
Virtual Network Function Orchestration with Scylla

Roberto Riggio
CREATE-NET

Trento, Italy
rriggio@create-net.org

Julius Schulz–Zander
TU-Berlin

Berlin, Germany
julius@inet.tu-berlin.de

Abbas Bradai
CNRS-LiG

Grenoble, France
bradai@imag.fr

ABSTRACT
Network Function Virtualization promises to reduce the cost
to deploy and to operate large networks by migrating var-
ious network functions from dedicated hardware appliances
to software instances running on general purpose network-
ing and computing platforms. In this paper we demonstrate
Scylla a Programmable Network Fabric architecture for En-
terprise WLANs. The framework supports basic Virtual
Network Function lifecycle management functionalities such
as instantiation, monitoring, and migration. We release the
entire platform under a permissive license for academic use.

Categories and Subject Descriptors
C.2.3 [Computer Communication Networks]: Network
Operations

Keywords
Network Function Virtualization, Enterprise WLANs

1. INTRODUCTION
Network Function Virtualization (NFV) promises to re-

duce the cost to deploy and to operate large networks by
migrating various network functions from dedicated hard-
ware appliances to software instances running on general
purpose networking and computing platforms. This in time
shall improve the flexibility and the scalability of the net-
work in that the deployment of new features and services can
be quicker (software vs hardware life–cycles) and different
network functions can share the same computing resources
paving the way to further economies of scale.

Nevertheless, current NFV platforms typically only ac-
count for (virtualized) computing, storage, and networking
resources with each of these resource managed separately.
In this demo we want to take a step toward a truly deep
programmable network by introducing the concept of Pro-
grammable Network Fabric. Our architecture leverages on a
single platform consisting of general purpose hardware (x86)
and operating system (Linux) in order to deliver three kinds
of virtualized network resources, namely: basic forwarding

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SIGCOMM ’15 August 17-21, 2015, London, United Kingdom
c© 2015 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-3542-3/15/08.

DOI: http://dx.doi.org/10.1145/2785956.2790040

Packet Processor

Pass through
(ASIC)

Click
(x86)

Programmable Network Fabric Controller

REST API

VNF
Monitoring

Tornado Web Framework

VNF
Management

Platform
Management

VNF n (Click)

OpenVSwitch

Ethernet

VNF 1 (Click)

Packet Processor Agent

...

Python API

Control App 1 Control App N...

Figure 1: Programmable Network Fabric Controller .

nodes (i.e. OpenFlow–enabled Ethernet switches), packet
processing nodes, and radio processing nodes (WiFi).

During this demo we will show Scylla a Programmable
Network Fabric architecture for Enterprise WLANs. Scylla
supports basic Virtual Network Function (VNF) lifecycle
management functionalities (instantiation, monitoring, and
migration). The demo will demonstrate the framework op-
eration using three sample VNFs: a performance enhancing
VNF, a security VNF, and a monitoring VNF. Finally we re-
lease the code under a permissive license for academic use1.

2. PROGRAMMABLE NETWORK FABRIC
We name Programmable Network Fabric the set of all

packet processing nodes. As it can be seen in Fig. 1 each
packet processing node includes an OpenVSwitch instance,
one or more VNFs, and one Packet Processor Agent. The
latter is in charge of monitoring the status of each VNF
as well as handling CRUD requests coming from the Pro-
grammable Network Fabric Controller (PNFC). The moni-
toring features includes: number of packets/bytes transmit-
ted and received as well as the amount of resources (cpu
time, memory, and storage) utilized by each VNF.

The PNFC acts as an orchestrator deciding whether a
particular VNF request can be accepted or if it must be
refused [1]. If a request is accepted, then the PNFC is in
charge of mapping the request onto the substrate network,
i.e., network resources must be allocated and configured on
the substrate nodes and links and the VNFs must be in-
stalled on the selected nodes.

A combination of frameworks is used in our architecture.
POX [2] is used in order to configure resources in the switch-
ing fabric, while the SD–RAN controller proposed by the
authors in [3] is used in the wireless access. Finally, we use
Click [4] as a single solution for advanced packet process-
ing. Click allows to build complex VNFs using simple and

1http://scylla.create-net.org/

reusable components, called Elements. Click includes over
300 elements supporting functions such as packet classifica-
tion, access control, deep packet inspection. Elements can be
composed in order to realize complex VNFs. Finally, Click
is easily extensible with custom processing elements making
it possible to support features that are not provided by the
standard elements.

The PNFC is build on top of the Tornado Web Frame-
work [5]. Communication between packet processors and
the PNFC takes place over a persistent TCP connection.
Control applications run on top of the PNFC and exploit
its programming primitives through either a REST API or
a native Python API.
Scylla VNFs are modular and reusable components con-

sisting of a Click instance wrapped inside a Python object
exposing lifecycle management functions. A Manifest is at-
tached to each VNF specifying the Click configuration, the
number of input/output ports as well as a list of events that
can be subscribed by control applications. The latter allow
programmers to trigger a callback the first time a certain
condition is verified. For example the cpu_util primitive
will trigger a callback the first time the CPU utilization of
any Packet Processor in a tenant’s network exceeds 70%:

c p u u t i l (r e l a t i o n=’GT’ ,
va lue =0.7 ,
t enant id=’<UUID> ’ ,
c a l l b a c k=cpu ca l lback)

Listing 1: Create an CPU Utilization trigger.

After the trigger has fired the first time and as long as the
CPU utilization remains above 70%, the callback method is
not called again by the same packet processor however the
same callback may be triggered by other packet processors.
Scylla VNFs may also declare a state in their Manifest file.

A VNF state is defined in the form of Click handlers that
must be invoked in order to obtain a snapshot of an active
VNF. Such snapshots are atomic and lock the VNF execution
for the time required to invoke the handlers. State handlers
must support both read and write operations allowing a VNF
state to be migrated from one node to another.

3. DEMO
In this demo we show the operation of the Scylla frame-

work using three VNFs. This section describes the purpose
of each VNF. During the demo a web–based dashboard will
be used to both show real–time statistics (traffic, cpu load,
memory usage, energy consumption) as well as to deploy and
migrate VNFs.

3.1 Uplink/Downlink Decoupling
Wireless, and in particular mobile networks, have been

so far designed around the requirements of the downlink. In
the recent years, however, we have observed a growth of new
uplink–centric applications such as Machine Type Commu-
nications and Internet of Things. This calls for a paradigm
shift where the traffic originated from a wireless client is
opportunistically received by multiple in–range APs. How-
ever, if not properly controlled such a feature can lead to an
overload in the network core. For example, a wireless client
scheduled on N APs in the uplink direction could increase
the load on the network core by a factor of N . Moreover,
a straightforward implementation of such a mechanism can
lead to a significant increase of frames which in turn can
trigger an unstable behavior at the transport layer.

In order to address this issue we implemented a VNF
which filters out duplicate 802.11 frames based on their se-
quence number. Traffic originated from clients is received at
one or more APs where it is encapsulated (802.11 over Eth-
ernet) and then forwarded to a packet processing node where
the frame filtering VNF is deployed. This VNF is also re-
sponsible for removing the 802.11 and the LLC headers and
for encapsulating the frame into an Ethernet header before
forwarding it to its intended destination. The Click script
implementing this VNF is reported in the listing below2.

FromHost (vnf0)
−> in : : Counter
−> St r i p (14)
−> dupe : : Wif iDupeFi l ter ()
−> decap : : WifiDecap ()
−> out : : Counter
−> ToHost (vnf0) ;

Listing 2: Duplicate filtering VNF.

3.2 Firewall Migration
Today’s enterprise networks often need to deal with BYOD

where employees or customers connect their own devices to a
corporate network. This, however, raises new requirements
on the network access policies. Our second VNF implements
a straightforward firewall where rules can be moved from
one instance to another depending on the client association
state, i.e., rules are migrated when clients perform a hand-
off from one AP to another. This firewall VNF takes a list
of tcpdump–like patterns as input from the controller and
applies them to the incoming traffic.

3.3 SLA Monitoring
This VNF aims at implementing a basic SLA monitoring

solution. In this scenario a packet sniffing VNF is deployed
on radio nodes. This VNF collects all transmissions within
decoding range of the radio node. For each link–layer event
the following meta–data is tracked: RSSI (in dB), Trans-
mission Rate (in Mb/s), Length (in bytes), and Duration
(in µsec). The collected meta–data is then forwarded to an-
other VNF which computes aggregate statistics by filtering
our duplicate frames. In particular for each active WiFi sta-
tion the number of packets/bytes transmitted and received
as well as the retransmission count are tracked.

4. REFERENCES
[1] R. Riggio, T. Rasheed, and R. Narayanan, “Virtual

network functions orchestration in enterprise wlans,” in
Proc. of IEEE ManFI, Ottawa, ON, Canada, 2015.

[2] “POX.” [Online]. Available:
http://www.noxrepo.org/pox/about-pox/

[3] R. Riggio, M. Marina, J. Schulz-Zander, S. Kuklinski,
and T. Rasheed, “Programming abstractions for
software-defined wireless networks,” Network and
Service Management, IEEE Transactions on, vol. 12,
no. 2, pp. 146–162, June 2015.

[4] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek, “The click modular router,” ACM Trans.
Comput. Syst., vol. 18, no. 3, pp. 263–297, Aug. 2000.

[5] “Tornado Web Server.” [Online]. Available:
http://www.tornadoweb.org/

2vnf0 is a virtual interface attached to the OpenVSwitch
instance running on the packet processing node.

