
Binary variables Φn

′

n and Φe
′

e are introduced to denote the
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mapping of virtual network functions and virtual edges to
substrate nodes and links respectively. Φn

′

n is 1 when virtual
network function n′ is hosted by substrate node n and Φe

′

e is
1 when link e conveys traffic on virtual edge e′. The model
proposed in [7] comes with following constraints.

• The amount of allocated resources should be less than or
equal to the amount of available resources∑

n′

ωx(n′)Φn
′

n ≤ qx(n),∀n ∈ Ns (2)

where x could be c, m, s, or r represented for CPU
resources, memory resources, storage resources, and radio
resources respectively. For the links, we have∑

e′

ωe(e
′)Φe

′

e ≤ qe(e),∀e ∈ Es (3)

• Every VNF is mapped at most once∑
n

Φn
′

n ≤ 1,∀n′ ∈ Nv (4)

In [7], the left hand side expression of Eq. (4) is equal
to 1. This could lead to infeasible status when solving by
ILP solver since there may not be enough resources to
accommodate all VNF-FGs in networks. To avoid this, we
relax the constraints (4). Although Eq. (4) allows Φn

′

n =
0,∀n, n′, the penalty function presented in Eq. (6) leads
to an optimal solution comprising positive values of Φn

′

n .
• The following constraints enforce a continuous path

assigned between substrate nodes n,m hosting VNFs
n′,m′:∑

m

Φe
n′m′

enm −
∑
m

Φe
n′m′

emn = Φn
′

n − Φm
′

n ,

∀n ∈ Ns,∀en
′m′
∈ Ev (5)

Note that Equation 5 is based on multicommodity flow model
in which the L.H.S is the difference between the total incoming
flows and the total outgoing flows, while the R.H.S is to
indicate if a substrate node hosts the origin or destination of
the virtual link.

Unlike the work presented in [7], the cost of placing a
VNF includes the cost of resource usage, the transmission
cost, and the migration cost. The cost of resource usage is
computed as a function of the resources used by a VNF.
The transmission cost of a VNF-FG ζ, cd,ζ(t), is a function
of the total number of hops between adjacent VNFs. It is
assumed to be the transmission cost incurred by the users of
the network service realized by the VNF-FG. The migration
cost of VNF-FG ζ, cm,ζ(t), is a function of the difference
in number of hops between the location in time-slot t and
t + 1 of VNFs. It is 0 if there was no migration. Thus, it
is assumed that migrating a VNF incurs cost proportional
to the distance between initial and final location. Note that
the parameter which is the number of hops can be easily
replaced in the model by some other equivalent parameter. All
notations related to costs and distances are listed in Table III.
The transmission and migration cost functions can be modeled

Notations Description
xd,ζ(t) Transmission distance in number of hops
xm,ζ(t) Migration distance in number of hops
βc, βl, µ Parameters of migration cost function
δc, δl, θ Parameters of transmission cost function
dn,m distance (hops) between nodes n and m

TABLE III: Cost and distance notations

using the constant-plus-exponential function proposed in [37]:

cm,ζ(t) =

{
0, xm,ζ(t) = 0

βc + βlµ
xm,ζ(t) xm,ζ(t) > 0

and

cd,ζ(t) =

{
0, xd,ζ(t) = 0

δc + δlθ
xd,ζ(t) xd,ζ(t) > 0

The migration distance is the relative difference in the
amount of total shortest distance (hops) between the locations
of VNFs at instance t− 1 and at instance t. The transmission
distance is the total shortest distance (hops) between VNFs
in VNF-FG. The transmission distance (xd,ζ) and migration
distance (xm,ζ) are integers (number of hops), while the
corresponding costs are fractional values. Let di,j be the
shortest distance in number of hops between substrate node
i and j. Therefore, we have

xm,ζ(t) =
∑

n′∈Nv,ζ

∑
n1 6=n2

dn1,n2
Φn

′

n1
(t− 1)Φn

′

n2
(t)

and
xd,ζ(t) =

∑
en,m

∑
en′,m′∈ζ′

dn,mΦ
en′,m′
en,m

For sake of readability, we use Figure 1 as an example of
transmission and migration distances. Note that there can be
any number of VNFs and forwarding paths. In this example, a
VNF-FG comprises a virtual radio access node and 4 VNFs. In
time-slot t, the virtual radio access node, VNF1, VNF2, VNF3,
and VNF4 are mapped finally into wireless access point (WAP)
1, server A, server C (VNF2 and VNF3), and the storage server
respectively. At the beginning of time-slot t + 1, the virtual
radio access node, VNF1, and VNF3 are hosted at WAP 2,
server B, server D respectively; while the hosts of VNF2 and
VNF4 are unchanged. The migration distance in time-slot t+1
is 6 (radio access resource, VNF1, and VNF3 migrate 2 hops
each) while the transmission distance is 5 for both time-slot t
and t+ 1.
Let Ωn,n′ = ωc(n

′)Λcn+ωm(n′)Λmn +ωs(n
′)Λsn+ωr(n

′)Λrn
and Ωe,e′ = ωe(e

′)Λe as the cost of deploying VNF n′ at
substrate node n and virtual link e′ at substrate link e.
VNF-FG ζ is not considered assigned unless all of its

VNFs are assigned. For a given K and VNF-FGs indexed
with 1, ...,K, we introduce a penalty function to maximize
the number of admitted VNF-FGs as follows:

Mζ =

 (K + 1)M0 ∃
(
n′, ζ

)
:
∑
n

Φn
′

n = 0

0, otherwise
(6)

where M0 is the upper-bound cost of allocated VNF-FGs.
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This penalty impacts the characteristics of the optimal
solution. A high penalty means the number of allocated VNF-
FGs is favored, while a low penalty means short migration
and transmission distances are more preferred. The value of
penalty shown in Eq. (6) guarantees the maximum number
of allocated VNF-FGs as proven in Lemma 3. Let us denote

hζ = u

( ∑
n′∈Nv,ζ

∑
n

Φn
′

n − |Nv,ζ |

)
, where u(x) is a step

function (u(x) = 1 when x ≥ 0 and u(x) = 0 when x < 0).
Note that hζ = 1 when all VNFs of ζ are allocated. Then, we
have: ∑

n′∈Nv,ζ

∑
n

Φn
′

n ≥ |Nv,ζ |hζ . (7)

Then, the penalty function could be rewritten as follow

Mζ = (K + 1)M0

(
1− hζ

)
(8)

The total cost at time-slot t is∑
ζ

(∑
n

∑
n′

Ωn,n′Φn
′

n (t) +
∑
e

∑
e′

Ωe,e′Φ
e′

e (t)+

cm,ζ(t) + cd,ζ(t) +M0 (K + 1)
(
1− hζ

))
(9)

Since the distance is an integer, cm(xm(t))
and cd(xd(t)) are non-decreasing step functions.
cm,ζ(t) = βcu(xm,ζ(t)) +

∞∑
k=1

u(xm,ζ(t)− k)βl
(
µk − µk−1

)
and cd,ζ(t) = δcu(xd,ζ(t))+

∞∑
k=1

u(xd,ζ(t)−k)δl
(
θk − θk−1

)
Let us denote ηkm,ζ(t) = u(xm,ζ(t) − k) and ηkd,ζ(t) =

u(xd,ζ(t)− k), so ηkm,ζ(t) and ηkd,ζ(t) are binary variables.

Lemma 1. ηkm,ζ(t) and ηkd,ζ(t) satisfy the following charac-
teristics

kηkm,ζ(t) ≤ xm,ζ(t) < k + (Xm,ζ(t)− k)ηkm,ζ(t) (10)

kηkd,ζ(t) ≤ xd(t) < k + (Xd,ζ(t)− k)ηkd,ζ(t) (11)

where Xm,ζ and Xd,ζ are the upper-bound of xm,ζ(t) and
xd,ζ(t).

Proof. (10) and (11) are similar. We are going to prove the
(10). The proof of (11) is similar. If xm,ζ(t) ≥ k, we
have ηkm,ζ(t) = 1 following the definition of ηkm,ζ(t) and
inequality (10) is satisfied. The case xm,ζ(t) < k can be
similarly proven. If ηkm,ζ(t) = 1: from inequality (10), we
have k ≤ xm,ζ(t) < Xm,ζ(t) that satisfies the definition of
ηkm,ζ(t). The case ηkm,ζ(t) = 0 can be similarly proven.

The objective is to minimize the total cost in (9) under
aforementioned constraints. The optimization problem can be
written in the following form:

Problem 1 (Adaptive VNF-FG Allocation).

min (9)
s.t. (1), (2), (3), (4), (5)

(7), (10), (11)
Φn

′

n , Φe
′

e , ηm, ηd, hζ ∈ {0, 1} ,∀ζ
This optimization problem has the following characteristics.

Lemma 2. The feasible solution to the optimization problem
has the elements which satisfy ηkm,ζ(t) ≥ η

k+1
m,ζ (t)

Proof. When ηkm,ζ(t) = 0, we have u
(
xm,ζ(t)− k

)
= 0

which means 0 ≤ xm,ζ(t) < k. Therefore, ηk+1
m,ζ (t) = 0 and

ηkm,ζ(t) ≥ ηk+1
m,ζ (t). Otherwise, we have ηkm,ζ(t) ≥ ηk+1

m,ζ (t)

because ηk+1
m,ζ (t) ∈ {0, 1}

Lemma 1 and Lemma 2 provide limits of ηkm,ζ(t) and
ηkd,ζ(t), thus reducing the searching complexity of the pro-
posed algorithm presented in Section IV.

Lemma 3. The optimal solution, if exists, is the set of VNF-
FGs which has the maximum cardinality.

Proof. Without loss of generality, let us assume that we have
N VNF-FGs. The optimal solution comprises P allocated
VNF-FGs indexed 1, ..., P and N − P unallocated VNF-FGs
indexed P + 1, ..., N . The cost of each allocated VNF-FG is
ai. We have the total optimal cost as A∗ = a1 + ... + aP +
M0 (N + 1) (N − P ).
We assume that there is another feasible solution, with the

total cost A′, which can admit more VNF-FGs than the optimal
solution. Let us call the number of unallocated VNF-FGs in
that solution as L and L ≤ N − P − 1. Without loss of
generality, we assume that L unallocated VNF-FGs are from
N −L+ 1-th VNF-FG to N -th VNF-FG. The total cost A′ is
a′1 + ...+ a′P + a′P+1 + ...+ a′N−L +M0 (N + 1)L.
We have A∗ ≤ A′ since A∗ is the cost of the optimal

solution. Then, we have a1 + ...+aP +M0(N +1)(N −P ) ≤
a′1 + ... + a′P + ... + a′N−L + M0(N + 1)L which can

be rewritten as
P∑
i=1

(
ai − a′i

)
+ M0(N + 1)(N − P ) ≤

N−L∑
j=P+1

(
a′j
)

+ M0(N + 1)L. Since ai and a′i are less than

or equal to M0, the L.H.S is greater than or equal to
M0(N + 1)(N − P ) − PM0 = M0

[
(N + 1)(N − P )− P

]
.

Meanwhile, the R.H.S is less than or equal to (N−L−P )M0+
M0(N+1)L = M0

[
N(L+ 1)− P

]
. Due to N−P ≥ L+1,

L.H.S is greater than or equal to M0

[
(N + 1)(L+ 1)− P

]
.

Consequently, R.H.S is less than L.H.S or A∗ ≥ A′. It
contradicts the initial assumption.

Problem 1 is NP-hard and hence there is no known polyno-
mial time algorithm to solve it. Thus, we propose an approx-
imation algorithm in the next section that takes polynomial
time.

IV. Centralized Approximation Algorithm
The proposed algorithm to solve Problem 1, Adaptive Al-

location VNFs (A2VF ) is divided into two sub-algorithms:
Migration and transmission distance approximation (MEDA)
and Node and Link Assignment (NOLA). The pseudo-code of
A2VF is described in Algorithm 1. A2VF begins by solving the
relaxed problem. By doing that, we have the fractional solution
of the optimization problem S̃ =

(
η̃m,ζ , η̃d,ζ , Φ̃

n′

n , Φ̃
e′

e , h̃
)
.

The cost of each VNF-FG is estimated based on S̃. From line
6 to 13, A2VF attempts to round variable h of each VNF-FG
to 1 and finds a corresponding feasible solution by executing
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Algorithm 1: Adaptive Allocation VNFs (A2VF )
1 Input: A2VF optimization problem P
2 Output: Sub-optimal solution S =

(
Φ∗n,Φ

∗
e, η
∗
m, η

∗
d, h
∗
ζ

)
3 Solve relaxed P → S̃ =

(
Φ̃n, Φ̃e, η̃

∗
m, η̃d, h̃ζ

)
;

4 Sort VNF-FGs in ascending order of their total costs;
5 Initialize the total cost z =∞;
6 foreach VNF-FG ζ do
7 Add constraint hζ = 1 to P;
8 if the relaxed of P has a feasible solution then
9 if MEDA(η̃m,P, ζ, z) == SUCCESS then

10 Feasible solution of P → S and z = cost (S);
11 continue;

12 Substitute constraint hζ = 1 by hζ = 0;
13 Solve relaxed P → S̃;

the sub-algorithms. If there is no feasible solution, it rounds the
variable h to 0 and moves to the next VNF-FG. This process
lasts until all VNF-FGs are checked.

To find a feasible solution in the aforementioned process,
A2VF will call MEDA sub-algorithm presented in Algo-
rithm 2. MEDA starts with finding the least fractional entry η̃k0
of the input (line 5). We define distance bound (DB) parameter
as the maximum number of physical hops per virtual link.
The higher DB means the longer connections between nodes
hosting VNFs in the VNF-FG. If the input is ηd, MEDA will
compare k0 with the maximum number of hops of the VNF-
FG DB|Ev,ζ |. If k0 is greater than that threshold, k0 is set
to DB|Ev,ζ | + 1. Then, MEDA rounds ηk0 to 0 by adding
a constraint (line 8). All entries k > k0 will be 0 following
lemma 2. Line 10 to line 17 are executed if the current solution
is feasible. If the input is η̃m, MEDA will execute the pseudo-
code from line 11 to line 13. Otherwise, line 15 to line 17 will
be executed. When η̃m is the input, MEDA will be called again
with input η̃d. Otherwise, NOLA will be called (Algorithm 3).
The output of NOLA and MEDA will be (state, solution).

The solution will be NULL if the output state is FAIL.
Otherwise, the solution is a feasible solution. If the output
is SUCCESS, the next least fractional entry will be consid-
ered to find a better ηm (ηd). If the output is FAIL and
k0 > DB|Ev,ζ |, MEDA is unable to extend the range of ηd.
Otherwise, MEDA extends the range of η to find a feasible
solution (line 19). At the end of MEDA (when all ηm or ηd are
integer), it returns SUCCESS if a feasible solution is found.
Otherwise, it returns FAIL.

NOLA comprises two stages: node assignment (line 5 to
line 14) and link assignment (line 15 to line 27). In the first
stage, each VNF of a VNF-FG will be assigned to a substrate
node based on its relaxed solution. Note that P has been given
as input to NOLA from line 15 of Algorithm 2 which has a
feasible solution. If all Φn

′
0

n are integers, the list of assigned
nodes v∗ is extracted from the solution of P . Otherwise,
the most fractional entry will be rounded to 1 by adding a
constraint at line 10. In case there is no feasible solution, that
variable will be rounded to 0. Otherwise, that assignment will

be stored in v∗ (line 11 to line 14). Note that rounding Φn
′

n to
0 will create a feasible solution for P (line 12).
The second stage begins by checking variables

{
Φe

′
0

e

}
.

When there are fractional entries in
{

Φe
′
0

e

}
, line 17 to line

22 will be executed. From line 23 to line 27, NOLA finds and
confirms if it could form a path from the links determined
in the previous steps. At the end of NOLA, it will check if
all virtual links have been assigned to substrate links and the
current cost is less than the initial cost and return the solution
with flags.
The relaxed problem is a linear program which can be

solved in polynomial time [38]. Let us denote ORL as the
complexity of the relaxed problem. Alg. 3 has the worst case
complexity of ONOLA =

∑
ζ

(
|Nv,ζ ||Ns|+ |Ev,ζ ||Es|

)
ORL.

In Alg. 2, the worst case complexity occurs when Alg. 3
is executed for every possible case of (ηm, ηd). That is
OMEDA = X̄mX̄dONOLA, where X̄m = max

ζ
Xm,ζ and

X̄d =

(
max
ζ

min
(
Xd,ζ , DB × |Ev,ζ |

))
. Consequently, the

worst case complexity of Alg. 1 is OMEDA × |h|.

Algorithm 2: Migration and E2E distance approximation
(MEDA)

1 Input: A fractional solution of η̃x (η̃m or η̃d),
optimization problem P , VNF-FG ζ, current cost z

2 Output: A Feasible solution of VNF-FG ζ
3 Temporary solution S = ∅;
4 while it exists a fractional entry in η̃x do
5 Find the least fractional entry of η̃x → η̃k0 ;
6 if η̃x is η̃d and k0 > DB× |Ev,ζ |+ 1 then
7 k0 = DB× |Ev,ζ |+ 1;
8 Add constraint η̃k0 = 0 to P;
9 if P has a feasible solution then

10 if η̃x is η̃m then
11 if MEDA(η̃d,P, ζ, z) == SUCCESS then
12 Returned solution → S and z = cost (S);
13 continue;

14 if η̃x is η̃d then
15 if NOLA(P, ζ, z) == SUCCESS then
16 Returned solution → S and z = cost (S);
17 continue;

18 if η̃x is η̃d and k0 > DB× |Ev,ζ | then break ;
19 else Substitute η̃k0 = 0 by η̃k0 = 1 and solve relaxed

P → η̃x ;
20 if S 6= ∅ then return (SUCCESS,S); ;
21 else return FAIL; ;

The A2VF algorithm presented in this section outputs an
approximate solution to Problem 1. It requires a central entity
collecting available resources from different domains so as
to solve the problem as a whole. In practice, domains could
be controlled by different operators which are not willing to
expose their resources status. Consequently, we propose to
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Algorithm 3: Node and Link Assignment (NOLA)
1 Input: VNF-FG ζ and problem P , current total cost z
2 Output: A feasible set S of Φn and Φe
3 Temporary solution S = ∅;
4 List of assigned node v∗ = ∅;
5 foreach VNF n′0 in VNF-FG ζ do
6 if Φn

′
0

n ∈ {0, 1} ,∀n then v∗ ← P ;
7 else
8 while ∃Φn′

0
n /∈ {0, 1} do

9 Find the most fractional entry Φn
′
0

n0
;

10 Add Φn
′0

n0
= 1→ P and solve P → S;

11 if S == ∅ then
12 Substitute Φn

′
0

n0
= 1 by Φn

′
0

n0
= 0;

13 Solve P → S;
14 else v∗ ←

(
n′0, n0

)
;

15 foreach virtual link e′0 in ζ do
16 if ∃Φe′0e /∈ {0, 1} then
17 while ∃Φe′0e /∈ {0, 1} do
18 Find the most fractional entry Φe

′
0

e0 ;
19 Add constraint Φe

′
0

e0 = 1→ P and solve
P → S;

20 if S == ∅ then
21 Substitute Φe

′
0

e0 = 1 by Φe
′
0

e0 = 0;
22 Solve P → S;

23 Find an acyclic path p for e′0 from Φe
′
0

e ;
24 foreach physical link e0 in p do add Φe

′
0

e0 = 1 ;
25 Solve P → S;
26 if S == ∅ then return FAIL;
27 else continue ;

28 Total cost of S is z′ ;
29 if all virtual links has been assigned and cost (S) < z

then return (SUCCESS,S) ;
30 else return FAIL;

decompose and distribute Problem 1 over the set of operators
such that they keep control over their resources and benefit
from extending their services through collaboration and paral-
lelizing the optimization process.

V. Decentralized Approximation Algorithm

In this section, a decentralized approximation algorithm is
proposed to enable cooperative resource allocation in multi-
domain scenarios.

In this work, we propose to illustrate our decentralized
approach using an existing multi-domain 5G architecture, cur-
rently developed in the 5G-PPP 5GEx project [25]. However,
note that this architecture is only an example architecture in
which the proposed decentralized resource allocation algo-
rithm can fit: the proposed decentralized approach can apply
to other distributed architectures. In this architecture, each op-
erator has its own substrate network which is controlled by one

Fig. 2: Decentralized Approximation Algorithm Framework

of several network controllers. Each operator deploys a multi-
domain orchestrator to communicate with other operators via
inter-operator orchestration API.
A client (e.g. a virtual mobile network operator) requests a

VNF-FG from an operator, e.g. Operator B. If the resource
of operator B cannot meet the requirements of the client,
its multi-domain orchestrator will seek them in its neighbor
operators through inter-operator orchestration API. When there
is a consensus between operators, operator B can deploy the
VNF-FG to serve the client.

A. AD3-based Optimization
5GEx can be an example framework where AD3 can do

decentralized optimization. Figure 2 demonstrates operational
details of AD3 over multi-domain orchestration framework.
The client is a virtual mobile network operator requesting a
service which is described as a VNF-FG and each operator
(A, B, or C) is able to partially serve its request. First, it
sends the request defining the VNF-FG and resources of each
VNF to all operators. Then, operators cooperate by exchanging
AD3 messages through inter-operator orchestration API. After
finishing AD3 process, each operator will send its offers to the
client in which determine substrate nodes and links are able to
serve VNFs. A decoding algorithm running at the client will
take these offers into account to find out a feasible solution.
While running the decoding algorithm, resource allocation
requests and confirmations are exchanged between the client
and operators.
Problem 1 is a NP-hard problem. Although it can be solved

by state-of-the-art integer linear programming solvers, it is
unfeasible to use them to solve large-scale problems because
of the limitations of computation resources and calculation
time. As we mentioned in Section II, AD3 is able to pro-
vide faster convergence than ADMM and has a library of
computationally-efficient factors to tackle hard constraints in
a given optimization problem. Thus, one preliminary step
before running AD3 is to encode our problem using only such
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efficient factors. Later, once AD3 is executed and provides
an output, the solution may not be a feasible solution because
AD3 solves a relaxation of the optimization problem. However,
it can be exploited to derive a feasible solution close to the
optimal one by a decoding algorithm like the one we present
in Section V-C.

Running AD3, nevertheless, requires synchronization be-
tween operators. The benefits of cooperation between medi-
ators (operators in this paper) have been discussed in [39].
AD3 will shift to next iteration when all nodes finish solving
their local problems and exchanging solutions. Let’s note that
factors and variables are under the responsibility of each
operator, without requiring them to disclose their infrastructure
properties.

The AD3-based optimization framework has been discussed.
In the following sections, we describe how to formulate the
factor graph and propose a heuristic decoding algorithm that
is able to convert the output of AD3 to a feasible solution.

B. Encoding the Optimization Problem to Operate AD3

In order to adopt AD3, we have to encode our optimization
Problem 1 into a factor graph. Moreover, recall from Section II
that our aim is to solely employ computationally-efficient
factors, so that the computation of AD3 as well as the use of
messages is efficient. Next, we introduce the factors (functions)
from [29] that will allow the encoding of the constraints of
Problem 1 as defined in Section III.

Definition 1 (AtMost1 factor). It constrains at most one of
the variables x1, . . . , xK to be active. Its potential function is
defined as:

θAtMost1 (x1, ..., xK) :=

 0 if ∃! k s.t. xk = 1
∨x1 = ... = xK = 0

−∞ otherwise
(12)

Definition 2 (XOR-out factor). It constrains at most one
of the variables x1, . . . , xK to be active; if one is active, it
constrains xK+1 = 1; if all are inactive, then it constrains
xK+1 = 0. Its potential function is defined as:

θXOR-out (x1, . . . , xK , xK+1) := 0 if xK+1 = 1 ∧ @k ∈ {1, . . . ,K} : xk = 1
0 if xK+1 = 0 ∧ ∀k ∈ {1, . . . ,K} : xk = 0
−∞ otherwise

(13)

Definition 3 (Knapsack (KS) factor). Its potential function
can be defined as:

θKS (x1, ..., xK) :=

 0 if
∑
k

xk ≤ C

−∞ otherwise
(14)

where C is a given constant.

Now we can encode Problem 1 into a factor graph, as
will also be illustrated in Figure 3 using a simple example.
Variables, represented as round circles, are linked to the factors
representing the hard constraints in the problem, which in turn
are represented as rectangles. Each variable contains the value
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(b) AD3 factor graph of the example

Fig. 3: Example encoding optimization problem

obtained when the variable is active. That value will contribute
to the objective value of the optimization problem.
VNF allocation problem can be encoded as follows: con-

straints (2), (3), (7), (10), and (11) can be encoded by using
the KS factor; constraints (4) and (1) can be encoded
by AtMost1 factor. Constraint (5) can be rewritten as∑
m

Φe
n′m′

enm + Φm
′

n =
∑
m

Φe
n′m′

emn + Φn
′

n . Since each virtual link
will be mapped to a single physical path between substrate
nodes hosting virtual nodes, we have

∑
m

Φe
n′m′

enm ≤ 1 and∑
m

Φe
n′m′

emn ≤ 1. We introduce an auxiliary binary variable

An
′m
n such that

∑
m

Φe
n′m′

enm + Φm
′

n = An
′m′

n and
∑
m

Φe
n′m′

emn +

Φn
′

n = An
′m′

n . These constraints can be encoded byXOR-out
factors.
Following [29], the complexity of the AtMost1 and

XOR-out factors is O(K · logK), where K stands for the
number of variables connected to the XOR factor. Moreover,
according to [40], the complexity of the KS factor is linear
with the size of the factor. Therefore, we have managed to
provide an encoding of our optimization problem that only
employs computationally-efficient factors. The convergence
speed and complexity of AD3 has been well studied in [29].
To demonstrate the factor graph and operation of AD3, we

introduce a simple example as shown in Figure 3. A VNF-
FG comprising two VNFs is mapped to a substrate network
of three nodes A, B, and C. A and B belong to operator
X. C is a server of operator Y. Constraints (2), (5), and
(4) are described as factors KS, XOR-out, and AtMost1
(noted AM1) respectively in Figure 3b. Red links presents
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the connections between factors and variables belonged to
different operators, called as inter-connections. At the end of
each iteration, the solutions of variables of inter-connections
will be exchanged between two operators and utilized as
the input of the next iteration. To form the factor graph,
each operator should be aware of its connections to other
operators, however it is not necessary to know current status
of other operators (available bandwidth, free storage, etc. ).
That addresses a practical scenario where operators want to
cooperate to provide a service to a given client, but they do
not want to expose their current resources to other competitors.

C. Heuristic Decoding Algorithm
Once executed, AD3 finally requires decoding of the so-

lution. We propose Algorithm 4, which is a lightweight
decoding algorithm to decode AD3 solution to feasible VNF-
FG allocation. This algorithm will be executed by the VNF-
FG requester after collecting all solutions from other operators.
The algorithm begins with rounding the most fractional entries
among Φn

′

n to 1. The VNF-FG owner checks feasibility by
sending resource allocation requests (as shown in Fig. 2) to
the owner of the substrate node (Operator A, B, or C in Fig. 2).
The owner of substrate node answers with an acknowledgment
when the substrate node has sufficient resources to host the
VNF. Otherwise, it sends a negative-acknowledgment and the
VNF-FG owner fixes Φn

′

n to 0. Note that we assume substrate
node owners are "cooperative" in this paper. It means they
always allow to allocate VNFs whenever the substrate node has
sufficient resources. Non-cooperative behaviors of operators
will be considered in future studies. The algorithm repeats the
rounding process until all VNFs are assigned. Then, finding a
physical path for each virtual link could be done by adopting
a process presented in Algorithm 3. A successful mapping
between virtual links and physical paths grants resources for
the VNF-FG. The complexity of Alg. 4 is similar to the
complexity of NOLA which is polynomial time.

VI. Numerical Results
A. Centralized Optimization

In this section, the performance of A2VF and ILP-based
approaches are compared to highlight the pros and cons of
A2VF . Two objective functions are formulated as an ILP
problem: with migration and end-to-end distance costs and
without them - ILP-ND (no distance). ILP-ND is the upper-
bound of the performance presented in [7]. ILPs are solved
by Gurobi® which is deemed as one of the most advanced
ILP solvers nowadays. Note that ILP solvers are considered
as reference for performance comparison of our proposed
heuristic algorithm.

In this paper, we consider a number of VNF-FGs in the time
window t. The placement of VNFs in the previous window
t− 1 is assumed to be known. The number of VNFs in each
VNF-FG and the resources of substrate nodes are generated
arbitrarily for simulation. The reference substrate network is
k-ary fat-tree (k = 4, 6, 8) in which the leaf nodes are WiFi
access points (APs). We assume that leaf nodes have only the
radio resource, which is initialized to 1, while other nodes

Algorithm 4: Decoding algorithm
1 Input: VNF-FG ζ, AD3 solution Φ̃n

′

n

2 Output: A feasible set S of Φn and Φe
3 foreach VNF n,0 in VNF-FG ζ do
4 if ∃Φ̃n

,
0
n == 1 then Φ

∗n,0
n ← Φ

n,0
n and continue ;

5 else
6 while ∃Φ̃n

,
0
n /∈ {0, 1} do

7 Find the most fractional entry Φ
n,0
n0 ;

8 Check feasibility of assigning n,0 to n0;
9 if assignment is feasible then Φ

∗n,0
n ← 1 ;

10 else Φ
∗n,0
n ← 0 ;

11 if @Φ
∗n,0
n == 1 then return FAIL;

12 foreach virtual link e,0 of ζ do
13 Set of candidate links Le,0 = ∅;
14 foreach Φ̃

e,0
e > 0 do Le,0 ← e ;

15 while true do
16 Find an acyclic feasible path p connects all

e,0 ∈ Le,0 ;
17 if @p then return FAIL;
18 else break ;

do not have radio resources. The computational, memory,
and storage for the substrate nodes are set to 100, while the
link resource is set to 1. The cost of using each unit of
resources is 1. Each scenario is run 30 times with different
seeds of the number of VNFs in VNF-FG and their resource
requirements, and then, the results are the average of them. A
95% confidence interval is used in this paper.
We opted for the same simulation parameters as in [7].

The number of VNFs in each request is selected randomly in
the range [3, 6]. The computational, storage, and memory re-
quirements of each VNF-FG request are uniformly distributed
in the range [25, 30] while the link requirements are in the
range [55, 60]. The radio resource request varies from 0.8 to
1.0. We run 30 simulations with different seeds and consider
the average values. The default value of distance bound (DB)
is set to infinity in order to optimize the migration distance.
Referring to [37], the transmission cost function parameters
and the migration cost function parameters are selected as
θ = 0.8, δc = 100, δl = −100 and βc = 200, βl = −100,
µ = 0.8. With these parameters, the algorithms favor a low
migration distance.
1) Performance: We first look at the number of accepted

VNF-FG requests successfully allocated, calculation time,
migration distance and transmission distance with different fat-
tree size and number of VNF-FGs. The ILP-based approach
provides the optimal solution and is considered as a reference.
Figure 4a shows the percentage of accepted VNF-FGs obtained
by A2VF when the number of VNF-FGs is 1 to 6 and the fat-
tree size is 4. The acceptance rate of ILP-based approach is
100% for all cases. The acceptance rate of A2VF is 100% when
the number of VNF-FG is 1. It drops to 90% when the number
of VNF-FGs is 6, i.e., 10% less than the optimal solution.

The calculation time of A2VF with different number of



11

1 2 4 6

90

95

100

Number of VNF-FGs

A
cc
ep
te
d
V
N
F-
FG

%

(a) A2VF acceptance rate

6
10

0

8

10
1

10
2

C
a
lc

u
la

ti
o
n
 T

im
e
 (

s
)

10
3

7 4

Number of VNF-FGs
6

Fat-tree size (k)
5 24

50

100

150

200

250

300

350

(b) A2VF calculation time

Fig. 4: Performance of A2VF with infinity DB

1 2 4

1,000

2,000

Number of VNF-FGs

To
ta
lc

os
t A2VF ILP

(a) Average total cost of A2VF and ILP

1 2 4
10−1

101

103

Number of VNF-FGs

Ca
lc
ul
at
io
n
Ti
m
e
(s
)

A2VF ILP ILP-ND

(b) Calculation time of A2VF and ILP

Fig. 5: Performance of A2VF and ILP with infinity DB

VNF-FGs and fat-tree sizes is shown in Figure 4b. Generally,
the calculation time decreases when the number of VNF-FGs
or the fat-tree size decreases. The maximum calculation time,
400 seconds, occurs when there are 8 VNF-FGs in 8-ary fat-
tree size substrate network.

In the following simulations, the fat-tree size is fixed at 4.
Figure 5a shows a comparison between the total cost of ILP-
based approach and A2VF . The gap in total cost between ILP
and A2VF is small when the number of VNF-FGs is 1 or 2
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Fig. 6: Average Migration and transmission distances of
A2VF , ILP, and ILP-ND
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Fig. 7: Migration cost and transmission cost of A2VF , ILP,
and ILP-ND

and becomes greater when the number of VNF-FGs increases.
At 4 VNF-FGs, the total cost of A2VF is about 10% greater
than that of ILP.
Figure 5b shows that A2VF outperforms ILP-based ap-

proaches in terms of calculation time. ILP-ND does not con-
sider migration cost and transmission cost, so it is simpler than
ILP. Consequently, the calculation of ILP-ND is less than ILP.
Generally, A2VF takes less than 10 seconds to find a feasible
solution for 4-ary fat-tree and 1 to 4 VNF-FGs. Figure 6
shows comparisons of the average migration and transmission
distances between A2VF , ILP, and ILP-ND. A2VF with
infinite DB has the lowest migration distances while ILP-ND
has the greatest migration distance. It is because ILP-ND does
not consider migration and transmission costs in its objec-
tive function. When it comes to the transmission distances,
A2VF has the greatest values while ILP-based approaches
have similar values. Although ILP is not the approach that
provides lowest migration distance and transmission distance,
its migration and transmission combination cost (M&T) is the
lowest as shown in Figure 7. M&T cost of A2VF is higher
than ILP, but it is still less than that of ILP-ND.
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der different distance bounds

2) Distance bound: In this section, we analyze the impact
of DB on the performance of A2VF . DB is the threshold of
the number of physical hops per virtual link. A low DB drives
A2VF to provide a lower transmission distance while a high
DB means low migration cost. This could help the operators
in configuring their networks to meet given requirements. The
fat-tree size is 4 and the number of VNF-FGs is from 1 to 4.
DB varies from 1 to 3.
The percentage of accepted VNF-FGs is given in Figure 8.

When DB is 1, each virtual link only uses a substrate link.
Due to this strictness, the number of accepted VNF-FGs is
low. Increasing DB could help to increase the acceptance ratio,
especially when the number of VNF-FGs is large. When the
number of VNF-FGs is 4, the acceptance ratio is lower than
100% for all values of DB. This is lower than the acceptance
ratio of infinity DB shown in Figure 4a which is 100% when
the number of VNF-FGs is 4.
Figure 9 shows the average migration and transmission

distance of ILP and A2VF with DB from 1 to 3 denoted
as A2VF -1,A2VF -2, and A2VF -3 respectively. When DB
increases, the range of ηd values are extended. Consequently,
the transmission distance could be extended in order to have
the better migration distance. The total costs are shown in
Figure 10. The total cost with DB = 2 and DB = 3 are
similar. However, there are remarkable gaps between A2VF -1
and A2VF -2 and A2VF -3. This is because the very short DB
prevents the algorithm from reaching the better solutions. The
gap between optimal solution and A2VF could be shortened
by setting DB to infinity as shown in Figure 5a.

B. Decentralized Optimization
The performance of the proposed decentralized optimization

approach AD3-VA and the centralized optimization approach
A2VF are compared in this section to determine the pros and
cons of AD3-VA. The AD3 library used in this paper was
downloaded from the repository of AD3 [41]. The current
version does not support parallel computation. Consequently,
even though the problem was broken into sub-problems as
described in Section V-B, the sub-problems are solved se-
quentially leading to the high computation time. It is obvious
to expect a significantly better calculation time when sub-
problems are solved simultaneously. Furthermore, transmission
latency of exchanging AD3 messages between multi-domain
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Fig. 9: Average Migration and transmission distance of ILP
and A2VF under various DB values
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Fig. 10: Average total cost of ILP and A2VF under different
distance bounds

orchestrator is assumed to be negligible thanks to the low
latency of optical backbone network [42]. For instance, the
latency between data centers 20 km apart is 110 µs, thus it
can cost up to 55ms for 500 iterations.

AD3-VA is configured with various numbers of iterations
30, 50, 100, 200, 500 and denoted as AVA-xx, where xx is the
number of iterations. We first consider the rate of success-
fully allocated VNF-FG requests when the fat-tree size varies
(k = 4, 6, 8) and the number of VNF-FGs is 6. The acceptance
rate of AD3-VA under different fat-tree sizes is presented in
Figure 11a. The larger fat-tree size has more nodes, therefore
the complexity of resource allocation increases. Consequently,
it requires a greater number of iterations to determine a
solution. The small number of iterations provides a low quality
input for the decoding algorithm, therefore leading to a low
acceptance rate.

The average total cost under various fat-tree sizes is shown
in Figure 11b. With small number of iterations, AD3-VA is
unable to provide a good solution due to the low quality of
AD3 output. When the number of iterations increases, the
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Fig. 11: Performance of AD3-VA– 6 VNF-FGs

quality of output of AD3 is enhanced, thus reducing the cost.
Figure 11c shows the calculation time of AD3-VA under dif-

ferent fat-tree sizes (4, 6, 8). Generally, when the fat-tree size
increases, the calculation time increases due to the increase of
complexity. When the fat-tree size is 4 or 6, the calculation
time of AVA-200 and AVA-500 are similar. Although the time
for AD3 process of AVA-200 is shorter than AVA-500, the time
for decoding the solution of AVA-200 is longer than AVA-500
because of its lower AD3 output. However, when the fat-tree
size is 8, even AVA-500 does not have a good AD3 output.
That leads to the decoding time of AVA-500 as long and the
gap in calculation time between AVA-200 and AVA-500 as
significant.
The next simulation is to compare the performance of

AD3-VA and A2VF under varying number of VNF-FGs.
The number of iterations is 100 and the fat-tree size is 4.
First, the number of accepted VNF-FG requests is considered.
Figure 12a shows that there is no difference in the acceptance
rate when the number of VNF-FGs varies from 1 to 4 and
A2VF is slightly better than AVA-100 when the number of
VNF-FGs is 6. However, the total cost in Figure 12b confirms
the better solution obtained by A2VF . The gap between
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AD3-VA and A2VF is up to 20%. The calculation time of AVA-
100, nevertheless, is shorter than A2VFas shown in Figure 12c.

VII. Conclusions

Network function virtualization is deemed as an essential
solution for the next generation networks. In existing literature,
the placement of VNFs has been studied intensively. However,
the impact of dynamics and reallocation ability has not been
addressed. In this paper, the impact of reallocation of VNF-
FGs was studied and a model considering dynamic behavior
was provided. To justify the cost of reallocation, the migra-
tion distance and transmission distance were considered. The
optimization problem was formulated as an ILP. A heuristic
adaptive allocation algorithm A2VF was proposed which
finds a near-optimal solution in polynomial time. An extensive
evaluation of the heuristic algorithm was provided at the end,
with the consideration of different performance metrics such
as the migration distance etc. Note that although the nature
of A2VF prefers a low migration distance, a threshold of
transmission distance (DB) could help to limit the maximum
transmission distance. The dynamic adaptation of DB param-
eter could be considered in future work.
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We also provided a decentralized allocation algorithm
(namely AD3-VA) that enables operators to allocate virtual
network functions in large-scale scenarios in a decentralized
and cooperative manner, whilst keeping information about
infrastructure under control of the operators themselves. In
return, AD3-VA has worse performance than A2VF , however
the gap is less than 20% in total cost and there is no
difference in VNF-FG acceptance ratios (in 4-ary fat tree).
These results motivate possibilities of adopting AD3 and
advancements in distributed optimization in networking. In
future, we will study the extension of our work to consider
fog computing and mobile edge computing. There distributed
solution can also be helpful, but the system model needs to be
adapted to consider limited resources of edge nodes and their
connectivity. Also, a distributed scheme that tackles selfish
operators (non-cooperative distributed optimization) can unveil
new applications of this work.
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