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Abstract—Network Function Virtualization (NFV) has raised
tremendous attention in the academic and industrial commu-
nities alike. The former have been attracted by the service
centric orchestration challenges. The latter have found that,
by decoupling network functions from the underling hardware,
significant savings can be obtained by means of infrastructure
homogenization and service automation. As opposed to the initial
NFV solutions, which heavily relied on a centralized cloud model,
the emerging Multi–access Edge Computing trend is calling for
a distribution of computational capacity at the customers’ sites.
This change of paradigm could result in the deployment of
tens of thousands or even millions of Points–of–Presence. In
this article we discuss the fundamental challenges of deploying
NFV in scattered environments, then we introduce the Light-
MANO framework, a Multi–access Network Operating System
converging SDN and NFV into a single lightweight platform
for management and orchestration of network services over
distributed NFV infrastructure. Finally, we report on a proof–
of–concept implementation of LightMANO and on its evaluation.

Index Terms—Network programmability, 5G, NFV, SDN,
Multi–access Edge Computing, LTE, Wi–Fi

I. INTRODUCTION

Deploying new services takes a network provider a signifi-
cant amount of time. This is due to logistical and technical
challenges like delivering new (typically) dedicated hard-
ware boxes to the customer premises, configuring them, and
performing troubleshooting. Network Function Virtualization
(NFV) promises to simplify the network service creation work-
flow by turning traditional network functions, e.g. firewall,
into software and by hosting them on general purpose servers.
Combined with the recent advances in cloud computing, NFV
can enable fast service provisioning, scaling, and migration.

NFV has received significant attention from both academia
and industry with the former group focusing on the funda-
mental challenges of service provisioning such as workload
placement, resiliency, and multi–layer resource optimization,
and the latter focusing on scalable and deployable orches-
tration stacks. In the standardization arena the most notable
efforts are spearheaded by the European Telecommunications
Standards Institute (ETSI) within the NFV Industry Specifi-
cation Group1. The group defined the ETSI Management and
Orchestration (MANO) framework which is nowadays taken
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1http://www.etsi.org/technologies-clusters/technologies/nfv

as reference NFV architecture by several open–source and
commercial NFV platforms [1].

Nevertheless, despite the fact that the emerging 5G and
Industrial IoT scenarios call for more flexibility at the edges of
the network, i.e. the part of the infrastructure located closest
to the end–users, there are still a number of open challenges
that need to be addressed before NFV can be effectively
deployed in such environments. This includes distributed man-
agement and orchestration of network services, lightweight
virtualization of computing resources, security, support for
highly heterogeneous access technologies, multi–tenancy, and
advanced interplay between SDN and NFV.

The goal of this paper is twofold. First, we analyse the
challenges and requirements of a MANO framework suitable
to be deployed in massively distributed environments which
can be composed of millions of small sites and where the
limited computing resource would make a full MANO stack
not a viable option. Second, we introduce LightMANO a
Multi–access Network Operating System converging SDN and
NFV into a single lightweight platform for management and
orchestration of network services over distributed NFV infras-
tructure. LightMANO builds upon lightweight virtualization
technologies such as Containers for computing nodes (i.e.
Docker [2]) and programmable packet processing pipelines for
networking nodes (i.e Click [3]) and can interface with state–
of–the–art radio access and backhaul network controllers.
Finally, we present a proof–of–concept implementation of
LightMANO and we release the entire LightMANO stack under
a permissive APACHE 2.0 licence for academic purposes2.

The rest of the paper is structured as follows. In Sec. II we
introduce the challenges and requirements for a distributed
MANO framework. Section III describes the LightMANO ar-
chitecture. The implementation details are provided in Sec. IV.
Section V reports on the prototype evaluation in a mobile–edge
caching scenario. Finally, Sec. VI concludes the paper.

II. CHALLENGES AND REQUIREMENTS

In this section we will first compare the distributed and
centralized NFV deployment models. Then we will analyse
the open challenges for NFV in scattered and massively
distributed environments. For a more general discussion on
NFV challenges and requirements we refer the reader to [4].

A. Distributed Vs. Centralized
The ETSI MANO reference model defines a set of logical

components and their interfaces. The framework consists of

2Online resources available at: http://lightmano.create-net.org/978-1-5386-3416-5/18/$31.00 c© 2018 IEEE
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Fig. 1: The ETSI MANO reference architecture in a C–NFV scenario.

two main stacks: the NFV infrastructure (NFVI) stack and
the management and orchestration (MANO) stacks. The NFVI
stack comprises both the physical and virtualized resources
required to host the Virtual Network Functions (VNFs). Con-
versely, the MANO stack hosts the service and function
orchestration and management logic as well as the virtual
infrastructure managers in charge of controlling the physical
and virtual resources available in the NFVI Point–of–presence
(PoP). The reference ETSI MANO model is sketched in Fig. 1.

The scenario depicted above does not specify how the actual
NFV platform must be implemented, nevertheless the flexible
service provisioning requirements and the heavy reliance on
virtualization led many implementers to reuse software stacks
and best practises found in the data–center and cloud com-
puting domains. This despite the fact that, being software
instances, VNFs can essentially run on any kind of platform
ranging from Raspberry PIs to multi–core servers.

Figure 2 depicts three NFV deployment models. In the
centralized NFV (C–NFV) deployment model all the VNFs
are deployed in large data–centers. In the distributed NFV
(D–NFV) deployment model, VNFs runs on lightweight com-
puting platform deployed at the customer premises. Finally, in
the hybrid model VNFs are deployed both at the edge of the
network and in the centralized cloud. The focus of this paper
will be on the distributed deployment model.

The C–NFV architecture is particular suitable for cloud–
based NFV deployments where computing resources are abun-
dant. For example, an OpenStack controller node, a typical
solution used as VIM, can easily require at least 2 CPU cores
and 8 GB of RAM while compute nodes requirements are even
higher. Popular Orchestrator and VNF Manager solutions, e.g.
OpenBaton [5], have similar requirements.

The D–NFV model is currently receiving significant atten-
tion in that it is seen as one of the main technological enabler
for the Multi–access Edge Computing (MEC) paradigm. MEC
advocates for distribution of computational and storage re-
sources very close to the actual end–users, possibly within the
access network itself. This approach is particularly important
in order to meet the bandwidth and latency requirements
expected by the fifth generation of the mobile network archi-
tecture. The D–NFV deployment model can potentially deliver
several advantages compared to the centralized model, this
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Fig. 2: NFV Deployment models.

includes improved security and resiliency, computational lo-
cality, better performances (especially latency), and enhanced
privacy. Nevertheless, while the first steps toward D–NFV are
being made, several technical and scientific challenges must
still be overcome before the expected gains can be obtained.

Among the various challenges associated with D–NFV
significant attention is currently addressed toward lightweight
virtualization and orchestration solutions that can be executed
in resource–constrained and/or geographical challenging loca-
tions (e.g. oil plants, boats, airplanes). The problems to be
addressed are not limited to one particular aspect of the NFV
stack, on the contrary a full–stack purpose–built solution for
D–NFV is needed. This includes lightweight compute and
network virtualization solutions as well as lightweight MANO
solutions. The latter may also collapse VIMs, VNF Managers,
and Orchestrator into a single component.

B. Management and Orchestration

Network service on–boarding, monitoring, and scaling are
some of the main NFV management and orchestration features.
Among those, an important role is played by the placement
of the VNFs over the NFVI. This problem is known as
Virtual Network Embedding and has been already addressed
for the single domain [6] and for the multi–domain cases [7],
[8], [9], [10], [11]. Moreover, recent works can be found in
literature investigating different architectural approaches for
cross–domain orchestration [12], [13], [14], [15].

Nevertheless, if at the time of writing NFVI Infrastructures
composed of a few hundreds of PoPs each of them with tens
of CPU cores are common, in the near future we can imagine
to have tens of thousands or even millions of such PoPs each
of them with a single core (e.g., a residential CPE), multiple
cores (e.g., an Enterprise CPE), or significant computation
capabilities (e.g., a central office). This scenario calls for a
new approach to NFV Management and Orchestration.

First, if in a C–NFV deployment all the MANO compo-
nents are co–located and share the same LAN, in a D–NFV
deployment also the WAN characteristics must be taken into



account. This includes intermittent or lack of connectivity
(e.g. in maritime oil plants, boats, or air planes) as well
as bandwidth and/or latency limitations. Moreover, in some
situation it may be not practical or economically viable to
upgrade the WAN while in other situations, like for industrial
IoT deployments, relaying on an external WAN may not be
possible due to security constraints.

Second, being designed with a cloud computing mentality,
current ETSI MANO implementations assume that each VNF
is hosted by a dedicated VM or possibly even multiple
VMs. Such an approach would not scale in the D–NFV case
where some functions may need to reside in computational
constrained devices. Notice how, the limited computing power
may not be necessary due to economic reasons, on the contrary
it may be linked to cooling or space requirements.

Third, current ETSI MANO frameworks typically focus on
centralized or carrier grade multi–domain deployments with
strong SLA guarantees between domains. In a D–NFV setting
the communications latency introduced by the WAN can delay
the reaction to faults limiting the network reconfiguration
and optimization possibilities (e.g. due to the lag incurred in
collecting the measurements from the NFVI PoPs). D–NFV
calls for moving part of the orchestration to the network edges.

C. Interplay between SDN and NFV

Cloud computing platforms such as OpenStack [16] have
not been designed with NFV management and orchestration
in mind and, as a result, their networking API is limited
to rather simplistic VLAN–based models while the powerful
virtualization and abstractions primitives available in state–of–
the–art Software–Defined Networking (SDN) platforms are not
yet exposed to the service orchestrator.

For example, VNFs deployed using VMs only allow cloning
as migration method. This results in a significant waste of
memory/networking resources in that unneeded state has to be
migrated alongside the actual VNF [17]. Same considerations
apply (to some extend) to solutions based on Docker. The
result is that relatively simple requirements are imposed on
the underlying networking fabric to support service migration
and scaling. Conversely, approaches like OpenNF [18] and its
derivatives [19], [20] focus on providing a platform for consis-
tent VNF migration. Similar considerations can be made for
Split/Merge [21], CoMB [22], and XoMB [23]. Nevertheless,
such platforms cover only a fraction of the ETSI MANO stack.

D–NFV systems will require more complex interactions
between SDN and NFV. In fact, while the focus of SDN has
been on enabling programmatic access to wired [24], [25],
[26], [27], [28], [29], [30], [31] and wireless networks [32],
[33], most of these approaches do not provide mechanisms for
managing and orchestrating VNFs. A convergence of SDN
and NFV is expected in order to allow service providers to
specify the logical sequence of VNFs a precise portion of the
flowspace must traverse. Intent–based networking is expected
to play a key role in this context by allowing network service
providers to use a high–level declarative languages for service
function chaining [34], [35].

D. Handling Heterogeneity

Current MANO frameworks are not designed to mix physi-
cal and virtual network functions, nor to interface with legacy
systems. Nevertheless, by being also required to operate at
the network edges and possibly within the customer premises,
D–NFV systems will also have to cope with heterogeneous
access network technologies ranging from Ethernet to the
various wireless and mobile networks standards, such as
Wi–Fi, LoRA, LTE, and the future 5G New Radio, and will
be expected to support a rich set of management protocols,
such as NETCONF, SNMP, and CLI.

In the computing domain this is the norm since decades.
Operating systems and applications can be compiled for dif-
ferent target architectures. The Linux kernel, for example, can
run on embedded platforms with a single core and few MBs of
RAM as well as on large clusters made of thousands of cores
and TBs of RAM. Similarly, a distributed MANO framework
will have to cope with different network architectures and
protocols. In this context being able to compile network
management and orchestration directives for different targets
is of capital importance. Semantic models are expected to play
a key role in enabling automatic translation between high–level
policies to imperative network configuration commands.

E. Software Engineering and DevOps

NFV is already allowing Telcos to deploy complex services
across virtualized computing, storage, and networking re-
sources. This, in time, is slowly changing the mentality of Tel-
cos which are transitioning from configuring network services
to programming network services. As a matter of fact, ETSI
MANO frameworks already rely on declarative languages and
on highly automated system operations especially to react to
events that can happen at runtime. This essentially leads to
the so–called DevOps which brings together Development and
Operations creating a tight creation, testing, deployment and
operation lifecycle.

Nevertheless, if the DevOps approach is percolating into the
Telcos’ organization, significant steps still need to be taken
in order to take full advantage of a D–NFV environment.
In the early days of virtualization, VMs have been used
to provide isolation between different web applications and
services. Subsequently, this proved not scalable and the micro–
service model emerged with a specific application decomposed
in its elementary building blocks, e.g. data–base, web front–
end, load–balancer and so on.

The situation with NFV is similar. In fact, while so far
we are using VNFs to replace particular network functions,
we should instead embrace the micro–services model and
decompose network functions into their elementary compo-
nents and deploy/scale them individually. For example, a video
transcoding network function does not need a full IP stack
on the contrary it needs some well defined interfaces to the
content server and a way to operate on the video stream. This,
besides resulting in a more lightweight implementation, is also
intrinsically more secure since lacking a full IP stack makes
the VNF immune to a broad range of attacks.
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Fig. 3: The LightMANO reference architecture in a D–NFV scenario.

III. LightMANO

In this section we will describe the LightMANO system
architecture, components, and interfaces.

A. Overview

The massive number of NFVI PoPs expected present in a
D–NFV deployment each of them possibly running tens or
even hundreds of VNFs will simply not fit the capabilities of
most ETSI MANO implementations. A purpose–built solution
is needed in order to address the challenges related to secu-
rity, scalability, and performance that are raised by D–NFV.
Figure 3 sketches the LightMANO network architecture. As
it can be seen, each site includes the virtualizaed computing
and networking resources as well as part of the MANO
stack. The LightMANO component embeds a lightweight VIM
(described in the next section) and part of the orchestra-
tion logic. Moreover, VM–based virtualization solution are
replaced with lightweight alternatives such as Docker and
Click. Communication between different LightMANOs can be
envisioned to allow for multi–site service deployment.

Figure 4 depicts the LightMANO system architecture. As
it can be seen it consists of three layers: the infrastructure
layer, the management layer, and the orchestration layer. The
infrastructure layer hosts the physical computing and network-
ing resources. The management layer essentially covers the
functionalities of the VIM and of the VNF–Manager in the
ETSI MANO reference model. Finally, the Orchestration layer
embeds the service management and orchestration logic.

The management layer consists of two main components:
5G–EmPOWER and Kubernetes. 5G–EmPOWER [32] is a
Multi–access Edge Computing Operating System (MEC–OS)
which consolidates SDN and NFV into a single platform
supporting lightweight virtualization and heterogeneous radio
access technologies3. Kubernetes [36] is used as platform for
managing containerized applications. It supports a wide range
of container tools, including Docker. Within LightMANO we
use Kubernetes as framework for automating the deployment,
scaling, and operations of containerized applications and ser-
vice. Nevertheless, it is worth noticing that LightMANO does

3Online resources available at: http://empower.create-net.org/
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not depend on Kubernetes and can be easily ported to similar
solutions such as Docker Swarm [2].

B. Lightweight Virtualization

LightMANO builds on Docker and Click as lightweight
computing and networking virtualization solutions.

Containerization is lightweight OS virtualization solutions
that allows to isolate (i.e. containerise) certain process and
resources from the host operating system. As opposed to VM–
based virtualization, containers share the same kernel and may
also share some of the system libraries. Containers are fast
to deploy (few seconds) and have a small footprint which in
time allow easy consolidation of several VNFs on the same
host. The main drawbacks are in terms of reduced isolation
and security (compared to standard VM–based solutions).
Docker uses standard resource isolation features available in
the Linux Kernel, such as namespaces, in order to allow certain
applications to run isolated from each other within the so–
called containers. A daemon, executed by Docker–enabled
hosts, is in charge of communicating with the host kernel to
create, operate, and manage containers.

Recently a new trend has emerged for implementing data–
plane processing functionalities. Known as kernel bypass
filters, such solutions essentially implement a specialized API
to directly read/write packets from/to the Ethernet interface.
Examples includes DPDK [37], PF RING [38], and Snabb-
switch [39]. The main drawback of these libraries is that
they are very low–level. However, when combined with pro-
grammable packet processing pipelines like The Click Modu-
lar Router, kernel bypass filters provide the ideal platform for
implementing extremely lightweight VNFs (few MB) which
are very fast to boot (few milliseconds).

The Click Modular Router allows implementing arbitrary
programmable packet processing pipelines by combining dif-
ferent Elements. Developers can either use the Elements bun-
dled with Click or they can develop their own in C++. An
instance of Click has an extremely low memory footprint
(approx 6MB for a pure packet forwarding VNF) and can
to boot very quickly (less than 100ms).
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C. Multi–access Edge Operating System

The 5G–EmPOWER MEC–OS consists of a hardware
abstraction layer converging several radio access networks
control and management protocols into a unified set of abstrac-
tions that are then exposed to the LightMANO orchestration
layer. Such abstractions allow the LightMANO orchestration
layer to implement joint NFV and SDN resource management
operations. This includes, for example, joint mobility manage-
ment and VNF placement/migration schemes as well as radio
access and backhaul load balancing. 5G–EmPOWER currently
support Wi–Fi and LTE radio access technologies while sup-
port for LoRA and other Low–Power Wide–Area Networks is
currently been added. Interaction with SDN–based backhauls
is enabled trough an Intent–based networking interface [34].
In the rest of this section we will provide a short summary of
the main abstractions supported by 5G–EmPOWER. A more
extensive description can be found in [32].

1) Light Virtual Access Point (LVAP): The LVAP abstrac-
tion [33] provides a high–level interface for wireless clients
state management. The implementation of such an interface
handles all the technology–dependent details such as asso-
ciation, authentication, handover, and resource management.
A client attempting to join the network, will trigger the
creation of a per–client virtual access point (the LVAP) which
becomes a potential candidate AP for the client to perform an
association. Similarly each AP will host as many LVAPs as the
number of wireless clients that are currently under its control.
Removing a LVAP from an AP and instantiating it on another
AP effectively results in a handover.

2) Light Virtual Network Function (LVNF): The LVNF is
a generalization of the LVAP abstraction. However, unlike the
LVAP, the LVNF abstraction allows arbitrary packet processing
blocks to be exposed to the developer trough an high–level
declarative interface. LVNFs are instantiated starting from
templates called Images. Each network function corresponds
to an Image and consists of a Click script together with some
additional information such as the number of input/output
ports, and the list of Click handlers4 exposed by the Image.
Handlers are used in order to manipulate the internal state
of the LVNF. For example, in the case of a Firewall LVNF,

4Handlers are access points through which users can interact with elements
in a running Click router or with the router as a whole.

specific handlers shall be defined in order to allow the network
operator to add/remove firewall rules.

3) Network Graph: The Network Graph provides network
programmers with a full view of the network state. The
network graph is exposed as a directed graph G = (V,E)
where V is the set of clients and radio access network elements
(i.e. the Wi–Fi APs) and E is the set of edges or links.
A weight ωe(en,m) is assigned to each link en,m ∈ E :
ω(en,m) ∈ R. Another weight ωv(n) is assigned to each node
n ∈ N : ωv(n) ∈ R. The weights assigned to nodes and
links can model different aspects of the links (e.g. the RSSI
in Wi–Fi networks or the RSRP/RSRQ in LTE networks) or
of the nodes (e.g. the channel utilization in Wi–Fi networks
or the PRB utilization in LTE networks).

4) Transmission Policy: The Transmission Policy specifies
the range of parameters that radio access network elements
can use for their communication with the wireless clients.
For example, in the case of a Wi–Fi network such parameters
include: the set of valid MCSes, the RTS/CTS threshold, the
ACK policy, and the multicast policy.

5) Virtual Port: LVNFs do not define which kind of traffic
they should process. The Virtual Port abstraction allows devel-
opers to define the logical sequence of LVNFs a certain portion
of the flow–space must traverse. Each Virtual Port, is associ-
ated with one, and only one, LVAP or LVNF and is mapped
to a physical network interface (e.g. a port of an OpenFlow
switch). Developers need not to know the physical port id,
instead, they can perform LVNF chaining by connecting their
Virtual Ports. Each mapping between two Virtual Ports can be
defined over a precise portion of the flowspace specified as an
OpenFlow match rule. The translation from Virtual Ports into
forwarding instructions in performed by the Intent Compiler
and by the Path Computation Engine. More information about
this aspect can be found in [34].

Both LVAP and LVNF are implemented using the Click
modular router. An agent executed by LVAP/LVNF–enabled
hosts is in charge of spawning and managing LVAPs/LVNFs
under the control of 5G–EmPOWER. Communication between
LVAP/LVNF–enabled hosts and 5G–EmPOWER happens over
a persistent TCP connection using a custom–design protocol.

D. Distributed Network Service Orchestration
Edge services can be volatile requiring fast provisioning and

decommissioning. Deploying part of the orchestration logic at
the network edges can help in this direction by providing faster
reaction to changing network conditions while at the same
time ensuring higher resiliency and security. The LightMANO
orchestration layer is in charge of exposing the resources
available at a given site. Its design is inspired by the ETSI
MANO architecture and as such it support basic VNF and
network service life–cycle management operations (creation,
chaining, and deletion) as well as basic monitoring capabilities
over the instantiated VNFs.

Site resources are advertised using TOSCA–based descrip-
tors over the LightMANO REST interface. Such descriptors
provide the identifiers, the features, and the monitoring capa-
bilities of the VNFs available at each site. Users can compose
network services either by using the embedded web–based
management dashboard or trough any other client capable of



consuming a REST interface. The VNF Placement Engine and
the SLA manager are in charge of, respectively, on–boarding
new network services and ensuring that their requested KPIs
are enforced throughout the entire network service lifetime.
In is worth noticing that, in LightMANO a network service
definition encompasses the following aspects:

• Radio access network slicing. For example in the case
of a Wi–Fi radio access network, users can request the
creation of a new virtual hotspot with its own SSID (the
network name) and authentication parameters. User can
also specify performance (resources allocated to the slice,
slice priority) and functional (slice lifetime, maximum
number of users) parameters.

• Service composition. The user can select the network
functions that should be deployed and the way they
should be interconnected (i.e. the VNF forwarding graph).
Operational parameters as well as interfaces to external
monitoring and/or management entities can also be spec-
ified during this step. Notice how the details of deploying
an VNF as an LVNF or as Docker Container are hidden
away by the VNF placement engine that dynamically
selects the network function hosting node according to
the node capabilities and available resources.

• Life–cycle management. Each network service can em-
bed one or more Python scripts which allow users to
customize the way network services are deployed and
managed. Such scripts can implement arbitrary operations
on the entire network service. For example they can
implement a traffic aware mobility management appli-
cation for a Wi–Fi network which can migrate and
scale a security or a content distribution network service
according to wireless users mobility events.

Finally, access to a site resource is allowed trough a AAA
(Authentication, Authorization, and Accounting) system. The
granularity at which the site information are exposed trough
by the LightMANO northbound interface can be defined on a
per–user basis. This can allow to realize a multi–layer, multi–
domain, network service orchestration architecture where re-
sources are pooled across cloud, transport, and edge segments.

IV. IMPLEMENTATION DETAILS

Figure 6 depicts a sample LightMANO deployment. Two
types of nodes can be identified: RAN Nodes and Edge Nodes.
Both types of node run a Docker daemon and are part of a
Kubernetes cluster.

RAN nodes implement wireless access functions. In par-
ticular LTE RAN nodes consists of Intel NUC boxes (dual–
core Intel i7 Kaby–Lake CPU) equipped with 16GB of RAM
and 256GB of storage. These boxes run Ubuntu 17.10 and
are used for deploying the LTE baseband units containers. In
the current implementation we support srsLTE [40] as open
LTE stack implementation. Conversely, Wi–Fi RAN nodes are
based on PCEngines APU2 boxes (quad–core AMD Jaguar
CPU) equipped with 4GB of RAM and 64GB of storage.
These boxes run LEDE 17.01 and are used to deploy the
Wi–Fi data–path. Notice how RAN nodes require specialized
hardware in order to support the radio access containers,
namely a supported SDR platform for LTE nodes and a

supported Wi–Fi interface for Wi–Fi nodes. Edges nodes
on the other hand are standard machines with no particular
hardware requirements beside those of the VNFs they must
execute. In our deployment we use a combination of Intel
NUC, Soekris 6501, and Raspberry PIs.

As it can be seen from Fig. 6 the various LightMANO com-
ponents such as 5G–EmPOWER, the Ryu Controller, and the
LightMANO Orchestrator itself are all deployed as containers.
Although in the picture these containers are co–located, there
is no particular location constraint and they can be effectively
placed on different nodes. Standard VNFs, such as the Squid
proxy or the LTE core network components (HSS, MME, and
S/P–GW) depicted in the figure, are also run in this type of
containers. In the figure we can also identify another type of
container, namely the LVAP/LVNF–Host container. This type
of container runs either the 5G–EmPOWER LVAP Agent or
the 5G–EmPOWER LVNF Agent.

Figure 7 shows the architecture of an LVAP/LVNF–host.
Notice how each LVNF consists of a dedicated Click in-
stance (userlevel, kernel, or DPDK–accelerated). Each LVNF
is attached to one or more ports of a software switch (e.g.
OpenVSwitch). Conversely, all LVAPs share the same virtual
interface. This derives from the fact that LVAPs (which we
remind the reader are as many as the number of wireless
clients associated to a given Access Point) are expected to be
migrated between nodes more often than regular LVNFs. This
design choice allow us to avoid adding and removing a port
for the local software switch every time a handover occurs.

V. USE CASE: MOBILE EDGE CACHING

A. Overview

Mobile data traffic has been growing exponentially over the
last few years [41]. Mobile network operators are trying to
keep up with this surge in demand by deploying denser radio
access networks and by employing the most recent advances
in mobile communications (e.g. multi user MIMO, CoMP,
etc.). However, in order to address the requirements of future
low–latency, high–bandwidth applications, such as augmented
reality and virtual reality, a fundamental rethink of the mobile
network is necessary. By deploying computational resources
very close to the end–users, possibly even within the mobile
radio access network, MEC promises to relieve the mobile
backhaul of at least part of the current data traffic while also
decreasing the latency experienced by mobile applications.

In the section we will first describe a practical MEC
application implementing an edge content caching service. The
network service consists of a single LTE small cell, a GTP
encap/decap LVNF, and a content caching VNF. The service is
on–boarded by LightMANO which coordinates the creation of
a new virtual small cell instance and the deployment of the two
VNFs. Notice how, the GTP encap/decap VNF is implemented
as an LVNF while the content caching VNF is implemented
using a containerized version of the Squid [42] server.

Before moving into the details of this MEC application we
need to briefly recap how user data traffic is handled in the
LTE Mobile Network. Once a User Equipment (UE) attaches
to the network it can send/receive data to/from the Packet Data
Networks (PDN) using the GPRS Tunneling Protocol (GTP).
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Uplink UE traffic received by an eNB over its air interface
is encapsulated into a GTP packet and then delivered to the
Serving Gateway (SGW) over a UDP/IP socket. This GTP
tunnel is terminated at the SGW where a new GTP tunnel
to the PDN Gateway (PGW) is created. Finally, the PGW
removes the GTP header and forwards the UE traffic to its
intended destination (e.g. the Internet).

In order to operate, the Squid server needs to have access
to the UE IP traffic. However, if placed within the RAN,
Squid could access only the GTP–encapsulated traffic. The
GTP encap/decap LVNF takes care of performing a statefull
termination and recreation of the GTP session between the
eNodeB and the SGW. Figure 8 sketched this process. The
GTP–encapsulated UE traffic is redirected from the eNodeB
to the network node running the GTP encap/decap VNF (Step
1). Here the GTP tunnel is terminated and the UE IP traffic,
now accessible, is redirected to the node running the Squid
server (Step 2). In case of a cache hit, the requested content
is send back to the GTP encap/decap VNF (Step 3). Here the
GTP tunnel is recreated and the cached response is finally
delivered back to the UE (Step 4).
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B. Evaluation Methodology
The experimental setup consists of an LTE small cell, a

commercial EPC, a commercial Android smartphone with a
programmable SIM card, and two standard x86 servers. The
LTE small cell has been implemented using an Ettus B210
Software Defined Radio and srsLTE. Neither the LTE protocol
stack nor the UE have been modified in anyway in order to
perform the experiments.

C. Results
The first experiment shows the difference in Round Trip

Time (i.e., the time taken to send a web page request from
the UE to the Web Server and back) when the web request is
served from the Squid Edge node, instead of directly from the
origin Web server. The measurements are taken by making a
web request (the CURL command–line tool is used) to five
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popular web pages from the UE. A significant performance
improvement can be seen when the UE is served by the edge
node rather than by the remote server (Fig. 9). Notice how,
the goal of this test is not to demonstrate a performance im-
provement, solutions like Squid are indeed used since decades,
on the contrary our objective here is two demonstrate that
using a standard unmodified content caching software inside
the mobile RAN is indeed possible with LightMANO.

In the second experiment we determine the different types of
overhead for running applications in the containerized and the
virtualized platform, compared to the native, non–virtualized
platform. All of our tests were performed on x86 servers with
1.9 GHz Intel core i5 (4th generation) dual core processor with
8GB of RAM. We used Ubuntu 17.10 64-bit with Docker
17.06, and VirtualBox 5.1. All Docker containers used an
Ubuntu 17.10 base image and all VMs used the Ubuntu 17.10
desktop image. We individually measure CPU, memory, boot-
up time, and storage overhead by continuously requesting 1000
web pages from the UE associated to the eNodeB to derive 3
resource usage profiles: i) native, ii) Containerized (Docker),
and iii) Virtualized (VirtualBox). We also note that the UE

is allocated with 25 LTE resource blocks and scheduled in
2.6GHz frequency band.

The first comparison that can be drawn is the difference
in size for similar images. As it can be seen in Fig. 10, the
image containing Squid on top of Ubuntu weighs 3.95GB in
VirtualBox, and only 358MB in Docker. Similar consideration
can be made for the srsLTE application. The significant
reduction in size is mainly due to the removal of kernel,
peripheral drivers, etc., that are not required in a containerized
environment, since the Docker image can access it directly
through the host kernel.

CPU and memory utilization are often important perfor-
mance metrics to be monitored at the edge and the RAN nodes,
mainly due to its strict resource constraints. Raw single core
utilization and memory consumption are monitored for the
duration of the experiment at one second time interval by using
the top Linux tool and from Docker Command Line Interface
with stats command. The Squid application in the edge node
utilizes 16.8% CPU when run in VirtualBox, whereas, Docker
requires only 1.25% of the host CPU. In the case of Docker,
pinning each virtual CPU to a physical CPU further reduces
the overall CPU utilization to 1.05%. A similar test was also
performed in the RAN node with srsLTE small cell and the
overall analysis can be visualized from Figure 11a. In our
experiment, both Docker and VirtualBox were limited to use
a maximum of 2GB RAM for their operation. However, as
seen in Figure 11b, in the case of VirtualBox the allocated
memory is completely utilized for running Squid or srsLTE,
whereas Docker only consumes 93.66MB of allocated memory
for running Squid application and 554MB for running srsLTE.

The amount of time required to boot the system is another
real-life metric that we have measured as shown in Figure 12.
In case of VirtualBox, it took approximately 21 seconds for
the operating system to start, whereas Docker takes only 3.2
seconds. This reduction is important for the LightMANO archi-
tecture, in which the nodes are initiated only when necessary.

VI. CONCLUSIONS

This paper aims at lowering the barrier for developing and
deploying the next generation MEC application and services.
Toward this end we propose LightMANO a lightweight MEC
operating system converging SDN and NFV into a single
platform for the management and orchestration of network
services over scattered platforms. LightMANO builds upon
lightweight computing and networking virtualization solutions
like Docker and Click and moves part of the orchestration logic
at the edges of the network.

A proof–of–concept implementation of LightMANO is also
introduced and validated in a practical use case, namely con-
tent caching in mobile networks. The results of the evaluation
show that it is indeed possible to use LightMANO to deploy
standard caching applications with limited resource utilization
inside the mobile RAN.

Our current work aims at enhancing the runtime system in
order to improve system performances as well as the level of
automation in deploying and managing network services. Par-
ticular attention will be devoted to SLA–enforcing algorithms
and on joint RAN and edge resource allocation solutions.
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