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Abstract—WiFi networks are known to be a cost–efficient
traffic offloading solution for mobile networks. The Multi Access
Packet Data Network Connectivity is a feature introduced in
LTE Release 10 in order to allow users to be simultaneously
connected to multiple radio access networks (RAN). Although
this feature brings many advantages, such as the possibility
to implement QoS–based traffic steering, it poses also many
challenges, one of which is distributing traffic among the two
radio access technologies. In this paper, we propose a traffic–
aware user association algorithm for heterogeneous LTE/WiFi
RANs. The proposed algorithm is formulated as an Integer
Linear Programming (ILP) problem jointly optimizing user
association and resource allocation. A heuristic is also proposed in
order to address the scalability issues of the ILP–based algorithm.
Numerical simulations are used in order to compare the proposed
approaches. Finally, we implemented and tested the heuristic in
small–scale testbed using the 5G–EmPOWER platform.

Index Terms—Heterogeneous radio access networks, WiFi,
LTE, User Association, ILP, Heuristic

I. INTRODUCTION

Mobile Network Operators (MNOs) have witnessed a
tremendous increase in mobile data traffic demand over the last
few years [1], [2]. This exponential growth is forecast to reach
49 exabytes per month by 2021 [3]. In order to accommodate
this huge traffic demand, MNOs will have to upgrade their
infrastructure. Boosting mobile network capacity in terms of
both coverage and supported data traffic rate can be achieved
in several ways such as exploiting more spectrum, deploying
denser radio access networks (RANs) [4], or offloading part
of the mobile data traffic to other RANs [5]. Given its low
deployment and operation costs, WiFi networks are an efficient
traffic offloading solution for mobile networks.

Traffic steering between cellular and WiFi networks is
possible through the Access Network Discovery and Selection
Function (ANDSF) that has been introduced in LTE Release
8. ANDSF is a 3GPP–defined core network entity that allows
User Equipments (UEs) to select the proper radio access
technology (if more than one is available). However, Release
8 does not allow a UE to be simultaneously connected to mul-
tiple RANs. The Multi Access Packet Data Network (PDN)
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Connectivity feature introduced in LTE Release 10 addresses
this limitation by allowing UEs to attach to multiple RANs
(e.g. WiFi and LTE). MNOs can benefit from this feature by
offloading the best effort traffic to the WiFi network while
keeping demand–attentive traffic on the mobile network.

The contribution of this paper is twofold. First, we formulate
a traffic–aware user association problem aiming at optimiz-
ing resource utilization in a heterogeneous WiFi/LTE RAN.
Integer Linear Programming (ILP) techniques are used in
order to derive the optimal solution. Then, a scalable heuristic
is proposed in order to tackle the scalability problems of
the ILP–based association algorithm. Second, we implement
and test the heuristic in real–world conditions over the 5G–
EmPOWER platform [6]. The entire implementation of the
user association algorithm is released under a permissive
APACHE 2.0 License1.

The rest of this paper is structured as follows. The related
work is discussed in Sec. II. The network and resource request
models are detailed in Sec. III. The ILP problem formulation
and the heuristic are introduced in Sec. IV while Sec. V
reports on the numerical simulations. The proof–of–concept
implementation and its evaluation are described in Sec VI.
Finally, Sec. VII draws the conclusions.

II. RELATED WORK

A sizable body of literature has been published on user
association and load balancing in cellular [7], [8], [9], [10],
[11] and local area networks [12], [13], [14].

A joint user association and interference mitigation scheme
is studied in [7]. The authors show how, by adjusting the
proportion of Almost Blank Subframes (ABS), it is possible to
increase the data rate of cell–edge users by a factor of three.
Similarly, load– and QoS–aware user association is considered
in [8]. More specifically, distributed user association and semi–
distributed macro–pico load balancing schemes are proposed
aiming to jointly determine the ABS ratio that maximizes users
association. In [9], a traffic offloading scheme that jointly con-
siders power control and user association is proposed. Assum-
ing that the transmit power of the pico base–stations is fixed
and that the available bandwidth of the macro base–stations
is divided into coverage and capacity bands, the authors show
that significant benefits can be obtained by adjusting only the
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transmit power of the capacity bands. In [10], the authors
devise a load balancing heuristic combining the admission
control and the mobility management. A joint cell association
and resource allocation problem is presented in [11]. To reduce
the computational complexity of the proposed algorithm, a
fractional user association scheme is suggested in which it is
assumed that users can be associated with more than one cell.

A transparent load balancing problem is studied in [12]
for WLANs. A MILP problem formulation is used in order
to find the optimal network–wide scheduling configuration
for all the flows in the network, having as un ultimate
goal the maximization of the rate assigned to all flows.
In contrast to the other works, which assume that users
flow rate is known in advance, the authors exploit real–time
monitoring information to estimate the desired flow rates.
An automatic load balancing algorithm for WiFi networks is
proposed in [13]. The algorithm uses different metrics (e.g.,
resource utilization, connected users, etc.) with the overarching
objective of balancing the load across different APs. A joint
association and bandwidth allocation problem for WLANs is
studied in [14]. The authors propose an algorithm designed to
achieve load balancing, and at the same time, fair transmission
time allocation to each user.

Recently, more attention has been given to user association
and load balancing problems in heterogeneous RANs (e.g.,
LTE/WiFi) [15], [16], [17], [18], [19], [20], [21]. Refer-
ence [15] suggests an energy–efficiency driven load balancing
strategy. The energy efficiency is achieved by handing over
cell–edge users (with low SINR) from LTE networks to WiFi
networks. While the authors of [16] study a load balancing
problem in which a load management entity is deployed in
the core network, which has a global view of the network and
is in charge of offloading users from LTE to WiFi and vice
versa based on the UEs access index, which is computed for
each UE based on their feedback (e.g., received signal strength
from LTE and WiFi networks). To achieve the network–wide
load balancing goal, an optimization problem is formulated,
aiming at maximizing Jain’s fairness index. In [17], the
authors formulate an optimal RAT association problem for
offloading mobile data as a constrained Markov Decision
Process. To select an optimal policy having un ultimate goal
of maximizing the expected per–user throughput subject to a
constraint on blocking probability of voice users, the authors
use value iteration and gradient descent algorithms. This work
is extended in [18] considering the same network without the
knowledge of the arrival processes. In [19], different resource
allocation schemes in multi–homed LTE/WiFi networks are
studied. In particular, the authors compare proportional fair-
ness resource allocation strategies applied to LTE and WiFi
networks as a whole (where multi–homing is considered) and
as a separate entities (without considering multi–homing). The
authors conclude that multi–homing has better load balancing
capabilities. A QoS–based algorithm is proposed in [20]
for vertical handover in LTE/WiFi networks. Handovers are
triggered when the QoS score for a certain wireless users is
going below a certain threshold. The main advantage of the

TABLE I: RAN model parameters

Variable Description

Nn RAN nodes.
Nenb LTE eNBs in ∈ Nn.
Nap WiFi APs in ∈ Nn.
ωr(n) Available radio resources at node n ∈ Nn.
loc(n) Geographical location of node n ∈ Nn.
δ(n) Coverage radius of node n ∈ Nn.

TABLE II: Traffic classes and their priorities.

Service ID Service Type Share [%] Priority

1 Audio streaming 7.5 High
2 Video streaming 64 High
3 Web 26 Low
4 File sharing 2.5 Low

proposed approach over the existing ones is that the required
QoS level is guaranteed without adding new entities in the
network and without increasing the signaling load. The study
in [21] suggests a network selection strategy for LTE/WiFi
networks which accounts also for the WiFi backhaul capacity.

Most of the works above study user association for either
WiFi or LTE networks. Some other works account for joint
WiFi/LTE user association and/or multi–homing, but do not
consider different traffic classes nor do they aim at designing
an algorithm that takes as input observable network metrics.
Conversely, to the best of our knowledge, this is the first
attempt at designing, testing, and implementing a traffic–aware
user association scheme for heterogeneous WiFi/LTE networks
that considers also multi–homing and user observable network
metrics.

III. NETWORK MODEL

A. RAN Model

Let Nn = (Nenb, Nap) be the set of n1 = |Nenb| eNBs
and n2 = |Nap| APs deployed in the heterogeneous RAN.
Each node n ∈ Nn is associated with a geographic location
loc(n), as x, y coordinates. A coverage radius δ(n) is also
associated to each node n ∈ Nn. A single weight ωc

n(n) ∈ R
with 0 ≤ ωr(n) ≤ 1 is assigned to each node n ∈ N modeling
its available resources. Initially, ωr(n) = 1 ∀n ∈ N . Table I
summarizes the RAN model parameters.

B. Resource Request Model

Let Ns be the set of services that can be consumed by
wireless clients. Notice how, in this work we consider four
types of data traffic services: audio streaming, video streaming,
web and file sharing. Each service can have either high or low
priority. High priority services should be preferably served
by LTE eNBs while low priority services can be served by
either LTE eNBs or WiFi APs. As it will be clear in the
evaluation section, the mix of services in the actual pool of
resource requests is derived considering the global mobile
traffic forecast for 2018 found in [3]. Table II summarizes
the services considered in this work and their priorities.



TABLE III: Resource request model parameters.

Variable Description

Nu Wireless clients.
Ns Available services.
ωs
r(u) Resources requested by client u ∈ Nu for service s ∈ Ns.
loc(u) Geographical location of client u ∈ Nu.
Ω(u) Candidate RAN nodes for client u ∈ Nu.

Wireless clients can simultaneously consume multiple ser-
vices. Moreover, we also assume that wireless clients support
multi–homing, i.e., different services of a same wireless client
can be served by different RAN nodes. For example, a wireless
client can watch a live video stream served by an LTE eNB
while a file download is served by a WiFi AP.

Let Nu be the set of wireless clients. Each wireless client
u ∈ Nu is associated with a geographic location loc(u), as
x, y coordinates. Multiple weights ωs

r(u) ∈ N are assigned
to each wireless client modeling the amount of resources (in
bit/s) requested by the client u ∈ Nu for the service s ∈ Ns.
Table III summarizes the resource request model parameters.

C. Resource Allocation Model

Resource allocation in LTE and WiFi networks is vastly
different. LTE uses scheduled access and in particular OFDMA
while on the other hand WiFi uses random access based
on the CSMA/CA protocol. As a result, a homogeneous
way of modeling available and used resources is needed
before an optimization problem can be formulated. To this
purpose, we introduced the Equivalent Resource Utilization
ratio ERUn(ωs

r(u)) defined as the fraction of radio resource
required to support a service request ωs

r(u).
In the case of an LTE RAN, the ERU is computed as

the fraction of Physical Resource Blocks (PRBs) required to
support a given service at a given eNB. The number of PRBs
Nprb in a subframe required in order to support a given request
can be computed as follows:

Nprb =
ωs
r(u)ζenbTprb

NsbcNofdmsNmodbNant

where Tprb, Nsbc, Nofdms, and Nant are, respectively, PRB
duration (1ms), the number of subcarriers (12), the number of
OFDM symbols per subcarrier (7), and the number of MIMO
streams. Notice how these parameters are unequivocally de-
fined for a given version of the LTE standard. ζenb is the
PRB efficiency considering reference signals, synchronization
signals, etc. and can be estimated at 1.25. Nmodb is the number
of modulated bits per symbol. For example, if a 64–QAM
modulation is used, then Nmodb = 6.

Finally, the ERU for an LTE RAN can be computed as the
ratio between Nprb and the total number of PRBs available in
a cell. For example, in a 20 MHz cell there are 1000 PRBs in
each 10ms–long Radio Frame.

In the case of a WiFi RAN, the ERU is computed as the
fraction of the airtime required in order to support a given
service at a given AP. Unlike LTE, WiFi relies on random
access with exponential back off as a channel access technique.

Therefore, we decide to rely on a transactional model in order
to estimate the time required to serve a given user. WiFi uses
a two–way handshake mechanism where each frame must be
acknowledged by the receiver. As a result, for each data packet
two frames must be exchanged on the air interface: one for
the data itself and one for the WiFi ACK. The time to deliver
a frame is thus given by:

Tairtime =
(
Tdifs + Tdata + Tsifs + Tack + 2σ

)
ζap

where σ, Tdifs, Tsifs, and Tack are, respectively, the propaga-
tion time (1µsec), the Distributed Interframe Space (34µsec),
the Short Interframe Space (16µsec), and the time to send
an ACK (24µsec). Notice how these parameters are un-
equivocally defined for a given version of the IEEE 802.11
standard [22]. This model does not take into account nether
the random backoff period nor the lost frames (e.g., due to col-
lisions). As a consequence, we introduce the WiFi efficiency
parameter ζap in order to account for these impairments. In
our simulation, ζap has been set to 1.25. More accurate models
for estimating this parameter can be found in [23].

Assuming that data packets are encapsulated in maximum
length Ethernet frames (1500 bytes) and accounting also for
the WiFi header (36 bytes) and for the 6 tail bits that are added
for each transmission, the time required to send a frame is:

Tdata = Thdr +
(1500 + 36) ∗ 8 + 6

NsbcNmodb

where Thdr, Nsbc, and Nmodb are, respectively, the synchro-
nization header (20µsec), the number of subcarriers (48),
and the number of encoded bits per subcarrier. For example,
assuming a 64–QAM modulation and a 3/4 coding rate, each
subcarrier can encode 4.5 bits.

Finally, the ERU for a WiFi RAN can be computed
as Tairtime (in seconds) times the number of transactions
necessary to support the request ωs

r(u) over a unit of time.
Notice how, in both the WiFi and the LTE cases, an

ERUn(ωs
r(u)) > 1 means that the request ωs

r(u) cannot be
satisfied by RAN node n. Notice also how, the Nmodb pa-
rameter present in both resource allocation models represents
the number of modulated bits for each symbol/subcarrier. This
quantity depends on the modulation and coding scheme (MCS)
used for the transmission which in time is correlated with the
channel quality between wireless terminals and RAN nodes.
Several models linking channel quality and MCS can be found
in literature [24]. However, since the focus of this paper is on
the formulation of the user association problem, the selection
of a particular channel model, although important, takes a
secondary role. As a result, in the numerical evaluation we
will leverage on a simple MCS estimation model which uses
as input just the distance between transmitter and receiver.

IV. TRAFFIC–AWARE USER ASSOCIATION

A. Problem Formulation

In order to find the optimal assignment, we introduce the
concept candidate RAN nodes Ω(u) for the wireless client



u ∈ Nu defined as the set of RAN nodes that have the wireless
client u within their coverage radius:

Ω(u) =
{
n ∈ Nn|dis(n, u) ≤ δ(n)

}
Notice that while in the numerical simulations the euclidean

distance between wireless clients and RAN nodes is used to
identify the candidate RAN nodes for each wireless client,
in the proof–of–concept implementation, the candidate RAN
nodes are identified based on the signal strength.

We can now provide the optimal ILP formulation for the
user association problem. The objective of the ILP problem
is to minimize ERU utilization in the network. The chosen
objective function is:

min
( ∑

n∈Nenb

∑
u∈Nu

∑
s∈Ns

ERUn(ωs
r(u))ξenb(u, s)Φ

u,s
n +

+
∑

n∈Nap

∑
u∈Nu

∑
s∈Ns

ERUn(ωs
r(u))Φu,s

n

)
(1)

The first argument of the objective function aims at minimizing
ERU at eNBs. Whereas, the second argument minimizes ERU
at APs. ξenb(u, s) is a coefficient used in order to steer high–
priority services toward eNBs. The coefficient ξenb(u, s) takes
values in (0, 1). When ξenb(u, s) → 0 supporting service s
becomes progressively cheaper for the client u. Conversely,
when ξenb(u, s) → 1 the full cost of the service s must be
sustained. The coefficients ξenb(u, s) is defined as follows:

ξenb(u, s) =

{
αenb if dis(u,n′)

dis(u,n′′) ≤ βenb
1 otherwise

(2)

where n′ ∈ Nenb and n′′ ∈ Nap are, respectively, the
considered candidate eNB and the closest AP (according to
the defined distance metric) to the wireless client u, and s
is the service class. By tuning βenb and αenb it is possible to
steer the algorithm into assigning some service classes to eNBs
even when said nodes are not their optimal choice. Essentially,
the ξenb coefficients make placing a certain service at some
eNBs cheaper from the radio resource utilization perspective.

Wireless clients can attach to RAN nodes as long as the
RAN nodes have enough radio resources:∑

u∈Nu

∑
s∈Ns

ERUn(ωs
r(u))Φu,s

n ≤ ωr(n) ∀n ∈ Nn (3)

where Φu,s
n is a binary mapping variable ∈ {0, 1} that shows

whether service s ∈ Ns consumed by wireless client u ∈ Nu

is served by the RAN node n ∈ Nn.
The following constraint makes sure that each wireless

client u ∈ Nu is associated with a RAN node that belongs
to its list of candidates Ω(u):∑

n∈N\Ω(u)

Φu
n = 0 ∀u ∈ Nu (4)

where Φu
n is a binary mapping variable that shows if the

wireless client u ∈ Nu is associated to the RAN node n ∈ N .

Algorithm 1 Traffic–aware User Association Heuristic.
1: procedure HEU(Nenb, Nap, Nu, Ns)
2: for u ∈ Nu do . List of wireless clients.
3: for s ∈ Ns do . List of services.
4: candidates← list()
5: if ωs

r(u) = 0 then
6: continue
7: end if
8: cls ap dis←∞
9: for n ∈ Nap do . List of APs.

10: cost← ERUn(ω
s
r(u))

11: if dis(n, u) ≤ δ(n) and cost ≤ res(n) then
12: candidates(u, n) = cost
13: cls ap dis← min(cls ap dis, dis(n, u))
14: end if
15: end for
16: for n ∈ Nenb do . List of eNBs.
17: cost← ERUn(ω

s
r(u))

18: if dis(n, u) ≤ δ(n) and cost ≤ res(n) then
19: if s is high pr and dis(n,u)

cls ap dis
≤ βenb then

20: cost← αenbERUn(ω
s
r(u))

21: end if
22: candidates(u, n) = cost
23: end if
24: end for
25: mappings(u, s)← argminn[candidates(u, n)]
26: end for
27: end for
28: end procedure

Finally, the last constraint guarantees that each service s ∈
Ns consumed by wireless client u ∈ Nu is served by one and
only one RAN node:∑

n∈N
Φu,s

n = 1 ∀u ∈ Nu ∀s ∈ Ns (5)

Notice that this formulation does not prevent different
services consumed by the same wireless client to be supplied
by different RAN nodes.

B. Heuristic

The ILP–based user association algorithm becomes compu-
tationally intractable when big networks with tens of thousands
of users and hundreds of RAN nodes are considered. In order
to tackle this problem, we propose a scalable heuristic.

The pseudo code of the heuristic is reported in Alg. 1. Ini-
tially, for each service s ∈ Ns of each wireless client u ∈ Nu,
a list of candidate WiFi APs (lines 9–15) is created, consid-
ering the client distance from the APs (dis(n, u) ≤ δ(n)) and
the required resource availability at the APs (cost ≤ res(n)).
Also, the distance of the closest AP (i.e., the AP that provides
the best channel condition to the client) is stored in the
cls ap dis variable. The candidate list is then updated, adding
also the candidate eNBs (lines 16–24). Notice that after finding
valid eNB candidates by checking the condition in line 18, like
in the case of the ILP–based algorithm, it is checked whether
the ratio of the distances between each candidate eNB and the
closest candidate AP is less or equal βenb (line 19). If this
condition is true, the cost of the eNBs is reduced by αenb

for the service s ∈ Ns, therefore, making the high–priority



services cheaper to be supported by eNBs rather than by APs.
After having the complete list of candidates encompassing
both the candidate APs and eNBs, the service s ∈ Ns of
the wireless client u ∈ Nu is assigned the candidate node
with the minimum cost. It is worthwhile to note that, since
we consider a scenario in which wireless clients can employ
multi–homing, different services of a same wireless client
may be assigned to different RANs (e.g., the high–priority
service of a single client may be assigned to an eNB while
the low–priority service to an AP), resulting in the client being
simultaneously connected to both the eNB and the AP.

V. EVALUATION

The goal of this section is to compare the performance
of the ILP–based user association algorithm (ILP) with the
performance of the proposed heuristic (HEU).

We select βenb = 2 for all the services while we select
αenb = 0.5 only for the high–priority services (IDs 1 & 2) and
αenb = 1 only for the low–priority services (IDs 3 & 4). The
rationale behind this choice is to make supporting the high–
priority services half as expensive on LTE eNBs when such
eNBs are less than twice as distant from the wireless client
than an optimal WiFi AP. In this section, we will first describe
the simulation environment and the performance metrics used
in our study. Then, we will report on the outcomes of the
numerical simulations carried out in a discrete event simulator
implemented in Matlab R©.

A. Simulation Environment

The reference RAN used in this work is composed of 26
eNBs and 50 WiFi 802.11n APs. The eNB distribution is
derived from an operational LTE network that provides cellular
coverage to 1 million people distributed over an area of 5km2.
Conversely, APs are randomly deployed within the same area.
For simplicity, it is assumed that single sector (omni) cells are
used for both eNBs and APs with 2× 2 MIMO configuration
providing coverage radius of, respectively, 500m and 200m.

Wireless client association requests arrive sequentially in
batches, and with each arrival, the algorithms re–associate all
the clients in the network. Each batch consists of 5 wireless
clients each of them consuming up to 2 services randomly
picked among the set of services found in Table III. The actual
traffic demand for each service is derived from the global
mobile traffic forecast for 2018 [3] (also reported in Table III).

B. Simulation Results

Figure 1a and Fig. 1b plot the distribution of the aggre-
gated traffic served by, respectively, eNBs and APs after 150
association requests. As it can be seen, the median of the
traffic served by the eNBs is roughly three times the median
of the traffic served by the APs for all the algorithms. This
is due to the fact that: (i) the number of APs is twice the
number of the eNBs, and (ii) the coverage of the eNBs is larger
than the coverage of the APs. Figure 1a shows that both ILP
and HEU algorithms distribute the traffic uniformly across the
available eNBs. Conversely, in Fig. 1b it can be observed that

ILP distributes traffic more uniformly across the APs than the
HEU, which is characterized by more outliers and by a bigger
delta between the first and the third quartiles. The uniform
traffic distribution of the ILP algorithm across both RANs is
justified by the fact that it accepts more association requests
than the HEU algorithm.

Figure 1c and Fig. 1d plot the distribution of node load (as
fraction of available radio resources) at, respectively, eNBs
and APs after 150 associations. As expected, the median loads
for ILP across both eNBs and APs are higher than the median
load for HEU. This is again due to the fact that the ILP–based
association algorithm can accept a higher number of requests,
therefore, increasing the load at eNBs and APs.

Figure 2 shows the distribution of the 4 possible service
classes at both RANs using ILP and HEU algorithms. It
can be observed that a higher fraction of services is served
by eNBs irrespective of the association algorithm used. This
behavior is even more evident in the case of HEU where
the fraction of high–priority service classes assigned to eNB
reaches approximately the 65%. The rational behind this is
that, although there are 2 APs for each eNBs, compared to
the coverage of the eNBs, the coverage of the APs is smaller,
which in time results in less opportunities for services to be
served by APs. Moreover, if the condition (2) is satisfied, the
high–priority services demanded by the stations have more
chances to be supported by eNBs due to their reduced cost.

The overall acceptance ratio and total number of associated
users is plotted in, respectively, Fig. 3a and Fig. 3b. As
expected, the acceptance ratio of the ILP algorithm is higher
(78%) than the acceptance ratio of the HEU algorithm (68%).
However, we can observe that the difference between HEU
and ILP is just 10%. The same 10% difference is held also
in the number of associated wireless clients (see Fig. 3b).
This is because, in our simulation, each association request
is composed of a fixed number of wireless clients.

Ideally, an access technology (i.e., an eNB or a WiFi AP)
for a client should be (re)selected only if the access technology
satisfies the service QoS requirements. In our scenario, audio
streaming (Service 1) and video (Service 2) are considered to
be high–priority services (see Table III). Figure 4 shows the
traffic share of the high–priority services at eNBs and APs for
both algorithms. Although the number of WiFi APs are twice
the number of LTE eNBs, we can observe that the traffic share
of high–priority services at eNBs is greater that the traffic
share at APs for both algorithms. This is because if Eq. 2
is satisfied, the high–priority services become cheaper to be
supported by eNBs.

The higher acceptance ratio for the ILP algorithm comes
at the expense of an increased execution time. An optimal
association can be computed by ILP for 150 group requests
(750 clients in total) in 250.34 seconds. Conversely, the
heuristic can perform the association in 0.07 seconds.
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Fig. 1: Traffic and load distributions at eNBs and APs after 150 association requests for all algorithms.
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Fig. 2: Distribution of the 4 possible service classes across both
eNBs and APs using the different user association algorithms.
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Fig. 3: Acceptance ratio and total number of served clients.
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Fig. 4: Share of high–priority services at eNBs and APs.

VI. PROOF–OF–CONCEPT

A. Overview

The proposed user association algorithm has been imple-
mented on the 5G–EmPOWER platform. 5G–EmPOWER is a
Multi–access Edge Computing Operating System (MEC–OS)
which converges SDN and NFV into a single platform support-
ing lightweight virtualization and heterogeneous radio access

Applications

Traffic-aware User Association

5G-EmPOWER OS

Hardware Abstraction Layer

COHERENT SDK (Python/REST)

EmPOWER Runtime

netconf EmPOWER Protocolnetconf openflow
Backhaul Controller

Intent Compiler
Path Computation Element

Infrastructure

Edge 
Node

Edge 
Node

Fig. 5: The 5G–EmPOWER MEC–OS System Architecture.

technologies2. A high level view of the the 5G–EmPOWER
MEC–OS architecture is sketched in Fig. 5. It is worth noticing
that the goal of this section is not to demonstrate the algorithm
scalability in a large scale setup, as a matter of fact our
deployment consists of one eNB, one AP and two wireless
clients. Instead we want to report on a preliminary proof–
of–concept implementation of the proposed solution. To the
best of the authors’ knowledge this is the first real–world
open–source SDN platform supporting mobility management
applications over heterogeneous Wi–Fi/LTE RANs.

The 5G–EmPOWER MEC–OS consists of a hardware
abstraction layer converging several radio access networks
control and management protocols into a unified set of ab-
stractions that are then exposed to the application layer.
Such abstractions allow the applications layer to implement
joint NFV and SDN resource management operations. This
includes, for example, joint mobility management and VNF
placement/migration schemes as well as radio access and
backhaul load balancing. The 5G–EmPOWER MEC–OS cur-
rently supports WiFi and LTE radio access nodes. Interaction
with SDN–based backhauls is enabled through an Intent–based
networking interface. In the rest of this section we will provide
a short summary of the Network Graph abstraction used to
implement the user association algorithm presented in this

2Online resources available at: http://empower.create-net.org/
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Fig. 6: Testbed setup. Initially only one client is active with a single high–priority flow served by the LTE eNB. When the
second client attaches to the same eNB and starts generating a low–priority flow, the controllers detects a handover opportunity
and associates the low–priority user to WiFi AP.

0 50 100 150 200
Time [s]

0

20

40

60

N
od

e 
U

til
iz

at
io

n 
[%

]

AP Utilization
eNB Utilization

(a) Node utilization (Scenario 1).
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Fig. 7: The LTE eNB and the WiFi AP cell utilization for the various scenarios.

paper. For a more extensive description we refer the reader
to [6].

B. Network Graph

The Network Graph provides network programmers with a
full view of the network state. The network graph is exposed
as a directed graph G = (V,E) where V is the set of clients
and radio access network elements (i.e. WiFi APs and LTE
eNBs) and E is the set of edges or links. A weight ω(en,m)
is assigned to each link en,m ∈ E : ω(en,m) ∈ R.

The weight assigned to edges can model different aspect of
the wireless links. In the current implementation of the 5G–
EmPOWER MEC–OS the following types of data–structures
can be associated to the edges of the Network Graph:

• RSSI (WiFi). The received signal strength indicator as re-
ported by WiFi APs (uplink direction) and wireless clients
(downlink direction). Measurements in the downlink di-
rection are taken using the radio resource management
features introduced by the 802.11k amendment [22].

• RSSI/RSRP/RSRQ (LTE). The carrier received signal
strength indicator measures the total power received on
reference signals. The RSSI measurement is taken over
the full bandwidth while the RSRP is narrow–band. In
the RSRQ also the number of PRBs used is considered.

• Rate Control Statistics (WiFi). The statistics of the MCS
selection algorithm at the AP (downlink). For each sup-
ported MCS, the frame delivery ratio and the estimated

throughput in the last observation window are reported.
Historical, EWMA–filtered values, are also available.

• Airtime (WiFi) and PRB (LTE) utilization. The fraction
of the airtime and of the PRB utilized at, respectively,
WiFi APs and LTE eNBs. Notice how, for WiFi APs the
airtime utilization is an estimated value while for LTE
eNBs it is the actual value.

• Traffic Matrix (WiFi/LTE). The number of packets and
bytes transmitted/received by each wireless client. The
absolute packets/bytes values as well as the bitrate in
the last observation window are available to applications.
Counters can be defined over an arbitrary portion of the
flowspace and are implemented using OpenFlow [25].

The RSSI measurements (in dB) taken at the wireless client
side for both WiFi and LTE RAN nodes are used as input
for the distance function dis(). A wireless client u ∈ Nu

is considered within the coverage radius of a WiFi AP n ∈
Nap if the RSSI between the WiFi AP and the wireless client
dis(u, n) ≤ −70dB. An RSSI–based metric is used in order
to estimate the MCS between WiFi RAN nodes and wireless
clients [26]. Whereas, a wireless client u ∈ Nu is considered
within the coverage radius of an LTE eNB n ∈ Nenb if the
RSSI between the eNB and the wireless client dis(u, n) ≤
−90dB. As opposed to WiFi APs, an SINR–based metric is
used in order to estimate the MCS between LTE RAN nodes
and wireless clients [27]. The packets and bytes counter made
available by the network graph trough the Traffic Matrix are
used to compute the bandwidth requirements of each flow.



C. Evaluation Methodology

The testbed setup consists of one LTE eNB and one Wi–Fi
AP. The LTE eNB is based on the Ettus SDR B210 plat-
form [28] and runs the srsLTE software stack [29]. The WiFi
is a commercial 802.11n wireless router running a modified
version of OpenWRT [30]. Two standard smartphones are used
as wireless clients. The 5G–EmPOWER MEC OS as well as
the wireless client association heuristic run on a dedicated
laptop. The overall network setup is sketched in Fig. 6.

D. Results

Initially, only one wireless client is active and one high–
priority video stream with a constant bitrate of 10 Mbps is
sent in the downlink direction from the LTE eNB (see Fig. 6a)
to the wireless client. As it can be seen in Fig. 7a, in this
case the eNB utilization is approximately 50% whereas, the
utilization of the AP is negligible (the non–zero utilization
is due to the beacon frames that are transmitted periodically
by the AP to announce its presence). Then, another wireless
client is attached to the LTE eNB and a low–priority traffic
stream with an average bitrate of 2 Mbps is sent in downlink
direction (see Fig. 6b). As it can be seen in Fig. 7b, the eNB
is almost saturated with a utilization of approximately 80%.
As for the previous case the AP utilization is still negligible.
At this point a handover decision is taken by the heuristic and
the second client is moved to WiFi (see Fig. 6c). As it can be
seen in Fig. 7c, after the offload is executed by the controller
the eNB utilization decreases providing more opportunities for
the new clients to be associated with the eNB.

VII. CONCLUSIONS

Traffic–aware user association and multi–homing are two
promising ways of exploiting the radio resources available
in a heterogeneous LTE/WiFi RAN. In this paper we tackled
this challenge by presenting a novel formulation of the user
association problem for heterogeneous LTE/WiFi RANs. Our
formulation builds upon a radio access technology agnostic re-
source request model and accounts for different traffic classes.
Moreover, the problem formulation also supports wireless
clients multi–homing allowing different streams from the same
wireless client to be served by different RAN nodes. An ILP
formulation of the user association problem is compared with
a scalable heuristic. Finally, we also reported on a preliminary
proof–of–concept implementation of the proposed solution
and on its validation over a small scale testbed. As a future
work, we want to extend the problem formulation to the
wired backhaul and to consider clients mobility using more
realistic channel models. We also plan to study the system
performances using real traffic traces coming from operational
networks. Finally, we intend to increase the testbed size.
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