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Abstract—Network Function Virtualization (NFV) sits firmly
on the networking evolutionary path. By migrating network
functions from dedicated devices to general purpose computing
platforms, NFV can help reducing the cost to deploy and operate
large IT infrastructures. In particular NFV is expected to play a
pivotal role in mobile networks where significant cost reductions
can obtained by dynamically deploying and scaling Virtual
Network Functions (VNFs) in the core network. However, in
order to achieve its full potential, NFV needs to extend its
reach also to the radio access segment. Here Mobile Virtual
Network Operators shall be allowed to request radio access VNFs
with custom resource allocation solutions. Such requirement
raises several challenges in terms of performance isolation and
resource provisioning. In this work, we formalize the wireless
VNF placement problem in the radio access network as an integer
linear programming problem and we propose a VNF Placement
heuristic named WiNE (Wireless Network Embedding) to solve
the problem. Moreover, we present a proof–of–concept imple-
mentation of an NFV management and orchestration framework
for enterprise WLANs. The proposed architecture builds upon a
programmable network fabric where pure forwarding nodes are
mixed with radio and packet processing capable nodes.

Index Terms—Network Management, Resource allocation, Vir-
tual Network Embedding, Virtual Network Functions Placement,
Network Function Virtualization, Wireless Networks.

I. INTRODUCTION

Network Function Virtualization (NFV) promises to reduce
the cost to deploy and operate large networks by migrating
network functions from dedicated hardware appliances to
software instances running on general purpose virtualized
networking and computing infrastructures. This, in time, shall
improve the flexibility and the scalability of mobile networks
in that the deployment of new applications and services will
be quicker (software Vs. hardware development life–cycles)
and different network functions can share the same resources
paving the way to further economies of scale. This progressive
process of network softwarization is set to play a pivotal
role in fifth generation mobile networks. In this context, the
Network–as–a–Service business model shall allow operators
to tap into new revenue streams by further abstracting the
physical network into service specific slices possibly operated
by different mobile virtual network operators (MVNOs). The
envisioned vertical applications range from high–definition
video delivery to machine–to–machine applications.

In order to cope with the diverse range of requirements that
sprout for such use cases, future wireless and mobile networks
will further rely on virtualized resources and on dynamic
service orchestration. Although a rich body of literature exists
on VNF placement [1], virtual network embedding [2], and

component placement [3], most of these works focus on the
problem of mapping an input virtual network request (often
in the form of a VNF Forwarding Graph) onto a physical
virtualized network substrate (often offering computational
as well as networking resources). However, these works im-
plicitly assume that once a VNF is mapped on a node, the
virtualization layer (i.e. the hypervisor) will take care of
scheduling the various VNFs ensuring both logical isolation
and an efficient use of the substrate resources [4]. Such an
assumption does not hold anymore if radio nodes are added
to the set of virtualized resources available in the substrate
network (alongside computational and networking resources).
In this case, in fact, the amount of resources available at each
substrate radio node is a stochastic quantity depending on both
channel fluctuations and end–users distribution.

In this work, we investigate the VNF placement and
scheduling problems in the Radio Access Network (RAN)
domain. In this scenario we expect MVNOs to specify their
requests in terms of a VNF Forwarding Graph. Such VNFs
can include functions such as load–balancing and firewall,
as well as virtual radio nodes. Moreover, in order to satisfy
the diverse requirements imposed by future applications and
services, MVNOs shall be allowed to deploy custom resource
allocation schemes within their network slice. At the same
time, the underlying system shall both enforce strict perfor-
mance isolation between MVNOs and ensure efficient resource
utilization across the network in spite of the non–deterministic
nature of the wireless medium.

The contribution of this paper is twofold: (i) we formalize
the VNF placement problem for radio access networks, and
(ii) we propose a slice scheduling mechanism that ensures
resource and performance isolation between different slices.
The proposed solutions work jointly, i.e. performance isolation
is ensured if slices are accepted under the constraints imposed
by our VNF placement problem formulation. This paper builds
upon our previous work [5] by refining the VNF placement
heuristic WiNE (Wireless Network Embedding), extending the
simulation study to additional types of VNF requests, and
analyzing in deeper detail how the type of VNFs impacts on
the substrate network utilization. Numerical simulations show
that the proposed heuristic can approximate the performance
of the optimal ILP–based placement algorithm. Moreover,
the efficiency of the heuristic increases with the size of the
substrate network hinting at the fact that WiNE may be capable
of closing the gap with the ILP–based placement algorithm
for realistic substrate networks. Finally, we also report on
a updated proof–of–concept implementation of the proposed
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solution and on its field evaluation. The programmable data–
path, the controller and the SDK have been released under a
permissive license for academic use1.

The rest of this paper is structured as follows. In Sec. II
we discuss the related work. The physical network model,
the VNF request model, and ILP problem formulation are
presented in Sec. III. The VNF placement heuristics and its
evaluation are presented in Sec IV and in Sec. V. The proof–
of–concept is presented in Sec VI while some illustrative
VNFs and their evaluation are presented in Sec. VII. Finally,
Sec. VIII draws the conclusions pointing out the future work.

II. RELATED WORK

The recent advances in general purpose computing plat-
forms paved the way to a new generation of software routers.
However, many of these solutions focus on improving the
pure raw packet processing speed [6], [7], [8] but do not
tackle the problem of deploying and orchestrating VNFs. In
parallel, there are significant efforts toward VNF management
and orchestration. In particular the European Telecommuni-
cations Standards Institute (ETSI) has recently tackled the
NFV concept [9] while OPNFV [10], MANO [11], and
OpenBATON [12] are working toward an open–source carrier
grade platform for NFV.

A. Virtual Network Embedding

The amount of literature on virtual network embedding
(VNE) topic is considerable. Seminal works in this do-
main include VINEYard [13] for single domain VNE and
PolyVINE [14] for multi–domain VNE. For a comprehensive
survey on VNE algorithms we point the reader to [2]. In [15]
the authors put forward a novel model that reflects the time–
varying resource requirements of a virtual network request.
The authors also consider VNE in the context of opportunistic
resource sharing at the level of the entire substrate network.
In [16], the authors present the SiMPLE VNE algorithm.
SiMPLE exploits path diversity in order to protect virtual
networks from single link failures. However, to the best of the
authors’ knowledge, none of these works formulate the VNE
problem for hybrid wired/wireless networks with the goal of
ensuring performance isolation between tenants.

B. VNF Placement

The VNF placement problem is conceptually similar to
the component placement problem in data–centers and cloud
computing environments. The amount of literature in this
domain is thus humbling [17], [18], [19], [4]. A survey on
resource management in cloud computing environments can be
found in [3]. In [17], the authors study the problem of placing
virtual machine instances on physical containers in such a
way to reduce communication overhead and latency. In [18],
the authors propose a novel design for a scalable hierarchical
application components placement in cloud computing en-
vironments. The proposed solution operates in a distributed
fashion ensuring scalability while at the same time providing

1On–line resources available at: http://empower.create-net.org/

performances very close to that of a centralized algorithm. This
work is extended in [19] where several algorithms for efficient
management of component–based applications in cloud envi-
ronments are proposed. In [4] the elasticity overhead and the
trade–off between bandwidth and host resource consumption
are jointly considered by the authors when formulating the
VNF placement problem. In [20], a joint node and link
mapping algorithm is proposed. Finally, the authors of [21],
[1], [22] tackle the problem of dynamic VNF placement.
Targeting resource allocation in data–centers, these works do
not tackle the problem of virtualized radio function placement.

C. Wireless & Mobile Networks
The topic of radio resources virtualization has received

significant attention in the literature. In [23], a WLAN virtu-
alization approach named Virtual WiFi is proposed extending
the VNE problem from the wired to the wireless domain.
Kernel–based virtual machines are used as a virtual wireless
LAN devices while time domain multiplexing is used in
order to provide isolation between the virtual wireless devices.
In [24], [25], wireless network virtualization is applied to
wireless mesh networks. A virtual network traffic shaper is
introduced in [26], [27] for air time fairness in 802.16e
networks. In [28], [29] the problem of virtualizing OFDMA–
based wireless networks (i.e. WiMAX and LTE) is studied.
The authors tackle the problem both at the radio and the core
network level opening the way to interesting infrastructure
sharing scenarios. Similar consideration can be also made
for [30] where a framework for sharing a single WiMAX
base station is proposed. Wireless Virtualization of 802.11
devices is the focus of [31]. In all the cases above, however,
the channel–aware placement of VNFs over radio and wired
resources is not formulated nor is the performance isolation
challenge between multiple MVNOs tackled.

D. Middlebox Management
Systems like OpenNF [32] and its derivatives [33], [34] fo-

cus on providing a platform for consistent VNF management.
However their focus is on maintaining backward compatibility
with currently available VNFs such as Bro [35] for IDS
and Squid [36] for caching web proxies. Conversely, in this
work we set to explore the possibilities opened by a fully
programmable networking substrate where also radio access
is treated as a standard VNF. Similar considerations can be
made also for Split/Merge [37], CoMB [38], and XoMB [39].

III. NETWORK MODEL

In the VNF placement problem, the input consists of Service
Function Chains (SFC) composed by a variable number of
VNFs, whereas the substrate network, called Network Func-
tion Virtualization Infrastructure (NFVI), provides the physical
constraints in terms of bandwidth and capacity [9]. In this
context, the term capacity is not related only to pure com-
putational resources, such as number of CPU cores, memory,
and/or storage. Instead it refers also to packet forwarding and
radio processing capabilities. Before introducing the proposed,
solution we need to detail specific notations for the NFVI and
the SFC requests.
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TABLE I: Substrate network parameters

Variable Description

Gnfvi Substrate network graph.
Nnfvi Substrate nodes in Gnfvi.
Enfvi Substrate links in Gnfvi.
ωs
c(n) Available CPU resources at node n ∈ Nnfvi.

ωs
m(n) Available memory resources at node n ∈ Nnfvi.

ωs
s(n) Available storage resources at node n ∈ Nnfvi.

ωs
r(n) Available radio resources at node n ∈ Nnfvi.

ωs
e(enm) Available resources of link enm ∈ Enfvi.

Λc,m,s,r(n) Cost for each unit of node resources, n ∈ Nnfvi.
Λe(enm) Cost for each unit of link resources, enm ∈ Enfvi.

A. Network Function Virtualization Infrastructure Model

Let Gnfvi = (Nnfvi, Enfvi) be an undirected graph mod-
eling the physical network, where Nnfvi is the set of n =
|Nnfvi| physical nodes that compose the substrate network and
Enfvi is the set of edges or links. An edge enm ∈ Enfvi if and
only if a point–to–point connection exists between n ∈ Nnfvi

and m ∈ Nnfvi. With respect to the physical network, links
are actual wiring media, e.g., an Ethernet cable interconnecting
the two nodes. Four weights, ωs

c(n), ωs
m(n), ωs

s(n), ωs
r(n),

are assigned to each node n ∈ Nnfvi : ωs
c,m,s(n) ∈ N+ and

ωs
r(n) ∈ R+, 0 ≤ ωs

r(n) ≤ 1 representing the packet and
radio processing resources available on that node. Nodes with
all weights equal to 0 (zero) are assumed to be pure packet
forwarding nodes. Nodes with ωs

c > 0, ωs
m > 0, ωs

s > 0,
and ωs

r = 0 are assumed to be pure packet processing nodes.
Finally, nodes with ωs

c = ωs
m = ωs

s = 0 and ωs
r > 0 are

assumed to be pure radio access nodes.
Another weight ωs

e(enm) is assigned to each link enm ∈
Enfvi : ωs

e(enm) ∈ N+ representing the capacity of the
link connecting two nodes. In order to avoid exceeding the
nominal capacity of the substrate links, traffic shaping is
implemented at the nodes with packet and/or radio processing
capabilities. Finally, let Pnfvi be the set of all substrate paths
and Pnfvi(s, t) the shortest path between nodes s, t ∈ Nnfvi.
Table I summarizes the NFVI parameters.

The weights ωs
c,m,s(n) associated with the packet process-

ing nodes represent, respectively, the amount of CPU, memory,
and storage resources available on that node, while the weights
ωs
r(n) are specific to the radio access nodes and represent

the normalized amount of wireless resources available at that
node. Notice how with the term radio access nodes we refer to
the generic nodes providing end–users terminals with wireless
connectivity and how this model makes no assumptions on
the type of resources that can be available at radio nodes. For
example, in a 802.11–based network ωs

r(n) could model the
amount of airtime available at a certain Access Point (AP).
Similarly, in an OFDMA–based network (e.g., LTE), ωs

r(n)
could be used to model the available radio resources in time
and frequency at a certain eNodeB (eNB). For the sake of
simplicity and without any loss of generality in this work we
assume that all radio–enabled nodes initially have the same
amount of resources ωs

r(n) = 1,∀n ∈ Nnfvi.
A sample substrate network is sketched in Fig. 1. The

network is composed by 8 nodes interconnected together. In

Forwarding +
Processing

Forwarding

Forwarding + 
Radio Access

50,50,5050,50,50

Fig. 1: NFVI network model. The figure shows the three basic virtual
resources: forwarding, packet processing, and radio access.

order to improve readability link weights have been omitted.
The substrate network in this example consists of 4 radio
access nodes (at the bottom of the picture), and 4 switches, 2
of which supporting just basic forwarding capabilities.

B. Service Function Chain Requests

Users are allowed to request SFCs as a directed graphs
Gsfc = (Nsfc, Esfc). Where Nsfc denotes the set of nodes
(i.e. VNFs) and Esfc ⊆ Nsfc × Nsfc denotes the set of
virtual links. An edge enm ∈ Esfc if and only if the
packets from VNF n ∈ Nsfc must be forwarded to the
VNF m ∈ Nsfv . Notice that as opposed to the previous
NFVI model, nodes in SFC requests represent virtual network
functions through which packets must undergo before leaving
the network. Packet processing nodes and links in the SFC
request shares the same weights as for the NFVI substrate
network (ωv

c , ω
v
m, ωv

s , ω
v
e ). On the other hand, provisioning of

radio resources can be made either in terms of fraction of
available radio resources (ωv

r ) or in terms of bandwidth (ωv
b ).

In the former case, the users will specify the percentage of
radio resources they want to be assigned to a certain node,
while in the latter case the users will specify the amount of
bandwidth assigned to the node. A single SFC request can mix
bandwidth–based and resource–based provisioning models.

Due to their stochastic nature, available bandwidth is a
time–varying quantity in wireless networks. Channel fading,
but also to the distribution of end–users, can greatly influence
the network performance. For example, users at the center of
the cell can, in general, use more efficient modulations and
coding schemes thus achieving higher throughput for a fixed
amount of radio resources than users at the edges of the cell.
As a result, when the bandwidth–based provisioning model is
employed, also the actual channel conditions experienced by
the end–users must be taken into account.

Let us call b(n) the actual aggregated throughput of the
virtual radio node n ∈ Nsfc in the fraction of resources cur-
rently assigned the node. We can then introduce an additional
parameter named reference throughput Ωv

b (n) ≥ ωv
b (n) upon

which the bandwidth reservation ωv
b (n) is enforced. We can

then define the effective target bandwidth ω̃v
b (n) for the virtual
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Tenant A
6 Mb/s

Tenant B
4 Mb/s

0.6 s
b(n) = 10 Mbits/

t
1 sec

0.4 s
b(n) = 10 Mbit/s

QAM-16 ¾ 10 Mb/s

(a) Good channel conditions.

Tenant A
6 Mb/s

Tenant B
4 Mb/s

QAM-16 ¾ 10 Mb/s

QPSK ½ 5 Mb/s

0.6 s
b(n) = 10 Mbits/

t
1 sec

0.8 s
b(n) = 5 Mbit/s

(b) Poor channel conditions, no isolation.

Tenant A
6 Mb/s

Tenant B
4 Mb/s

QAM-16 ¾ 10 Mb/s

QPSK ½ 5 Mb/s

0.6 s
b(n) = 10 Mbits/

t
1 sec

0.4 s
b(n) = 5 Mbit/s

(c) Poor channel conditions, with isolation.

Fig. 2: Impact of channel conditions on slice isolation. Bandwidth demands can be met when channel conditions are good for both slices
(a). Conversely, bandwidth targets can not be achieved when one of the tenants is experiencing poor channel conditions (b). Isolation can
be preserved by linearly scaling down the bandwidth target for the tenant with adverse channel conditions (c).

radio node n as follows:

ω̃v
b (n) =

{
ωv
b (n) if b(n) ≥ Ωv

b (n)

ωv
b (n) b(n)

Ωv
b (n) if b(n) < Ωv

b (n)
(1)

The parameter Ωv
b (n) represents a threshold. When the actual

throughput b(n) of the virtual radio node n is above the thresh-
old, then the bandwidth reservation is respected. Conversely,
when b(n) < Ωv

b (n) the requested bandwidth ωv
b (n) is linearly

scaled down. Choosing a small value for Ωv
b (n) means that

the network can utilize more resources in order to satisfy the
bandwidth requirements, which in time could result in a higher
pricing. Conversely, a high value for Ωv

b (n) means that the
network will try to satisfy the bandwidth requirements only
for the tenants that are making a better use of the wireless
spectrum. Notice how, as it will be more clear in Sec. VI,
tenants can make a poor use of the wireless spectrum also
due to custom scheduling disciplines that favor fairness at
the expense of the aggregated throughput. This could be a
reasonable trade–off in network slices aimed at emergency
response applications where it is critical that all mobile clients
get the same share of resources even if this could lead to a
sub–optimal spectrum utilization.

If we define ωv
r (n) =

ω̃v
b (n)
b(n) , then, in order for the SFC

request to be feasible, it must hold:∑
n∈Nb

sfc

ω̃v
b (n)

b(n)
+

∑
n∈Nr

sfc

ωv
r (n) ≤ ωv

r (m) = 1 (2)

Which means that the sum of the fractions of radio resources
allocated to virtual nodes must be less than or equal to
the resources available at the substrate node m. Table II
summarizes the SFC request parameters.

For example, consider the case depicted in Fig. 2a. Here
two tenants (A and B) requested two slices with aggregated
capacity of, respectively, 6 Mb/s and 4 Mb/s, while the
reference bandwidth (Ωv

b ) for both tenants has been set to 10
Mb/s. Moreover, for simplicity and without losing generality,
let us assume that only one client is active in either slice. If
the cell capacity b(n) experienced by both clients is equal to,
or higher than, 10 Mb/s it is easy to see how both slices can be

TABLE II: Service function chain request parameters

Variable Description

Gsfc Service function chain graph.
Nsfc Virtual nodes in Gsfc.
Esfc Virtual links in Gsfc.
ωv
c (n) Requested CPU resources at node n ∈ Nsfc.

ωv
m(n) Requested Memory resources at node n ∈ Nsfc.

ωv
s (n) Requested Storage resources at node n ∈ Nsfc.

ωv
r (n) Requested Radio resources at node n ∈ Nsfc.

ωv
b (n) Requested Bandwidth at node n ∈ Nsfc.

Ωv
b (n) Reference bandwidth at node n ∈ Nsfc.

ωv
e (enm) Requested resources (e.g. bandwidth) of link enm ∈ Esfc.

accommodated by the system, thus in this case b(n) ≥ Ωv
b (n)

and ω̃v
b (n) = ωv

b (n) for both slices.
However, if the cell capacity experienced by the wireless

client in the tenant B’s slice is reduced to 5 Mb/s, then the
same request can not be accommodated anymore. This is due
to the fact that serving the same amount of data to the wireless
client in the tenant B’s slice now requires twice the amount
of radio resources it did before (see Fig 2b). In this case since
b(B) < Ωv

b (B), thus:

ω̃v
b (B) = ωv

b (B)
b(B)

Ωv
b (B)

= 4
5

10
= 2

This results in the resource allocation sketched in Fig 2c
which penalizes only the performance of the tenant B without
affecting tenant A. It is worth noticing that this example can
be easily generalized to an OFDMA system were resources
are assigned across a time/frequency matrix.

A few sample SFC requests are sketched in Fig. 3. Notice
that wireless terminals are not represented since they are
outside the control of the orchestration framework. The linear
SFC request in Fig. 3a consists of three VNFs including a
WiFi hotspot, a firewall, and a load balancer. The WiFi hotspot
request will also include parameters such as the name of
the network and the authentication parameters (e.g. type of
encryption, RADIUS server to be used, etc.) however these
kind of information are purely functional and are thus omitted
in this section. The SFC request in Fig. 3b implements a
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Load BalancerWiFi Hotspot Firewall

6, 10 50,0,0 50,0,0

(a) Radio access network sharing (Linear topology).

Duplicate Filter

WiFi Hotspot

WiFi Hotspot

6, 10

6, 10

50,0,0

(b) Duplicate filtering (Branched topology).

WiFi 
Hotspot

Firewall

Firewall

DPI

DPI

NAT

6, 10

50,0,0

50,0,0

50,0,0

50,0,0

50,0,0

(c) Load–balancing (Cyclic topology).

Fig. 3: Sample SFC Requests. Notice how resource requests for all
radio VNFs are bandwidth–based.

performance enhancing network service, namely duplicates
filtering in dense urban scenarios. Finally, the SFC request in
Fig. 3c accounts for an access enforcement scenario whereby
multiple security related VNFs are deployed in parallel. Notice
how all radio access VNF use the bandwidth–based resource
provisioning model.

C. Virtual Network Function Placement

In this section we shall provide the optimal ILP formulation
for the SFC embedding problem, while in the next section we
will present a scalable heuristic. The overall objective is to
compute the optimal VNF placement based on the available
radio resources. The chosen objective function is:

min
( ∑

n∈Nnfvi

∑
n′∈Nsfc

(
wv

c (n′)Λc(n) + wv
m(n′)Λm(n)+

+ wv
s (n′)Λs(n) + wv

r (n′)Λr(n)
)

Φn′

n +

+
∑

e∈Enfvi

∑
e′∈Esfc

ωv
e (e′)Λe(e)Φ

e′

e

)
where, Φn′

n , Φe′

e ∈ 0, 1 are two binary variables indicating
respectively if the VNF n′ ∈ Nsfv has been mapped to node
n ∈ Nnfvi and if the virtual link e′ ∈ Esfc has been mapped
to the substrate link e ∈ Enfvi.

A valid solution is the one where the resources utilized by
the SFC request are at most equal to the available resources

on the substrate network nodes:∑
n′∈Nsfc

ωv
c (n′)Φn′

n ≤ ωs
c(n) ∀n ∈ Nnfvi (3)

∑
n′∈Nsfc

ωv
m(n′)Φn′

n ≤ ωs
m(n) ∀n ∈ Nnfvi (4)

∑
n′∈Nsfc

ωv
s (n′)Φn′

n ≤ ωs
s(n) ∀n ∈ Nnfvi (5)

∑
n′∈Nsfc

ωv
r (n′)Φn′

n ≤ ωs
r(n) ∀n ∈ Nnfvi (6)

and links: ∑
e′∈Esfc

ωv
e (e′)Φe′

e ≤ ωs
e(e) ∀e ∈ Enfvi (7)

In this work we also assume that every VNF in the SFC request
shall be mapped to a different substrate node:∑

n′∈Nsfc

Φn′

n ≤ 1 ∀n ∈ Nnfvi (8)

Every VNF in the SFC request shall be mapped only once:∑
n∈Nnfvi

Φn′

n = 1 ∀n′ ∈ Nsfc (9)

In terms of radio resources requirements, the following con-
strain, deriving from (1) and (2), enforces that for every radio
processing node n ∈ Nnfvi a feasible request has been made:∑
n′∈Nb

sfc

ωv
b (n′)

Ωv
b (n′)

Φn′

n +
∑

n′∈Nr
sfc

ωv
r (n′)Φn′

n ≤ 1 ∀n ∈ Nnfvi

(10)
Finally, the following constraint enforces that for each link
enm ∈ Esfc there must be a continuous path allocated between
the pair of physical nodes on top of which the VNFs n,m ∈
Nsfc have been mapped.

j>i∑
j∈Nnfvi

Φenm

eij −
j<i∑

j∈Nnfvi

Φenm

eji = Φn
i − Φm

i (11)

∀i ∈ Nnfvi ∀enm ∈ Esfc

IV. HEURISTIC

The ILP formulation described in the previous sections
can not be applied to realistic scenarios due to its limited
scalability. For example, embedding a 6–nodes linear SFC
request over a k = 8 fat–tree substrate topology can take
several hours on Intel Core i7 laptop (3.0 GHz CPU, 16 Gb
RAM) using the Matlab R© ILP solver (intlinprog). Notice also
that even a k = 8 fat–tree substrate topology is rather small
if compared with realistic deployments where it is common
to find k = 24 fat–tree networks, making the ILP problem
formulation intractable. In this section we present a heuristic,
named WiNE, that can handle similar (and more complex)
requests in tens of minutes.

The proposed heuristic is composed of three steps. In the
first step, for each virtual node n ∈ Nsfc, the heuristic
computes the list of candidate substrate nodes (see Alg. 1).
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Algorithm 1 Compute list of candidate substrate nodes
1: procedure FindCandidates(Nnfvi, Nsfc)
2: for n ∈ Nsfc do
3: for p ∈ Nnfvi do
4: if ωs

c,m,s,r(p) >= ωv
c,m,s,r(n) then

5: n.candidates.add(p)
6: end if
7: end for
8: end for
9: end procedure

Algorithm 2 Sort list of candidate substrate nodes
1: procedure SortCandidates(Nsfc)
2: sort(Nsfc)
3: end procedure

Algorithm 3 Nodes and links assignment
1: procedure NodeAndLinkAssignment(Gnfvi, Gsfc)
2: for n ∈ Nsfc do
3: for p ∈ n.candidates do
4: if p.used then
5: continue
6: end if
7: for m ∈ n.neighbors do
8: if m.mapped then
9: cost = W (enm, p,m.mapped)

10: else
11: cost = +∞
12: for q ∈ m.candidates do
13: cost = min(cost,W (enm, p, q))
14: end for
15: end if
16: mapping cost(p)+ = cost
17: end for
18: end for
19: p← argmin(mapping cost(p))
20: n.mapped← p
21: p.used← True
22: for m ∈ n.neighbors do
23: if m.mapped then
24: Allocate path Pnfvi(n.mapped,m.mapped)
25: end if
26: end for
27: end for
28: end procedure

These are the substrate nodes that can support the virtual
nodes in the SFC request given the input capacity constraints.
In the second step, the virtual nodes n ∈ Nsfc are sorted
in decreasing order according to the number of candidate
substrate nodes (see Alg. 2). In the third step, the sorted list of
virtual nodes is traversed starting with the virtual node with
more embedding opportunities. For each candidate substrate
node p ∈ Nnfvi the heuristic considers all the neighboring
nodes m ∈ Nsfc of the virtual node n. The heuristic, then,
assigns the node n to the substrate node m ∈ Nnfvi with the
lowest virtual edge mapping cost (see Alg. 3).

We define the virtual edge mapping cost W : Esfc×Nnfvi×
Nnfvi → R between a virtual edge enm ∈ Esfc and a pair of
substrate nodes p, q ∈ Nnfvi as follows:

W (enm, p, q) =Λc,m,s,r(p)ωv
c,m,s,r(n)+

Λc,m,s,r(q)ωv
c,m,s,r(m)+∑

e∈Pnfvi(p,q)

Λe(e)ω
v
e (enm)

This represents the cost of embedding the virtual edge
enm ∈ Esfc over the path Pnfvi(p, q) between the substrate
nodes p, q ∈ Nnfvi given that virtual nodes n,m are mapped
on, respectively, the substrate nodes p, and q. Minimizing the
virtual edge mapping cost for node m essentially means that
substrate nodes that are far away from node’s m embedding
opportunities are penalized. This results in virtual nodes in an
SFC request to be placed close to each other over the substrate
network, which in time means that less substrate resources are
needed to support a given number of requests.

V. EVALUATION

The goal of this section is to compare the relative perfor-
mance of the ILP–based placement algorithm with the per-
formance of our placement heuristic using different synthetic
substrate networks and different SFC requests. In this section,
we shall first describe the simulation environment and then the
performance metrics. Simulations are carried out in a discrete
event simulator implemented in Matlab R©.

A. Simulation Environment

The ILP–based placement algorithm and the proposed
placement heuristic are evaluated in three different scenarios.
In the first scenario, linear VNF requests, similar to the one
depicted in Fig. 3a, are considered. In the second scenario,
branched VNF requests, similar to the one depicted in Fig. 3b,
are considered. Finally, in the third scenario, VNF requests
with loops, similar to the one depicted in Fig. 3c, are used.
The number of VNFs in each SFC request as well as the
actual amount of radio, computational, memory, storage, and
link resources are randomly generated for each request.

The reference substrate network is a k–ary fat–tree with
k = 4, 6, 8, where leaf nodes are WiFi APs rather than servers.
This results in a total of, respectively, 16, 54, and 128 WiFi
APs. The computational, memory, storage, radio, and link
resources for the substrate network are initially all set to 100.
The cost of using each unit of node Λc,m,s,r(n) and link
Λe(e) resources is set to 1. The number of VNFs in each SFC
request depends on the SFC type. In the case of linear and
branched SFC requests the number is randomly picked in the
set {3, 6}, while in the case of cyclic SFC requests the number
is randomly picked in the set {4, 6}. The computational,
memory, and storage requirements for each SFC requests are
uniformly distributed between [5, 30], while the radio and link
requirements are uniformly distributed between [5, 60].

The metrics used in this study are the standard ones adopted
in several other related works [13], [40], [41]. For each sce-
nario the number of accepted requests, the average embedding
cost, the average node and link utilization, and the execution
time using either the ILP–based placement or the proposed
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heuristic are considered. In this study we assume that a fixed
number of SFC requests are embedded sequentially onto the
substrate network. In particular in each run, the simulator
tries to embed 30 randomly generated SFC requests. Reported
results are the average of 10 simulations.

B. Simulation Results

Figures 4 and 5 shows the percentage of accepted SFC
requests for different substrate networks and the average em-
bedding cost. As expected the ILP–based placement algorithm
is more efficient than WiNE in mapping the incoming requests.
This can be seen in terms of both a higher number of accepted
requests as well as a lower average embedding cost. Notice
however that, at least for linear SFCs, WiNE actually has
a lower embedding cost. This does not mean that WiNE is
more efficient than the ILP–based algorithm but rather that, by
accepting a lower number of SFC requests, WiNE also utilizes,
on average, less substrate resources. It is also worth noticing
that the efficiency of the proposed heuristic increases with the
size of the substrate network. This hints toward the fact that
WiNE may be capable of closing the gap with the ILP–based
placement algorithm for realistic substrate networks.

Figure 6, 7 and 8 summarize the substrate resource utiliza-
tion. As it can be noticed the ILP–based placement algorithm
is characterized by a higher utilization ratio for both radio
and computational nodes. This results in fewer substrate nodes
being used to support the same number of SFC requests which
in time could result in a more energy efficient operation if
unused nodes can be turned–off. Notice that this is further
supported by Fig. 8 where the substrate links utilization is
reported. As it can be seen, WiNE is characterized by a higher
link utilization, which means that the proposed heuristic is less
efficient in finding shorter paths between VNFs. However, it
is also worth noticing that the gap between the ILP–based
placement algorithm and WiNE gets smaller as the size of the
substrate network increase.

Figure 9 shows that the average amount of time required to
embed a single SFC request using the ILP–based placement
algorithm is significantly higher than the time required to em-
bed the same request using WiNE. The ILP problem becomes
essentially intractable for substrate networks with more than
a few tens of nodes (irrespective of the number of VNFs in
the request), while WiNE can effectively embed complex SFC
requests on substrate networks with hundreds of nodes in a
limited amount of time.

VI. IMPLEMENTATION

A. Overview

We implemented the VNF placement and scheduling so-
lution presented in this work in a proof–of–concept NFV
management and orchestration framework, named EmPOWER.
Notice that, the prototype currently supports only wireless
access networks based on the 802.11 family of standards and,
as a consequence, the applications described in the next section
target Enterprise WLANs and Campus networks scenarios.
Nevertheless, as seen in the previous sections, the provisioning
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Physical Infrastructure
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Virtualization Layer

Computing
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Infrastructure
Virtual Radio 
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VNF 
Manager (s)

OrchestratorOSS / BSS

Fig. 10: Reference network function virtualization architecture [9].

model does not make any assumption about the particular link–
layer technology and can be as well applied to any kind of
radio access network including OFDMA networks such as LTE
and LTE–Advanced.

Our proof–of–concept is loosely modeled after the ETSI
reference NFV Architecture [9]. As it can be seen in Fig. 10,
the architecture is conceptually divided into three layers. The
bottom layer consists of the physical as well as the virtualized
resources composing the NFVI. In the second layer we have
the actual VNFs which are the software implementation of
a particular network function capable of being executed over
the NFVI. We remind the reader that in this work also radio
access is treated as a VNF. Finally, in the third layer we
have the Operational Support System (OSS) and the Business
Support System (BSS) used by the network administrators to
operate and manage their virtual networks. The Management
and Orchestration plane covers the orchestration and the
management of physical and/or virtual resources that support
the NFVI as well as the life–cycle management of the VNFs,
i.e. creation, configuration, monitoring, and destruction.

B. Network Function Virtualization Infrastructure

Our architecture currently accounts for three kinds of NFVI
resources, namely: basic forwarding nodes (i.e. OpenFlow
switches), packet processing nodes, and radio access nodes.
The latter, in addition to the features supported by the packet
processing node, also embed specialized hardware in the form
of one or more 802.11 Wireless NICs. Figure 11 sketches the
system architecture.

We name Wireless Termination Points (WTPs) the physical
points of attachment in the RAN (e.g. WiFi APs or LTE
eNBs) supporting virtualized radio processing capabilities.
Conversely, the Click Packet Processors (CPPs) are the for-
warding nodes with computational capacity. These nodes are
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Fig. 4: Acceptance ratio using the ILP–based algorithm and the heuristics with different virtual and substrate topologies.
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Fig. 5: Average embedding cost using the ILP–based algorithm and the heuristics with different virtual and substrate topologies.
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Fig. 6: Average computational nodes utilization using the ILP–based algorithm and the heuristics with different virtual and substrate topologies.
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Fig. 7: Average radio nodes utilization using the ILP–based algorithm and the heuristics with different virtual and substrate topologies.

essentially programmable switches running an embedded ver-
sion of Linux and capable of performing arbitrary operations
on the traffic, e.g. load–balancing, firewalling, deep packet
inspection, etc.

As the name suggests the actual packet processing is
performed by multiple instances of the Click Modular
Router [42]. Click allows to build complex VNFs using simple
and reusable components, called elements. Click includes over

300 elements supporting functions such as packet classifica-
tion, access control, deep packet inspection. Elements can be
composed in order to realize complex VNFs. Finally, Click can
be easily extended with custom processing elements making
it possible to support features that are not provided by the
standard elements.

Each WTP/CPP includes an OpenVSwitch instance, one
or more VNFs, and one Agent. The latter is in charge of
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Fig. 8: Average link utilization using the ILP–based algorithm and the heuristics with different virtual and substrate topologies.
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Fig. 9: Average execution time using the ILP–based algorithm and the heuristic with different virtual and substrate topologies.

monitoring the status of each VNF as well as handling requests
coming from the controller. In the current implementation the
monitoring features include: number of packets/bytes trans-
mitted and received as well as the amount of resources (cpu
time, memory, storage) utilized by each VNF.

In the current prototype CPPs are built upon the Soekris
6501-70 platform consisting in single 1.6 GHz Intel Atom
CPU, 2 Gbyte if SDRAM, and 12 Gigabit Ethernet Ports.
CPPs run Ubuntu 15.04 Server as operating system. WTPs
exploit the PCEngines ALIX (x86) embedded platform and
run the OpenWRT operating system.

C. Virtual Infrastructure Managers

As Virtual Infrastructure Managers (VIMs) we use a com-
bination of frameworks. Ryu [43] is used to configure the
switching fabric while for the NFVI we extended the Em-
POWER controller presented by the authors in [44] in order
to support also the generalized packet processing nodes. The
controller supports multiple slices on top of the same physical
infrastructure. A slice is a virtual network with its own set of
WTPs/CPPs. The controller is responsible for the deploying
the VNFs on the network devices.

D. Orchestrator

From an architectural standpoint, the VNF placement algo-
rithm resides in the Orchestrator which is in charge of deciding
whether a particular request can be accepted or if it must be
refused. If a request is accepted, then the Orchestrator is in
charge of mapping the request onto the substrate network, i.e.,
network resources must be allocated and configured on both
the substrate nodes and the substrate links and the VNFs must
be instantiated on the selected nodes (see Fig. 11). Notice how,

our proof–of–concept does not impose a specific Orchestrator
leaving network administrators free to use other currently
available solutions, such as OpenBaton [12].

VII. APPLICATIONS

In this section we shall describe two SFCs implemented
and tested over a small scale testbed deployed at CREATE–
NET premises. The testbed consists of 2 OpenFlow–switches,
2 CPPs, and 20 WTPs.

A. Radio Access Network Slicing

In this use case we aim at demonstrating the performance
isolation features enabled by our joint VNF placement and
scheduling solution. Such use case is supported by introducing
a MAC Hypervisor implementing the slice scheduling tech-
niques described in the previous sections. Figure 12 sketches
the internal architecture of a radio access node. Notice how,
not the entire WiFi MAC is virtualized. More precisely, WiFi
control frames generation (e.g. ACK and RTS/CTS) as well
as the actual physical layer are not virtualized due to their
tight timing/computational constraints. On the other hand each
tenant can have its own Radio Resource Management (RRM)
instance as well as its own management place. In this work
with RRM we refer to wireless clients scheduling and to
rate adaptation, which can be defined on a per–tenant basis2.
For example, one tenant can use a wireless station scheduler
aimed at ensuring fairness while another tenant could opt for a
scheduler aimed at improving the aggregated slice bandwidth.

2Notice how, the hypervisor implementation details are out of the scope of
this work and are thus omitted.
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The hypervisor monitors the channel utilization as well as
the amount of traffic generated by each Tenant. Such infor-
mation is used to compute the effective aggregated goodput
of each slice (b(n)). It is worth stressing that both channel
activity and goodput are two quantities that can be monitored
by the hypervisor with low overhead and without affecting
the operation of the RRM policy implemented by Tenants.
For example a Tenant with wireless clients experiencing poor
channel conditions will see its aggregated goodput reduced due
to re–transmissions. Similarly a Tenant implementing wireless
clients scheduling policies aimed at maximizing fairness will
also see a reduction in goodput if some of its wireless clients
require less efficient modulation and coding schemes.

The network setup used for this set of measurements con-
sists of two tenants A and B. The bandwidth requests coming

from Tenant A and B are, respectively, 4 and 2 Mb/s, while the
reference bandwidth (Ωv

b ) is 6 Mb/s for both tenants. A total
of three wireless clients is active in the networks. Clients 1
and 2 belongs to Tenant A while Client 3 belongs to Tenant B.
Traffic is generated from a server sharing the same backhaul
with the APs and consists of three UDP streams (one for
each client). Each stream has constant inter–departure time and
packet size resulting in a transmission rate of 10 Mb/s for each
stream. In order to simulate a hotspot with limited capacity the
rate control algorithm used by the AP has been modified in
order to always use the lowest transmission rate (6 Mb/s).
Measurements have been carried in two different scenarios
differentiated by the channel conditions experienced by client
number 1 which is positioned in such a way to experience
channel conditions raging from Good to Poor.

As it can be seen from Fig. 13a, when Client 1 is experi-
encing good channel conditions the proposed VNF scheduling
method can satisfy the bandwidth request for both tenants
(notice that Tenant A request of 4 Mb/s has been equality parti-
tioned among the two clients). On the other hand, when Client
1 starts experiencing poor channel conditions (see Fig. 13b)
the legacy resource provisioning mechanism allocates the
same bandwidth to all the clients. This behavior, known as
IEEE 802.11 performance anomaly [45], allows a node which
experiences poor channel conditions to monopolize the wire-
less medium lowering the performance of the whole system.
Conversely, the proposed resource provisioning mechanism
can meet the bandwidth reservations made by Tenant A by
linearly scaling down the amount of resources allocated to
Tenant B that is experiencing poor channel conditions.



11

Client

1 2 3

G
o

o
d

p
u

t 
[M

b
/s

]

0

0.5

1

1.5

2

w/o Perf. Iso.
w/ Perf. Iso.

(a) Good channel.
Client

1 2 3

G
o
o
d
p
u
t 
[M

b
/s

]

0

0.5

1

1.5

2

w/o Perf. Iso.
w/ Perf. Iso.

(b) Poor channel.

Fig. 13: Isolation across clients in different networks. Client 1 and 2
are in Tenant 1’s network, while Client 3 is in Tenant 2’s network.

B. Data/Management Plane Offloading

Wireless, and in particular mobile networks, have been
so far designed around the requirements of the downlink,
i.e. cell or AP selection is performed using downlink signal
strength measurements. In the recent years, however, we have
witnessed a mushrooming of new uplink–centric applications
such as Machine Type Communications (MTC), Internet of
Things (IoT), and Vehicle to Infrastructure (V2I) as well as
of symmetric mobile applications. This calls for a paradigm
shift where the traffic originated from a wireless client is
received by one node while the traffic destined to the same
client is transmitted by another node. This kind of network
setup is usually referred to as uplink/downlink decoupling and,
in its most general form, can consists of two possibly non
overlapping sets of transmitting and receiving nodes.

The EmPOWER platform [44] allows for network config-
urations where a wireless client can be attached to one AP
in the downlink direction and to one or more APs in the
uplink direction. This feature allows to exploit the broadcast
nature of the wireless medium and to opportunistically receive
the same transmission at multiple in–range APs. However,
if not properly controlled such a feature can lead to an
overload in the network core. For example, a wireless client
scheduled on N APs in the uplink direction could increase
the load on the network core by a factor of N . Moreover, a
straightforward implementation of such a mechanism could
generate a significant increase in the number of duplicate
packets which in time could trigger anomalous behaviors at
the transport layer.

As a result of the fact that the WiFi MAC is virtualized it
is possible to offload parts of it to dedicated processing nodes
as VNFs that can be then shared among several APs. In this
use case we implemented a VNF which filters out duplicate
802.11 frames based on their sequence number. Figure 14
sketches a slightly more generic case were both data–plane
(duplicates filtering) and management (probe response gener-
ation) functionalities are offloaded to two different CPPs. In
this section however we shall evaluate only the performances
of the duplicate filtering VNF.

Traffic originated from clients is received at one or more
WTPs where it is encapsulated (802.11 over Ethernet) and
then forwarded to a CPP where the duplicates filtering VNF
is deployed. This VNF is also responsible for decapsulating the
802.11 frame and converting it into an Ethernet frame before
forwarding it to its intended destination.
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Wireless Termination Point

802.11 MAC (Data, 
Duplicates Filter)

802.2 LLC
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Click Packet Processor

802.11 MAC (Mngt, 
Probe Responder)
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Click Packet Processor

Fig. 14: Data/Management Plane Offloading application. Data–plane
(duplicates filtering) and Management–plane (probe response gener-
ation) operations are offloaded to two different CPPs.

In order to evaluate this VNF we exploited a network setup
composed of a single client and three APs. Traffic is injected
from the wireless client as a single UDP stream. Packet
transmission rate and payload are kept fixed at, respectively,
100 packets/s and 1472 bytes. Impairments on the link between
client and APs are simulated by randomly dropping received
frames with probability PL at all receiving APs. For all mea-
surements a total of 6000 frames were generated. Confidence
intervals were very small for all the data points and have there-
fore be omitted in order to improve readability. Measurements
have been taken using three packet dropping probabilities,
namely: 0.05 (good channel conditions), 0.2 (medium channel
conditions), and 0.8 (poor channel conditions)

As it can be seen from Fig. 15a, the end–to–end packet
delivery ratio increases with the number of available up-
links. The proposed uplink/downlink decoupling solution can
provide a small performance improvement even when the
channel conditions are good (PL = 0.05). On the other
hand the performance improvements are significant when the
channel conditions get worse. In particular this solution allows
to turn an essentially broken channel (4 out of 5 dropped
packets) into an usable channel (1 out of 2 dropped packets).
Finally, in Fig. 15b and Fig. 15c we can see the impact of
the duplicate filtering VNF on the bandwidth utilization. As
expected without the VNF the bandwidth utilization increases
with the number of uplinks, while using the VNF filtering the
bandwidth utilization does not exceed the nominal goodput.

VIII. CONCLUSIONS

NFV is rapidly emerging as a flexible solution to deploy
and operate future mobile networks. However, in order to fully
deliver on its promises, the concept of NFV must be extended
also to the radio access segment of the mobile network. In
this paper, we tackled this challenge by presenting a novel
formulation of the VNF placement problem encompassing
also radio access VNFs. We then introduced a ILP–based
algorithm for small networks and a scalable heuristic, named
WiNE, for larger deployments. Numerical simulations showed
that the proposed heuristic can approximate the performance
of the ILP–based placement algorithms for realistic substrate
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Fig. 15: Packet loss (a) and bandwidth utilization (b and c) for a single client scheduled at multiple APs in the uplink direction. The duplicate
filtering VNF can reduce the load on the backhaul by selectively dropping duplicate packets.

networks. Finally, we reported on a preliminary proof–of–
concept implementation of a NFV Management and Orches-
tration framework for Enterprise WLANs.

As future work, we plan to investigate the resiliency prop-
erties of WiNE in case of nodes and link failures and to
study how VNF placement can be optimized by taking into
account wireless clients distribution and user mobility. We also
plan to verify the applicability of our problem formulation
to OFDMA–based radio access networks like LTE and LTE–
Advanced and to extend the prototype (both the hypervisor and
the controller) adding support for VNF migration and scaling
as well as for Mobile Edge Computing capabilities.
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