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Abstract—Current mobile networks often fail to achieve their
full performance potential, as user devices commonly experience
data rates well below their possible capabilities. This limitation
arises from conventional cell selection mechanisms, which often
fail to identify and utilize higher-performing candidate cells,
resulting in suboptimal use of network resources. In this pa-
per, we introduce a hierarchical machine learning–based traffic
steering solution for O-RAN-enabled 5G and beyond networks.
The proposed solution supports network-assisted cell selection,
guiding user devices toward more optimal cells. The proposed
solution is developed in accordance with O-RAN Alliance design
principles and operates without any modifications to existing
3GPP signaling or to mobile devices. Experimental evaluations
on a small-scale testbed demonstrate that the proposed approach
can improve the median throughput by up to 75% in certain
traffic scenarios while also improving overall network fairness.

Index Terms—Machine learning, O-RAN, B5G, Traffic Steer-
ing, Cell Selection

I. INTRODUCTION

Upcoming 5G Advanced and future 6G networks are antic-
ipated to support a vast range of heterogeneous use cases at
massive scale, demanding highly automated mechanisms for
network control and automation. Despite this, today’s cellular
architectures do not offer fine-grained control over Radio Ac-
cess Network (RAN) operations. Leveraging open interfaces
and off-the-shelf hardware, O-RAN is rapidly emerging as
the leading approach for building virtualized 5G and beyond
RANs. This paradigm introduces an open architecture enabling
closed-loop control, data-driven decision-making, and intelli-
gent optimization of RAN operations.

In an O-RAN–compliant architecture the radio control
framework is organized around two key components: the
Near-Real-Time RAN Intelligent Controller (near-RT RIC)
and the Non-Real-Time RAN Intelligent Controller (non-RT
RIC). At the top of this hierarchy, the non-RT RIC hosts
rApps responsible for executing high-level, long-term RAN
optimization functions. It leverages comprehensive network
information and provides AI-driven guidance to the near-RT
RIC. In contrast, the near-RT RIC operates closer to the net-
work edge, managing time-sensitive control and optimization
of RAN components through modular applications known as
xApps. This separation of concerns results in a flexible and
programmable architecture, ideally suited for the integration
of advanced AI-based modules that enhance network per-
formance and adaptability through coordinated operation of
rApps and xApps.

Traffic steering represents one of the key application ar-
eas within the O-RAN framework. Developing an effective
traffic steering requires the RIC to handle the complexity of

managing numerous cell configurations. In fact, in current
mobile networks, it is common for user devices to remain
connected to suboptimal cells [1], experiencing much lower
data rates even when nearby cells could offer up to ten times
better performance. This issue arises from legacy cell selection
mechanisms, maintained for backward compatibility, which
prioritize stable and “good enough” connectivity over optimal
performance. Originally, this approach suited earlier, sparser,
and more homogeneous networks where most cells had similar
characteristics. However, today’s networks are far denser and
more heterogeneous, combining large macrocells with many
small cells that vary widely in bandwidth (from 5 MHz to 100
MHz typically), leading to many more handoff opportunities
and greater performance disparities between cells.

This paper introduces a hierarchical machine learning-based
traffic steering approach designed to mitigate the underuti-
lization of network resources described earlier. The proposed
solution is guided by three key design principles. First, unlike
previous approaches such as [1], it enhances cell association
decisions by jointly considering radio quality, cell bandwidth,
and user distribution. Second, it fully complies with existing
3GPP signaling standards while relying on gNBs that support
the O-RAN–defined interfaces. Third, the approach is entirely
network-driven, requiring no modifications to user equipment
(UE), which continues to support the process by performing
standard measurement tasks as instructed by the serving base
station. Experimental evaluations on a small-scale 5G testbed
show that the proposed approach can improve the median
throughput by up to 75% in some specific traffic scenarios
while also achieving better network fairness.

The structure of the paper is the following. The related
work is discussed in Sec. II. The motivation behind this work
is presented in Sec. III. Section IV discusses the system
design and the proposed cell-selection algorithm while the
implementation details and the results of the evaluation are
the focus of Sec. V. Finally, Sec. VI concludes the paper and
suggest some future research directions.

II. RELATED WORK

The study in [1] presents iCellSpeed, a device-centric
approach designed to enhance cell selection by addressing
the inefficiencies of traditional network-controlled methods.
In contrast, our work argues that relocating decision-making
to the network side enables more effective coordination and
resource management, ultimately unlocking greater and more
consistent performance gains.

In [2] we address a similar problem by proposing a solution
aiming at improving cell selection in 5G and beyond networks.



The proposed solution operates on the global network view
maintained by the near-RT RIC to jointly optimize mobility
management for channel quality and bitrate. The proposed
solution is a rule-based heuristic and does not include context-
aware adaptation. Moreover, the solution is not integrated with
AI/ML-based xApps and the algorithm is static, not learning
from context or history.

Recent research has increasingly leveraged data-driven and
machine learning techniques to optimize cellular network
performance. Examples include self-tuning algorithms that
enhance Quality of Experience (QoE) in multi-carrier 4G
systems [3], predictive models for large-scale handover man-
agement [4], and reinforcement learning–based approaches for
dynamic load balancing [5]. Collectively, these works reflect
a clear shift toward intelligent, adaptive optimization methods
for user association and network management.

Deep learning has been applied to traffic steering by lever-
aging multiple network state features to predict and optimize
data flow, supporting objectives like load balancing and con-
gestion reduction. For instance, [6] employs a Long Short-
Term Memory (LSTM) model to learn traffic patterns and
forecast incoming packets for proactive steering, while [7] uses
a Convolutional Neural Network (CNN) to assign users to base
stations dynamically. Despite their promise, these approaches
rely heavily on large, labeled datasets that are often unavailable
in real-world networks, leading to limited training accuracy
and potentially suboptimal steering decisions.

Reinforcement Learning (RL) has become a key tool for ad-
dressing optimization challenges in Open RAN environments.
Traffic steering in O-RAN must account for highly dynamic
factors such as congestion levels, fluctuating traffic patterns,
and varying user demands. RL techniques can effectively adapt
to these changing conditions and learn optimal steering poli-
cies over time. Approaches like Q-learning, Deep Reinforce-
ment Learning (DRL), and Hierarchical RL (HRL) have been
applied in this context. While Q-learning offers conceptual
simplicity [7], its slow convergence and inefficiency in large
state-action spaces limit scalability. Deep Q-Networks (DQN)
overcome these issues by using neural networks to estimate
state-action values instead of large Q-tables, enabling faster
and more robust learning, as demonstrated in [8]. However,
they often operate as single-layer agents, learning only at one
timescale, which limits scalability.

Federated learning offers a decentralized approach to traf-
fic steering by harnessing the collective intelligence of user
equipment (UEs) and edge devices. Each device trains locally
and shares model parameters rather than raw data, enabling
collaborative optimization of traffic management while pre-
serving user privacy [9]. However, this approach faces key
challenges, including high communication overhead from fre-
quent model updates and significant heterogeneity in device
capabilities—such as differences in computation, storage, and
connectivity—which can hinder consistent training and de-
ployment efficiency.

Hierarchical learning enables agents to simultaneously de-
velop high-level strategies for overall objectives and low-level
policies for specific actions. When applied to traffic steering,
combining this approach with DQN can enhance performance
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(a) Scenario 1: A user device experiencing heterogeneous link quality and
varying cell bandwidths.
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(b) Scenario 2: Two user devices with uniform link quality and identical cell
bandwidths.

Fig. 1. The traditional cell selection mechanism may cause inefficient use of
network resources because it fails to consider differences in cell bandwidth.

by decomposing the complex optimization process into layered
decision-making stages [10]. Hierarchical RL offers a way
to separate strategic and tactical decision-making, but so far,
it has mostly remained in simulation, not on real, O-RAN-
compliant testbeds.

Building upon the insights of previous research addressing
performance limitations in cellular networks, our work intro-
duces a practical, deployable solution that leverages cutting-
edge technologies. It distinguishes itself in two key aspects:
first, it is explicitly designed for implementation in real-
world network environments; and second, it represents the
first application of a hierarchical DQN-based approach to cell
selection for O-RAN RICs.

III. A MOTIVATING EXAMPLE

Cell selection relies on downlink RSRP and RSRQ mea-
surements collected by the mobile device. At a high level, a
handover is initiated from the serving cell to a target cell when
the serving cell’s RSRP remains below a defined threshold
for a certain duration and the target cell’s RSRQ exceeds
that of the serving cell by a predefined margin. The detailed
configuration of these parameters is beyond the scope of this
paper and has been extensively studied in the literature [11],
[12]. It is worth noting, however, that (i) a device generally
remains connected to its current cell as long as the signal
quality is acceptable, even if a better-performing cell exists,
and (ii) traditional handover mechanisms do not consider
factors such as cell bandwidth in their decisions.

An illustrative example is shown in Fig. 1a. Here, a mobile
terminal is connected to serving cell A and continuously
monitors its signal quality, which determines when to begin
scanning neighboring cells, a process known as the look-
around phase. For instance, measurement triggering may
occur when conditions such as RSRQ(A) < −15 dB or
RSRP (A) < −122 dBm are met. In the scenario depicted,
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(a) Scenario 1. Downlink TCP throughput of the mobile terminal
when connected to cell A (Legacy selection) versus cell B (Optimal
selection).
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(b) Scenario 2. Aggregated downlink TCP throughput of two mobile
terminals when both are connected to cell A (Legacy selection) versus
when traffic is balanced across both cells (Optimal selection).

Fig. 2. Throughput over time for the two illustrative scenarios.

this means the device would not measure neighboring cell B
until the serving cell’s signal degrades below these thresholds.
Once RSRQ(A) reaches −15 dB, the device starts evaluating
nearby cells. A secondary reporting condition is also config-
ured, typically defined as RSRQ(A) < RSRQ(other)−3 dB,
ensuring that a new cell is reported to the base station only if
it offers at least a 3 dB improvement over the current one.

In this example, it would actually be advantageous to hand
over the mobile terminal to cell B, even though its signal
quality is slightly lower than that of cell A. This is because
cell B offers a wider bandwidth (10 MHz vs. 5 MHz), which
can deliver higher data rates. As illustrated in Fig. 2a, the
downlink TCP throughput achieved using an optimized cell
selection strategy that considers bandwidth outperforms that of
the legacy approach. Despite the weaker signal on cell B, the
terminal attains higher throughput, as the increased bandwidth
compensates for the lower link quality.

Another illustrative scenario is presented in Fig. 1b. Here,
two mobile terminals are connected to the same serving cell A
under similar radio conditions, i.e., their RSRQ values differ
by less than 3 dB. Although cell B offers slightly lower
signal quality (not shown for clarity), both cells have the same
channel bandwidth. In this context, handing over one terminal
to cell B, despite its weaker link, would improve overall
efficiency by distributing the load more evenly. This effect
is confirmed by the measurements in Fig. 2b, which show
the aggregated downlink TCP throughput for both terminals.
When both devices remain attached to cell A (legacy case),
throughput is limited, whereas balancing them across cells
A and B (optimal case) can improve the median network
throughput by up to 75%, with only a minor increase in
variability.
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Fig. 3. Hierarchical learning scheme for O-RAN.

While the scenarios discussed above may appear straight-
forward, such behavior cannot be achieved in current cellular
networks for two main reasons: (i) measurement and reporting
thresholds are conservatively configured by the serving cell,
and (ii) even when superior candidate cells are detected, the
serving cell lacks a comprehensive network-wide perspective
to make handover decisions that also consider factors such
as cell bandwidth. The first limitation could be mitigated by
adopting more aggressive measurement and reporting criteria.
Addressing the second challenge, however, represents the
primary focus of this work.

IV. HIERARCHICAL MACHINE LEARNING–BASED
TRAFFIC STEERING

A. Hierarchical Learning Schemes in O-RAN

Hierarchical learning algorithms are a class of machine
learning methods that structure the learning process into
multiple levels (or hierarchies), allowing an agent (or model)
to handle complex tasks by breaking them down into simpler
subtasks. As presented in Fig 3, In O-RAN traffic steering, a
hierarchical learning approach could work as follows:

• Meta-agent (Non-RT RIC rApp): decides which general
policy to apply (e.g., load balancing).

• Agent (Near-RT RIC xApp): execute actions such as
adjusting transmission power or reassigning users.

For instance, in the context of traffic steering, a hierarchical
learning approach can effectively combine the strengths of
supervised learning and RL to manage decision-making across
multiple levels of the network. At the higher level, supervised
learning can be used to train models that predict optimal cell
associations based on historical data—such as RSRP, RSRQ,
bandwidth availability, and user density—thereby establishing
an initial policy for traffic distribution. At the lower level,



RL can then refine these policies in real time by interact-
ing with the network environment, receiving performance
feedback (e.g., throughput gains, reduced congestion), and
adapting its decisions through methods like Q-learning or
policy gradients. Furthermore, integrating unsupervised learn-
ing techniques such as clustering can enhance this process
by identifying hidden patterns in user mobility or traffic
demand. When combined with RL, this allows the system to
both discover meaningful structures in network behavior and
adapt dynamically to optimize resource allocation and user
experience across cells.

A key advantage of hierarchical learning in the context of
traffic steering for O-RAN is its ability to distribute intel-
ligence across different control layers—namely, the non-RT
RIC and the near-RT RIC, each operating on distinct time
scales and decision granularities. At the higher layer, the non-
RT RIC can leverage powerful machine learning techniques to
develop long-term optimization strategies, such as predicting
network load trends, user mobility patterns, or bandwidth
utilization. These insights are then passed down to the near-
RT RIC, which operates on shorter time intervals and uses
reinforcement learning or other adaptive algorithms to make
rapid, fine-grained decisions, such as dynamically steering
users between cells to balance traffic or improve throughput.
Moreover, hierarchical learning enables reinforcement learning
algorithms to effectively manage long-horizon objectives, for
example, maintaining network stability and fairness over time,
while still reacting swiftly to short-term variations in traffic
or signal quality. Such a design not only facilitates seamless
interaction between rApps (in the non-RT RIC) and xApps (in
the near-RT RIC) but also makes the overall traffic steering
system more adaptive, scalable, and suitable for real-world O-
RAN deployments.

In the context of traffic steering, one of the main challenges
in O-RAN is the limitation on performing online learning
directly from untrained models, as this could disrupt live
network operations. This issue can be effectively addressed
through several complementary strategies. First, models can
be pre-trained offline using historical network data or realistic
simulated environments that capture key aspects of radio
conditions, mobility patterns, and traffic behavior. This allows
the hierarchical learning framework to start with well-informed
policies rather than random initializations, ensuring stable
and efficient early-stage performance. Second, implementing
a model versioning and update pipeline can further enhance
reliability. In this setup, models are periodically retrained and
validated offline, using fresh network data, and then safely
deployed into the operational environment. This cycle not only
complies with O-RAN’s restrictions on online learning from
unverified models, but also enables continuous adaptation to
changing network conditions, thus improving the responsive-
ness and robustness of the traffic steering system.

B. Hierarchical DQN-Based Traffic Steering Framework

We propose a hierarchical deep Q-network framework for
intelligent traffic steering in O-RAN-based 5G and beyond
networks. The proposed architecture follows the O-RAN con-
trol hierarchy and integrates two coordinated learning agents:

Network Environment

Meta-agent (rApp)

State

h-DQN
Non-RT 

RIC

Agent (xApp)

DQN
near-RT 

RIC

Goal

Actuators (gNBs)

Action

Reward = Throughput 
optimization

Fig. 4. Hierarchical Reinforcement Learning Architecture for Traffic Steering
in O-RAN. The meta-agent (rApp) defines long-term goals while the agent
(xApp) executes short-term steering actions through DQN-based learning.

a meta-agent deployed as an rApp in the non-RT RIC, and
a agent deployed as an xApp in the near-RT RIC. Together,
they enable adaptive, goal-oriented decision-making across
different time scales.

As illustrated in Fig. 4, the meta-agent operates at a
coarser timescale (seconds to hours) within the non-RT RIC.
It observes aggregated network parameters such as cell load,
interference, traffic type distribution, and QoE indicators,
collected via the O1 interface and the Service Management
and Orchestration (SMO) layer. Based on these observations,
the meta-agent defines high-level goals for the agent, for
instance, maintaining load-balancing thresholds, minimizing
queuing delay, or achieving target throughput across multiple
cells or RATs.

The agent, implemented as a DQN-based xApp within the
near-RT RIC, operates at a finer timescale (10 ms–1 s). It
receives network states directly from the RAN environment,
such as RSRP/RSRQ, SINR, buffer occupancy, or UE mobility
indicators, and performs short-term actions such as user han-
dovers, load-threshold tuning, or RAT-based traffic steering.
The agent interacts with the environment, receives intrinsic
rewards based on throughput or delay improvements, and
refines its Q-network parameters accordingly. The meta-agent
monitors long-term goal progress and periodically updates
objectives, forming a closed feedback loop between strategic
and operational control layers.

The meta-agent uses historical or simulated data to pre-train
its model offline and can query an AI/ML model hosted in the
SMO for inference. It periodically updates the agent via the A1
interface, providing goal vectors and reward-weight parame-
ters that shape the agent’s local decision-making process. The
agent then maximizes the cumulative reward defined as:

rt = λthr ·∆Tu + λfair ·∆J − λho · Cho, (1)

where λthr, λfair, and λho are weights set by the meta-
agent for throughput, fairness, and handover cost, respectively.



This setup allows the system to balance conflicting goals, for
example, maintaining high buffer utilization while avoiding
excessive delay from queue congestion.

Both the global and local agents rely on a DQN formulation.
The local agent adopts a standard DQN [13] architecture
to ensure computational simplicity and compatibility with
resource-constrained nodes. While advanced variants such as
Double-DQN or Dueling-DQN could further improve stability,
we deliberately prioritize low inference complexity and fast
convergence, which are critical for onboard execution in
satellite and HAPS environments. At the global level, the
Q-function is trained offline using Conservative Q-Learning
(CQL) [14], enabling safe policy learning from simulated
data while avoiding overestimation outside the support of the
training distribution.

The proposed framework aligns with the O-RAN Alliance’s
AI/ML workflow. Data from RAN components are collected
via the O1 interface and forwarded to the non-RT RIC. The
rApp trains ML models and transmits updated policies to the
xApp through the A1 interface. The xApp then performs near-
real-time decisions through the E2 interface to base stations
(i.e., gNBs), adjusting RAN parameters such as scheduling
thresholds or RAT selection. Network elements act as actua-
tors, enforcing the steering actions on active traffic flows.

C. Offline Training of the Meta-Agent Using Simulated Data
The meta-agent, operating at the non-RT RIC level, is

responsible for setting long-horizon goals that guide the near-
RT RIC xApp in performing short-term traffic steering. Its
model can be effectively trained offline using simulated data,
thereby avoiding the risks associated with online exploration
in live networks. The training pipeline consists of several
stages, from the construction of a calibrated simulator to policy
distillation and deployment.

To enable safe and reproducible experimentation, we em-
ploy an ns3-based simulator to act as a digital twin of
the target O-RAN deployment. The simulator reproduces the
essential dynamics of the system, including radio propagation,
scheduler behavior, traffic models, and interference patterns. A
few key parameters, such as pathloss exponents, noise figures,
and scheduler efficiency, are fitted to match statistics extracted
from O1 telemetry, ensuring that simulated network met-
rics (e.g., PRB utilization distributions and throughput/RSRQ
curves) are consistent with those observed in reality in our
small-scale testbed (see later). Notice how the simulation
is computationally lightweight, permitting the generation of
thousands of episodes, favoring abstracted link and queuing
models over full physical-layer simulation (which are not
supported by ns3).

Once the simulator is available, a broad distribution of
synthetic flows is generated to expose the meta-agent to a wide
variety of operating conditions. These tasks include variations
in topology (i.e., distance of users from the serving cells),
carrier bandwidth, and traffic load. Randomization is used to
allow the meta-agent to generalize across unseen environments
and mitigates the gap between simulations and reality.

Each simulated episode produces trajectories that describe
the network evolution under a baseline policy, typically re-
flecting standard threshold-based handover and load-balancing

rules. For every time step t, the simulator logs the tuple
(st, at, rt, st+1), where st encodes long-term network state
features such as per-cell PRB utilization, RSRP/RSRQ distri-
butions, and handover rates; at represents the meta-action, for
example, updated steering quotas or PRB caps; and rt is a
scalar reward measuring the network performance according
to the throughput. The reward is typically shaped as

rt = λthr · Thr50 − λho ·H, (2)

where Thr50 is the median throughput and H measures
handover activity. The coefficients λ· control the trade-off
between performance and stability.

The resulting dataset D is then used for offline reinforce-
ment learning. Before policy optimization, a state encoder is
trained using self-supervised learning, such as masked feature
modeling or contrastive forecasting, on all available telemetry
to obtain robust representations of network states. The meta-
agent’s policy is subsequently optimized on D using CQL.
These methods constrain policy updates to the support of the
logged dataset, preventing unsafe extrapolation. This leads to
better generalization and safer policies.

The learned policy is evaluated offline through off-policy
evaluation techniques, including weighted importance sam-
pling or doubly-robust estimators, which provide unbiased
estimates of the expected performance of the learned policy on
held-out trajectories. Stress tests covering extreme cases such
as cell failures, flash-crowd events, and spectrum reallocation
could be performed during this phase to ensure the robustness
of the learned behavior and to verify that SLA and safety
constraints remain satisfied. They are, however, outside the
scope of this paper and will thus be ignored.

To mitigate the gap between simulation and reality, several
strategies are employed during training. Domain randomiza-
tion exposes the model to a wide range of possible con-
figurations, while feature normalization encourages reliance
on causal signals such as load and bandwidth rather than
spurious correlations. Furthermore, realistic noise and delays
are injected into the simulated telemetry to mimic the latency
and staleness of O1 data collection. Temporal smoothness reg-
ularization, such as the Smoothing Moving Average (SMA),
is added to penalize abrupt goal changes, yielding more stable
real-world behavior.

After convergence, the trained meta-policy is distilled into a
compact model suitable for execution within the non-RT RIC
environment. The final network is exported as a lightweight
neural network or gradient-boosted model that outputs A1
policy targets for the near-RT RIC xApp. Together with each
predicted goal vector, the rApp also produces a confidence
score to signal the reliability of its recommendation. When
confidence is low, the system can default to conservative
baseline heuristics to ensure safe operation. This feature,
however, has not been implemented in the system presented
in this paper.

During the offline CQL training process, several quantitative
metrics are used to characterize both learning efficiency and
computational overhead. Convergence is measured in terms of
the number of training iterations and epochs required for the
CQL-based meta-agent to reach a stable policy, defined as less



than a predefined relative improvement (e.g., ¡1–2%) in the
median throughput–based reward over consecutive evaluation
checkpoints. In practice, convergence is typically achieved
after a few thousand simulated episodes, thanks to the use of
abstracted link and queuing models that significantly reduce
simulator complexity.

Computational overhead is quantified by the total wall-clock
training time, GPU/CPU utilization, and memory footprint of
the replay dataset. Using lightweight ns-3–based simulations
and offline training, a full training cycle can be completed
within a few hours on a single GPU-equipped workstation,
while inference complexity remains negligible once the policy
is distilled into a compact model for deployment in the non-
RT RIC. Additional metrics such as dataset size (number
of state–action–reward tuples), average training batch time,
and model size after distillation are also monitored to ensure
that the resulting rApp complies with non-RT RIC resource
constraints and supports periodic retraining without impacting
operational timelines

V. IMPLEMENTATION AND EVALUATION

A. Implementation details
The proposed framework has been realized by integrating

the reference O-RAN near-RT RIC with a custom-developed
non-RT RIC. The latter is responsible for maintaining a com-
prehensive, system-wide view of the network. It oversees the
generation and delivery of control and management policies
to the near-RT RIC via the standardized A1 interface. In the
current implementation, the non-RT RIC layer aggregates the
following network information:

• RSSI/RSRP/RSRQ. The Carrier Received Signal Strength
Indicator (RSSI) represents the total power measured
across all received reference signals. Unlike the Refer-
ence Signal Received Power (RSRP), which provides a
narrowband measurement focused on specific reference
signals, RSSI captures the overall power across the en-
tire system bandwidth. The Reference Signal Received
Quality (RSRQ) further refines this evaluation by incor-
porating the number of Physical Resource Blocks (PRBs)
utilized in the measurement.

• Traffic Matrix. The system monitors, for each UE, the
total number of packets and bytes transmitted and re-
ceived over the network. Both the cumulative values (rep-
resenting the absolute traffic volume) and the instanta-
neous throughput are computed. The bitrate is calculated
within the most recent observation window, allowing
applications to assess short-term traffic dynamics, detect
variations in user activity, and make informed decisions
regarding resource allocation and traffic steering.

• PRB Utilization. The system continuously monitors the
number of PRBs allocated and utilized at each gNB. This
metric provides a direct indication of the cell’s occupancy
and spectral efficiency. By analyzing PRB utilization over
time, it becomes possible to identify congestion trends,
assess load distribution among neighboring cells, and
optimize scheduling or handover decisions.

The gNB in the testbed has been implemented using
srsRAN [15] and the Ettus X310 Software Defined Radio

(SDR) platform [16], while the Open5GS [17] platform has
been employed to implement the 5G Core Network. The
Ettus X310 SDR platform has been configured with two RF
daughterboards, each configured to operate as a separate cell,
resulting in a dual-cell setup. Each cell has been equipped
with a pair of omnidirectional 3 dB antennas. The srsRAN
framework, specifically its gNB application, has been en-
hanced through the integration of a software agent designed to
enable seamless interaction with the near-RT RIC. This agent
handles the exchange of control and monitoring messages
over the E2 interface, ensuring full compliance with the
O-RAN specifications1. The agent is tasked with collecting
detailed network telemetry from the gNB, including PHY
and MAC layer statistics, resource utilization metrics, and
performance indicators. These measurements are periodically
reported to the near-RT RIC, providing it with a real-time
view of the network conditions and enabling intelligent, data-
driven decision-making for functions such as traffic steering,
load balancing, and interference management. Standard 3GPP
intra-gNB handovers are used and influenced by the near-RT
RIC via the E2 interface, without UE modifications.

The proposed framework has been realized as a distributed
software architecture comprising two main components: an
xApp deployed within the near-RT RIC and an rApp hosted
in the non-RT RIC. Together, these applications cooperate
to implement adaptive and intelligent cell selection policies,
leveraging the comprehensive, cross-layer network view main-
tained by the RICs. To facilitate this functionality, the non-RT
RIC exposes a Python-based Application Programming Inter-
face (API) that enables the rApp to interact seamlessly with
the underlying RIC platform. Through this design, the rApp
can focus on decision logic and reinforcement learning tasks,
relying on the API to handle communication, data retrieval,
and policy enforcement across the O-RAN infrastructure. The
resulting modular and technology-agnostic approach simplifies
experimentation, promotes code reusability, and allows the
proposed solution to be easily integrated or extended to
different network scenarios and radio configurations.

B. Evaluation Methodology

Our evaluation methodology has been designed to demon-
strate the ability of the proposed framework to perform cell se-
lection decisions that jointly consider both radio signal quality
and cell capacity, expressed as the number of available PRBs.
The evaluation focuses on two representative test scenarios: a
single-UE setup (illustrated in Fig. 1a) and a dual-UE setup
(illustrated in Fig. 1b). In both configurations, a single TCP
flow is generated in the downlink direction, from the 5G Core
to each active UE, to emulate a continuous data session. In
the single-UE scenario, the UE is positioned approximately 1
meter from Cell A and 3 meters from Cell B (an extension
cable has been used in this case). Given the limited transmit
power of the Ettus X310 SDR used in the testbed, which
provide an overall coverage range of roughly 5 meters, this

1Note how platforms such as the Ettus X310 lack Open Fronthaul support
with 7.2 split which is typically used in O-RAN deployment. However, the
focus of this work is on RIC-level intelligence and control-loop validation,
which is largely orthogonal to the fronthaul split.
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Fig. 5. RSRP/RSRQ measurements of the two cells in the two reference
scenarios. Notice how for scenario 2 the measurements of one single UE are
reported (the other were essentially the same).

setup realistically reflects a user positioned at the cell center
for Cell A and at a mid-cell region for Cell B in a real-world
deployment. The cells are configured heterogeneously: Cell
A operates with 10 MHz of bandwidth, while Cell B offers
20 MHz of bandwidth. In the dual-UE scenario, both UEs
are co-located at an equal distance from the two cells, thus
experiencing identical channel conditions. In this case, both
cells are configured with 20 MHz of bandwidth. The UEs
are configured to report RSRP/RSRQ measurements every 240
ms, providing timely feedback for adaptive decision-making.

C. Results

In this subsection, we analyze and discuss the experimental
results obtained from the measurement campaign carried out
on our small-scale O-RAN testbed.

Figure 5a presents the RSRP/RSRQ measurements collected
by the UEs in the two reference scenarios. The scatter plots
clearly illustrate the distinct radio conditions experienced in
each setup. In Scenario 2, where both UEs are positioned close
to the gNBs, the vast majority of samples cluster in the upper-
right region of the graph, corresponding to high RSRP and
RSRQ values. This indicates that both UEs operated under
favorable channel conditions with minimal interference and
strong received signal power.

In contrast, Scenario 1 exhibits a more heterogeneous
distribution. Measurements for Cell A remain concentrated
in the upper-right corner, confirming a stable and strong
link. However, data points corresponding to Cell B spread
noticeably toward the lower-left area, which reflects degraded
signal quality and fluctuating radio conditions. This behavior
aligns with the UE’s greater distance from Cell B and the
limited transmission power of the Ettus X310-based gNBs,
resulting in variable channel quality.

It is also important to note that the results shown in
Figure 5b refer to only one UE, since both UEs in Scenario
2 experienced virtually identical measurements due to their
symmetric positioning relative to the gNBs. Overall, the results
in Figure 5 confirm that the network environment accurately
matched the expected experimental conditions, thereby val-
idating the reliability of the test setup used to evaluate the
proposed scheme.
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Fig. 6. Aggregated network throughput for scenario 1 across 10 runs.

Figure 6 presents the boxplots of the aggregated downlink
throughput observed in Scenario 1 for both the legacy baseline
and the proposed approach.

In the legacy configuration (Fig. 6a), the UE predominantly
remains connected to Cell A. This behavior aligns with the
standard 3GPP cell selection and handover procedures, which
prioritize signal strength and link stability over overall network
performance. Consequently, the UE is not handed over to Cell
B, even in instances where the radio conditions between the
two cells become comparable. Moreover, the legacy algorithm
does not account for cell bandwidth availability and therefore
cannot exploit cases where a cell with slightly poorer signal
quality might still deliver a higher effective throughput thanks
to a larger number of available PRBs.

By contrast, the proposed scheme introduces a more holis-
tic decision-making process, considering both signal quality
(RSRP/RSRQ) and cell capacity. It is configured to tolerate a
signal degradation of up to –3 dB if this trade-off leads to a
connection with a cell offering greater bandwidth or improved
overall performance. As shown in Fig. 6b, this strategy yields
a notably higher average downlink throughput, confirming the
effectiveness of the reinforcement learning–based approach.

A minor trade-off is observed, however: the throughput
distribution under the proposed approach exhibits slightly in-
creased variability, reflecting the system’s more dynamic adap-
tation to changing channel and load conditions. Nonetheless,
the net performance gain significantly outweighs this marginal
instability, validating the benefit of intelligent, bandwidth-
aware cell selection.

Figure 7 illustrates the boxplots of the aggregated downlink
throughput obtained in Scenario 2 for both the legacy config-
uration and the proposed approach.

In the legacy case (Fig. 7a), both UEs remain connected
to Cell A. This situation does not necessarily result from a
deterministic configuration but may arise either from previous
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Fig. 7. Aggregated network throughput for scenario 2 across 10 runs.

network attachment events or due to random initial conditions.
Even though both UEs experience comparable channel quality
toward the two gNBs, the standard 3GPP handover and cell
selection logic does not intervene to optimize the load distribu-
tion. This behavior stems from the 3GPP framework’s focus
on association stability, i.e., as long as the received signal
remains within acceptable thresholds, the network refrains
from initiating handovers that could disrupt ongoing sessions.
As a result, Cell A becomes overloaded, while Cell B remains
underutilized, leading to suboptimal use of network resources.

Conversely, the proposed framework leverages its global
network awareness and learning-based optimization to identify
load-balancing opportunities in real time. By analyzing both
the channel conditions and the resource utilization across
gNBs, we see that the proposed approach dynamically dis-
tributes the two UEs between the two cells, ensuring a more
balanced allocation of PRBs and reducing cell congestion.

As shown in Fig. 7b, this adaptive decision-making results
in a significant increase in the aggregated network throughput.
The outcome highlights the proposed approach’s ability to
autonomously optimize performance across multiple UEs and
cells, achieving a more efficient utilization of radio resources
without compromising link reliability or stability.

Figure 8 provides a consolidated view of the experimental
results across ten independent runs of the evaluation campaign.
The comparison highlights the consistent performance gains
achieved by the proposed approach over the legacy baseline
in both test scenarios.

The proposed approach demonstrates a remarkable through-
put improvement of approximately 75% in Scenario 1, where
cell bandwidth asymmetry and varying channel conditions
offer greater optimization opportunities. In Scenario 2, where
the UEs experience similar radio conditions and both cells
have equal bandwidth configurations, the proposed approach
still achieves a substantial 65% increase in median downlink
throughput compared to the standard 3GPP-based selection
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Fig. 8. Aggregated network throughput for scenario 1 and scenario 2.

mechanism. These results validate the system’s ability to learn
and exploit multi-dimensional network information, combin-
ing signal quality metrics and available cell capacity, to
enhance overall spectral efficiency and user experience.

The performance improvements introduced by the proposed
approach come with a minor trade-off. As observed in both
scenarios, the throughput measurements exhibit a slightly
higher variance. This variability can be attributed to the
dynamic exploration behavior of the reinforcement learning
agent, which continuously adapts cell association decisions
based on real-time feedback and fluctuating network states.
While this results in marginally less stable instantaneous
throughput, it is a natural byproduct of adaptive learning and
does not compromise the system’s overall advantage.

In summary, the results confirm that the proposed approach
successfully balances adaptability and performance, achieving
substantial throughput gains while maintaining acceptable sta-
bility across repeated experimental trials.

VI. CONCLUSIONS

In this paper, we have introduced a novel O-RAN–compliant
traffic steering solution that performs bandwidth-aware cell se-
lection for beyond-5G networks. Unlike traditional approaches
that rely solely on RSRP/RSRQ-based handover decisions, the
proposed solution leverages the hierarchical intelligence of
the O-RAN architecture—specifically, the non-RT and near-
RT RICs—to incorporate both radio signal quality and cell
capacity information into its decision-making process. This
enables a more holistic and adaptive form of traffic steering,
where users are dynamically associated with the most suitable
cell not only based on signal strength but also considering the
available spectrum resources and load conditions.

The proposed solution was experimentally validated on a
real-world O-RAN testbed, considering both homogeneous
and heterogeneous radio conditions. Results demonstrate that
the proposed framework can deliver up to a 75% improve-
ment in median throughput in certain traffic configurations,
while also enhancing network fairness and resource utilization
efficiency across cells.

As part of future work, we plan to extend the decision space
by incorporating additional traffic steering parameters, such as
QoS requirements, traffic classes, and service-level metrics,
thereby moving toward a multi-objective, context-aware cell
selection framework. We also intend to take into consideration
multi-RATs scenarios. Furthermore, we intend to scale up the
testbed to include a larger number of UEs and gNBs.
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