
Scylla: A Language for Virtual Network Functions
Orchestration in Enterprise WLANs

Roberto Riggio∗, Imen Grida Ben Yahia§, Steven Latré‡, Tinku Rasheed∗
∗CREATE-NET, Trento, Italy; E–Mail: rriggio,trasheed@create-net.org
§Orange Labs, Paris, France; E–Mail: imen.gridabenyahia@orange.com

‡University of Antwerp, Antwerp, Belgium; E–Mail: steven.latre@uantwerpen.be

Abstract—Network Function Virtualization (NFV) is set to
disrupt the current networking ecosystem by turning vertically–
integrated middleboxes into software modules running on general
purpose virtualized platforms. NFV will play a key role in future
wireless and mobile networks where significant cost reductions
can be obtained by virtualizing different layers and functions
of the radio access and core network. Such goal raises several
challenges in terms of both functional decomposition of the radio
nodes and for the management and orchestration of the resulting
network. In this work we present Scylla a high–level declarative
language for programming network functions that allows pro-
grammers to implement per–flow custom packet processing. We
also introduce a set of programming abstractions modeling the
fundamental aspects of VNF orchestration. Finally, we present
a proof–of–concept Controller and an SDK implementing the
proposed abstractions.

I. INTRODUCTION

Network operators are currently transitioning from
hardware–based middlebox models, where network functions,
such as firewalling, load balancing, and caching, are
implemented as vertically integrated solutions, to Network
Function Virtualization (NFV) where the same operations are
performed by software instances running on general purpose
virtualized networking and computing infrastructures.

Current SDN/NFV solutions already allow operators to
dynamically deploy network functions as virtual machines
(VMs) and to steer traffic through them using OpenFlow. Nev-
ertheless, the progressive process of network softwarization
enabled by NFV allows for a dramatic refactoring of network
functionalities moving beyond the architectural limitations
imposed by physical middleboxes. NFV enables network op-
erators to implement custom packet processing and to improve
code reuse and modularity by turning common operations such
as filtering, load–balancing, and encryption into libraries that
can be shared across different network functions.

While several attempts to apply such concept to wireless
and mobile networks can already be found in the literature [1],
[2], few works address the programming abstractions for NFV
orchestration in wireless networks. Likewise, Radio Access
Network (RAN) and core network have been treated, for the
most part, as two separate problems despite the fact that
resource allocation decisions in the RAN affect the status of
the core network and vice–versa.

Research leading to these results received funding from the European
Union’s H2020 Research and Innovation Action under Grant Agreements
H2020-ICT-644843 (VITAL) and H2020-ICT-671639 (COHERENT).

In this work we present Scylla a high–level declarative
language for programming network functions that allows pro-
grammers to implement per–flow custom packet processing as
well as the associated management and orchestration logic.
Scylla blurs the line between radio access and core network
by introducing the concept of Programmable Network Fabric
(PNF). The PNF builds upon a single platform consisting of
general purpose hardware (e.g., x86) and operating systems in
order to deliver three types of virtualized network resources,
namely: forwarding nodes (i.e., OpenFlow–enabled switches),
packet processing nodes, and radio processing nodes.

Scylla allows to deploy complex network services by chain-
ing different packet processing functions, named as Light Vir-
tual Network Functions (LVNF). In an Enterprise WLAN this
allows for example to offload part of the IEEE 802.11 MAC
to LVNFs that can be dynamically scaled according to the
network load. Examples include Probe Requests offloading,
to provide protection against common IEEE 802.11 Denial of
Service attacks [3], [4], as well as Duplicates Filtering to ease
the load on the backhaul in highly noisy environments where
a significant number of retransmission are common.

This paper extends our previous work on programming
abstractions for Software–Defined Wireless Networks [5] with
additional primitives for VNF orchestration. The proposed
abstractions tackle VNF state management, layer management,
and network state collection. We realized these abstractions
in a proof–of–concept Programmable Network Fabric Con-
troller (PNFC) and a Python–based Software Development
Kit (SDK). Although our discussion will focus mainly on
WiFi due to the fact that the proof–of–concept currently
supports only this technology, we believe that the proposed
abstractions can meet the requirements of current and future
mobile networks. The entire software stack, including: data–
path, PNFC, and SDK are released under BSD license1.

The reminder of this paper is structured as follows. Sec-
tion II discusses the related work. The programming ab-
stractions together with the rationale behind their design are
introduced in Sec. III. The proof–of–concept implementation
details and the Scylla SDK are presented in, respectively,
Sec. IV and Sec. V. Section VI reports on the field evaluation.
Finally, Sec. VII draws the conclusions pointing out future
research directions.

1http://empower.create-net.org/978-1-5090-0223-8/16/$31.00 c© 2016 IEEE

II. RELATED WORK

Standardization. The European Telecommunications Stan-
dards Institute (ETSI) has recently tackled the NFV con-
cept [6] while the OPNFV project [7] is working towards
an open source carrier grade platform for NFV Management
and Orchestration. OpenMANO [8] and OpenBaton [9] have
similar goals. In parallel, the IETF Service Function Chaining
(SFC) working group is investigating various aspects of SFC
in the mobile and in the data–center networking domains [10].

Data–planes. State–of–the–art solutions on programmable
data–plane focus on improving raw packet processing
speed [11], [12], [13], [14] but do not tackle VNF orchestration
nor they provide a viable NFV control plane. Similarly,
the concept of making wireless systems more modular has
been investigated in several works like OpenRadio [2] and
MAClets [1]. Scylla on the other hand provides network pro-
grammers with a set of high–level programming abstractions
for VNF management and orchestration. Such abstractions
allow network developers to specify the logical sequence of
VNF as a certain flow must traverse leaving to a runtime
system the task of configuring the network.

Cloud Computing Platforms. Traditional cloud computing
platforms such as OpenStack [15] have not been designed with
VNF orchestration in mind and, as a result, their API fails to
capture its requirements. For example, VNFs deployed using
traditional VMs only allow cloning as migration method. This
results in a significant waste of memory/networking resources
in that unneeded state has to be migrated alongside the actual
VNF [16]. Same considerations also apply to solutions based
on Docker and/or process migration.

Middlebox Management. Systems like OpenNF [17] and
its derivatives [18], [19] focus on providing a platform for con-
sistent VNF migration, however their focus is on maintaining
backward compatibility with currently available VNFs such
as Bro [20] for IDS and Squid [21] for caching web proxies.
Conversely in this work we set to explore the possibilities
opened by a clean–slate design which encourages code reuse
and modularity. Similar considerations can be made also for
Split/Merge [22], CoMB [23], and XoMB [24]

Programming Abstractions. Many works have recently
focused on programming languages for SDNs [25], [26], [27],
[28], [29], [30], [31], [32]. Most of these languages do pro-
vide high–level interfaces to an OpenFlow–enabled network,
however they do not provide mechanisms for managing or
orchestrating VNFs, nor do they support VNF migration.

VNF Placement. The amount of literature on components
placement and on virtual network embedding (VNE) is ex-
tensive. Fundamental works on VNE include VINEYard [33]
and PolyVINE [34]. For a comprehensive survey on VNE
algorithms we point the reader to [35]. Similarly, the amount
of literature on component placement is humbling [36], [37],
[38]. In [39] a joint node and link mapping algorithm is
proposed. While the problem of dynamic VNF placement in
wired and wireless networks is tackled in [40], [41] and [42]
respectively. Scylla complements the works above by provid-
ing a programmable control plane for VNF orchestration.

III. REQUIREMENTS AND DESIGN

A. Overview
In this section we set to identify the common aspects of

VNF orchestration. Notice how, throughout the paper, we
will use the term Network Service to refer to a collection
of VNFs and the associated management and orchestration
logic. It is worth stressing that, in this work, we do not
aim at proposing novel VNF placement solutions. Conversely,
we aim at identifying the invariants of NFV management
and orchestration clearly separating policies from mechanisms
and at putting the former in the hands of Network Service
developers through a set of high–level and open primitives.

The abstractions presented in this paper extend and comple-
ment our prior work on control and coordination of wireless
and mobile networks [5]. We do so by generalizing the
concept of radio access as a generic VNF and by extend-
ing the programming model with new primitives for NFV
management and orchestration. In particular, in this paper we
address: layer management (i.e. how to deploy a Network
Service), state management (i.e. how to orchestrate VNFs),
and network discovery (i.e. how to expose the network status
to the Network Service programmers). Let us analyze the
requirements imposed by each of them on the abstractions:

• Layer Management. Programmers should simply specify
the logical sequence of VNF the traffic should traverse,
leaving to an underlying runtime system the task of
deciding how the traffic should be routed. This is con-
sistent with the recent trends on Intent–based networking
where network applications express their goals, e.g. traffic
should go through a firewall before leveling the network,
rather than specifying how to implement them, e.g. the
traffic should be routed along a certain path.

• State Management. Programmers shall not be exposed
with the details of handling the state of VNFs, nor
they should deal with the details of polling the network
elements for statistics. Conversely, each VNF shall define
the requirements for the orchestration layer which is then
in charge of deploying/scaling/migrating these functions
according to such constraints.

• Network Monitoring. The abstractions shall allow net-
work developers to gather the status of the network func-
tions using high–level querying primitives. Such informa-
tion shall include network statistics and topology changes,
e.g. node going offline or links becoming congested.

In the next subsections we shall introduce the three fun-
damental programming abstractions introduced by Scylla in
order to support the above requirements. Figure 1 depicts the
relationship between the previously introduced radio abstrac-
tions (Light Virtual Access Point, Resource Blocks, Channel
Quality Map, and Radio Port) and the NFV abstractions (Light
Virtual Network Function, Virtual Port, and Network Graph)
using an UML class–diagram. We will now briefly summarize
the main features of the radio abstractions pointing the reader
to [5] for a more exhaustive description.

We name as Virtual Execution Engines (VEEs), all the
network elements in the PNF, i.e. switches, computing, and
radio nodes. We name Wireless Termination Points (WTPs)
as the physical points of attachment in the RAN (e.g. WiFi

VNF

LVAPLVNF

Resource
Block

Radio Port

Downlink Uplink

Wild Card
Flow

next

Network
Port

Virtual
Port

1..*

1..*

1..*

supports

scheduledOn

supports

attachedTo

supports

LQM

VEE

WTP

Stats

CPP

CQM

User Network

supports 1..*

at

Fig. 1: The programming abstractions object model. Methods and
properties are omitted in order to improve readability.

Access Points or LTE eNodeBs) and Click Packet Processors
(CPPs) the forwarding nodes with computational capacity.
These nodes are essentially programmable switches. As the
name suggests, CPPs leverage on multiple instances of the
Click Modular Router [43] in order to implement packet
processing. Two types of VNFs are currently supported by
Scylla, namely the Light Virtual Network Function (LVNF),
implementing custom packet processing, and the Light Virtual
Access Point (LVAP), implementing radio access functions.

In the Scylla programming model, the Resource Block
represents the minimum amount of wireless resource that
can be assigned to a wireless client. Resource Blocks are
identified by a frequency band, a time interval, and the WTP at
which they are available. LVAPs represent the state of wireless
client on a set of Resource Blocks. WTPs and LVAPs support
a possibly different set of Resource Blocks. A non–empty
intersection between the two sets must exist in order to allow
communication. A relationship exists between LVAPs and
WTPs and between WTPs modeling the link quality between
the two entities. This relationship is captured by the Channel
Quality Maps. Finally, the Radio Port abstraction models the
dynamic and reconfigurable characteristics of the link between
WTPs and LVAPs on a set of Resource Blocks, e.g. the MCS
or the transmission power.

B. Light Virtual Network Function

The LVNF is a generalization of the LVAP abstraction
introduced in [5]. However, unlike the LVAP abstraction, which
was designed in order to provide network developers with a
high–level interface for wireless client state management, the
LVNF abstraction allows arbitrary packet processing blocks to
be exposed to the Network Service developer trough an high–
level declarative interface. Inspired by Click, Scylla LVNFs
can be composed in a forwarding graph in order to implement
complex operations on a specific subset of the traffic.

LVNFs are instantiated starting from VNF templates called
Images. Each network function corresponds to an Image
and consists of a Click script together with some additional
information such as the number of input/output ports used

ToHost(br0-0-1)

Unqueue() Switch()

Null()

FromHost(br0-0-1)

Fig. 2: The complete Click script implementing the Null LVNF as
deployed on the CPP. The user–defined portion is in the dashed box.

by the LVNF, and the list of Click handlers2 exposed by the
Image. Handlers are used in order to manipulate the internal
state of the LVNF. For example, in the case of a Firewall
LVNF, specific handlers shall be defined in order to allow the
network operator to add/remove firewall rules. In the ETSI
terminology, the handlers essentially provide the interface for
the Operator’s Element Management Systems (EMS) [6].

Deploying a VNF requires handling several low–level de-
tails, such as creating new virtual network interfaces in the
CPP, configuring the local switch, and start/stopping the
software processes implementing the actual network function.
Such details are transparently handled by the Scylla runtime
system. For example consider the following Scylla Image
which does not perform any modification on the traffic:

i n 0 −> Nul l () −> ou t 0

Listing 1: A Scylla Image implementing a null network function.

As it can be seen, the Image consists of a very simple Click
script which uses one input and one output port. Notice how
in_0 and out_0 are the names of the two Click elements in
charge of the network I/O. Upon deployment, the Image will
be extended by the Scylla runtime with the missing elements
declaration plus some additional boilerplate code required for
VNF migration. The final Click script deployed on the CPP
is depicted in Fig. 2. The virtual network interface br0−0−0
is dynamically created on the target CPP before starting the
LVNF. The interface name is dynamically generated in such
a way to avoid collision with other LVNFs running on the
same CPP. As it will be clear in the next subsection, Net-
work Service developers need not consider the actual virtual
network interface names, instead they can use the Virtual
Port abstraction in order to declare the sequence of LVNF
a certain portion of the flow–space shall traverse leaving to
the underlying runtime system the task to compute the route
and to configure the switches.

Scylla LVNFs support different operating modes. Possible
events and the corresponding transitions between modes are
implemented by the finite state machine (FSM) depicted in
Fig. 3. LVNF automatically transition to the Running mode
once deployed on a CPP (after the virtual network interface
has been created and the click process has been started). In
this mode all incoming traffic is processed by the Click script
provided by the Network Service developer.

There are however situations where it may be useful to
pause/resume an LVNF as a method, for example, to prevent

2Handlers are access points through which users can interact with elements
in a running Click router or with the router as a whole.

Running
add

Stopped
pause

play
remove

Bypassflush remove

Fig. 3: The LVNF finite state machine.

updates to its internal state prior to a migration. Upon receiving
the pause trigger, the LVNF transitions to the Stopped state. In
this state all incoming traffic is buffered (FIFO) in the LVNF
internal queue. The capacity of the Queue element used to
buffer the incoming traffic is finite (by default it is set to
1000 packets) and when the buffer is full incoming traffic
is dropped. Once in the Stopped state an LVNF can either
transition back to the Running state or, upon receiving the
flush trigger, can transition to the Bypass State. In this state
all incoming traffic is redirected by the Switch element to
the output port without further processing. Finally, the remove
trigger terminates the LVNF.

The FSM above allow us to support basic statefull LVNF
migration. In particular, when an LVNF migration is triggered,
the runtime will pause the execution of the LVNF at the source
CPP causing all incoming traffic to be buffered. The runtime
will then spawn a new LVNF at the target CPP and move the
state of the LVNF from the source CPP to the target CPP
(details on how the state is moved are given in Sec. V-A).
Finally, the forwarding rules in the switching fabric can be
updated in order to: (i) redirect the new traffic to the target
CPP; and (ii) forward the traffic from the source CPP to the
target CPP. This will result in buffered packets at the source
CPP to be redirected to the target CPP when the flush method
is invoked on the LVNF on the source CPP.

Albeit this approach guarantees that no traffic is lost during
the migration, in–order packet processing is not ensured.
Moreover, this migration scheme also results in a slightly
increased latency in that packet processing is halted between
the pause and the flush calls. We acknowledge that out-
of–order packet delivery as well as the increased latency
may disrupt the operations of certain network functions [44].
Nevertheless, we would like to stress how the focus of this
work is on the high–level programming primitives exposed
to the Network Service developers and not on their actual
implementation, which we still consider as preliminary.

C. Virtual Port
LVNFs, as well as Images, does not define which kind of

traffic they should process. Network Service developers can
define the logical sequence of LVNFs a certain portion of the
flow–space must traverse, using the Virtual Port abstraction.
LVNFs can have one or more Virtual Ports. Each Virtual Port,
is associated to one, and only one, virtual network interface
in a CPP which in time is attached one Network Port in the
local software switch, e.g. an OpenVSwitch instance.

Figure 4 sketches the reference architecture for a VEE
illustrating the relationship between Network Ports and Virtual
Ports. Notice how, LVAPs share the same virtual interface. This
derives from the fact that LVAPs (which we remind the reader
are as many as the number of wireless clients associated to a
given WTP) are expected to be migrated between WTPs more

eth0

Software Switch

Virtual Excution Engine

eth1 eth3

0 1

eth2

2

Physical
Interfaces

wlan1wlan0

5

tun1tun0

4 6

tun2

LVNFLVNFLVAPLVAP

Network
Ports

Virtual
Interfaces

0 0 0 0

Virtual
Ports

PNFsPNFs

Hypervisor

3

Fig. 4: The reference architecture for a VEE.

Counter
(LVNF)

WiFi Client
(LVAP)

DPI
(LVNF)

NAT
(LVNF)

match[tp_dst=80]

match[*]

match[*]

Fig. 5: A simple LVNFs chain illustrating the concept of Virtual Port.

often than regular LVNFs. This design choice allow us to avoid
adding and removing a port for the local software switch every
time a handover occurs.

Network Service developers do not need to care about the
virtual interface name on a CPP . Instead, they can perform
LVNF chaining by using their Virtual Ports. Figure 5 depicts
a sample LVNFs chain in order to better illustrate the Virtual
Port concept. In this example, the traffic generated by a
wireless client, or more specifically by the LVAP mapping
a wireless client, is redirected to a traffic monitoring LVNF
(Counter). Then all HTTP traffic is redirected to a Deep Packet
Inspection LVNFs (DPI). Finally, all traffic is redirected to a
gateway LVNF (NAT). The translation between Virtual Ports
and Network Ports as well as the computation of the optimal
route and the configuration of the switches is transparently
handled by the Scylla runtime.

D. Network Graph

The Network Graph extends the Channel Quality Map
(CQM) presented in [5] with the full view of the core network
state. In this section we shall briefly summarize the main
feature of the CQM before moving to the Network Graph.

The CQM abstraction provides network programmers with
a full view of the network state in terms of channel quality
between LVAPs and WTPs over the available Resource Blocks.
Let Gr = (Vr, Er) be a directed graph, where Vr = VWTP ∪
VLV AP is the set of v1 = |VWTP | WTPs and v2 = |VLV AP |
LVAPs in the network, and Er is the set of edges or links.
An edge ern,m,i ∈ Er with n,m ∈ Vr exists if m is within
the sensing range of n over the Resource Block i. A weight
ωr(en,m,i) is assigned to each link ecn,m,i ∈ Er : ωr(en,m,i) ∈
N+ modeling the channel quality of the link between the two
nodes (e.g. using the RSSI).

In this work we extend the CQM with information about the
core network. In particular, let Gc = (Nc, Ec) be a directed
graph modeling the core network, where Nc is the set of n =
|Nc| network elements (CPPs and switches) and Ec is the
set of edges or links. An edge ecn,m ∈ Ec if and only if a
point–to–point connection exists between n ∈ Nc and m ∈
Nc. With respect to the core network, links are actual wiring

(a) Network topology.

ωe
ωe

ωe

ωeωe

ωeωe

ωrωr

ωr

ωr

ωr

ωe

(b) Network graph.

Fig. 6: Sample physical network (a) and network graph (b).

media, e.g., an Ethernet cable interconnecting the two nodes.
A single weight ωs

e(en,m) is assigned to each link ecn,m ∈ Ec :
ωs
e(e

c
n,m) ∈ N+ modeling the link load.

Figure 6 depicts a sample radio access and core network
and the associated network graph. More specifically, Fig. 6a
shows valid links between wireless clients and WTPs (dashed
lines) as well as wired links interconnecting WTPs, CPPs, and
pure forwarding nodes (solid lines), while Fig. 6b shows the
Network Graph associated with the topology.

IV. IMPLEMENTATION DETAILS

A. Overview

The proposed abstractions have been implemented over the
EmPOWER platform. EmPOWER is an SDN/NFV framework
consisting in: (i) a Programmable Network Fabric Controller
(PNFC), (ii) a programmable data–plane, and (iii) a Python–
based SDK. In this section we describe in detail the first two
components while the features of the SDK are described in the
next section. Notice that the prototype currently targets only
wireless access networks based on the 802.11 family of stan-
dards. A high level view of the EmPOWER system architecture
is depicted in Fig. 7. The architecture is conceptually divided
into three layers. The bottom layer consists of the physical
and virtualized resources composing the PNF. In the second
layer we have the PNFC which is in charge of the physical
and virtual resources available in the PNF. Finally, in the third
layer we have the actual Network Service slices.

Virtual Network Operators use their Operational Support
System (OSS) and the Business Support System (BSS) in order
to manage and operate their Network Service slices. From an
architectural standpoint, the Network Service slice creation
resides in the Orchestrator which is in charge of deciding
whether a particular Network Service can be accepted or if
it must be refused. If a request is accepted, then the Orches-
trator is in charge of mapping the request onto the PNF by
deploying the LVNFs on the selected nodes. Information about
all supported LVNFs and Network Services are maintained in
the LVNF and Network Service catalogs. The Infrastructure
Catalog holds information about available physical and virtu-
alized resources. Finally, the list of placement algorithms is
held by the Placement Policy Catalog.

B. Programmable Network Fabric Controller

The PNFC supports multiple Network Services over the
same physical infrastructure. Management and orchestration
applications run on top of the PNFC in their own slice

of resources and exploit the Scylla programming primitives
through either a REST API or the native Python API. Example
of control applications include: mobility management, traffic
engineering, and LVNF scaling/consolidation. Communica-
tions between WTPs/CPPs and the PNFC take place over
persistent TCP connections.

C. Programmable Network Fabric
As already mentioned in Sec. III our architecture currently

accounts for three kinds of PNF resources, namely: basic
forwarding nodes (i.e. OpenFlow switches), packet processing
nodes (CPPs), and radio nodes (WTPs).

Each CPP/WTP includes an OpenVSwitch instance, one or
more LVNF/LVAP, and one Agent. The latter is in charge
of monitoring the status of each LVNFLVAP as well as of
handling the requests coming from the controller. In the cur-
rent implementation the monitoring features includes: number
of packets/bytes transmitted and received on each virtual
interface as well as the amount of resources utilized (cpu time,
and memory) by each LVNF.

CPPs are built upon the Soekris 6501-70 platform consist-
ing in single 1.6 GHz Intel Atom CPU, 2 Gbyte if SDRAM,
and 12 Gigabit Ethernet Ports. CPPs run Ubuntu 15.04 Server
as operating system and a patched version of the Click
Modular Router [43] supporting element state serialization.
WTPs exploit the PCEngines ALIX (x86) embedded platform
and run the OpenWRT operating system.

V. SOFTWARE DEVELOPMENT KIT

The Python–based SDK introduced in [5] has been extended
in order to support the new primitives introduced in Sec. III.
In this section we shall briefly summarize some of the SDK’s
most interesting new features. The list of new primitives can be
found in Table I. For a comprehensive list of all the primitives
supported by the SDK we refer the reader to [5].

Two types of primitives are supported by the SDK: Queries
and Events. In the former case (Queries), VEEs are period-
ically polled for a specific information, e.g. the number of
packets transmitted or received by an LVNF. In the latter case
(Events) a thread is created at one or more VEE. Such thread is
identified by a firing condition, e.g. the CPU Utilization of an
LVNF going above a certain threshold. When such condition
is verified a message is generated by the VEE. A termination
condition can also be specified.

All primitives are non–blocking and, as such, they imme-
diately return control to the calling network application. An
optional callback method can be provided to all primitives
specifying a method to be executed when the primitive returns
a result. A Python dictionary, whose structure depends on the
actual primitive, is passed as parameter to the callback.

A. Light Virtual Network Function
The LVNF abstraction is exposed to the Network Service

developers through a Python object mapping properties to
operations. These properties are: (i) the Image used by the
LVNF, (ii) the list of Virtual Ports supported by the LVNF,
and (iii) the CPP that is hosting the LVNF. Programmers
can access the Virtual Ports supported by an LVNF using the
ports property. Similarly, performing an LVNF migration

Programmable
Network Fabric

Management and
Orchestration

EmPOWER Agent

Service Layer

Slice N

EmPOWER Agent

Ethernet Interfaces

OpenVSwitch
802.11 Radios
(mac80211) Eth. Interfaces

OpenVSwitch

LVNF LVAP

Click Packet Processor(s) Wireless Termination Point(s)

LVNF

Ethernet Interfaces

OpenFlow Agent

OpenFlow Switche(s)

Slice 1

Data-plane virtual network functions

LVAP(s) Counter DPI NAT

Control Applications

RRM QoS TE

EmPOWER Controller

Scylla Interpreter

Runtime (AAA, Persistence, Accounting, Profiling, Queries, Events)

OSS/BSS

Network Service
Developer

Network Service
Definition

OpenFlow Controller (e.g. Ryu)

Network Graph

VNF Manager

Orchestrator

Infrastructure
Catalog

NS
Catalog

Placement
Policy Catalog

VNF
Catalog

Fig. 7: The EmPOWER system architecture.

Primitive Parameters Type Description Section

packets/bytes_count lvnf, every Query Packets/bytes transmitted or received by an LVNF V-A
cpu/mem_util lvnf, relation, value Event Callback when a condition on CPU/Memory utilization is verified V-A
lqm addrs, every Query Returns packet counters from a CPP V-C

TABLE I: LVNF programming primitives in the Python–based SDK.

is a matter of assigning a new CPP to the cpp property of
an LVNF object. In the following example a new LVNF is
spawned at one CPP using a previously defined Image.

C l i c k s c r i p t
VNF = ””” in 0
−> C l a s s i f i e r (1 2 / bbbb)
−> S t r i p (1 4)
−> dupe : : W i f i D u p e F i l t e r ()
−> WifiDecap ()
−> ou t 0 ; ”””

Hand lers
h a n d l e r s = [(” d u p e s t a b l e ” , ” dupe . d u p e s t a b l e ”)]

C re a t e Image
img = Image (vnf =VNF, n b p o r t s =1 , h a n d l e r s = h a n d l e r s)

C re a t e and spawn LVNF
l v n f = LVNF(img)
l v n f . cpp = cpp

Listing 2: Spawning a new LVNF.

In particular, the listing above implements a de–duplication
LVNF for 802.11–based WLANs. In legacy systems this net-
work function is typically implemented by the WiFi AP or by
the WiFi controller. This LVNF checks if the incoming traffic is
LWAPP–encapsulated. The Lightweight Access Point Protocol
(LWAPP) is a protocol used to transport WiFi traffic over either
L2 or L3 PDUs. Non–LWAPP traffic is discarded, while legit
frames are stripped of their Ethernet header and passed to

the duplicate filtering element (WiFiDupeFilter). Unique WiFi
frames are converted to Ethernet frames (WiFiDecap).

The Image constructor allows to define a list of handlers.
Each handler is defined as a 2–tuple where the first entry is the
handler short–name (e.g. dupes table) while the second entry
is the actual Click handler (e.g. dupe.dupes table). As for the
other primitives, also LVNFs’ handlers are non–blocking and
requires a callback method to be specified by the Network
Service developer. The following statement accesses the LVNF
duplicates table and then calls the specified callback method
when the handler returns a result:

l v n f . d u p e s t a b l e (c a l l b a c k = d u p e s c a l l b a c k)

Listing 3: Accessing an LVNF handler (read).

The callback method will receive a Python dictionary as
parameter similar to the one reported in the listing below. For
each wireless station the following information are reported:
(i) the number of duplicate frames, (ii) the number of entries
in the list, and the last N sequence numbers.

{
”A0 : D3 : C1 : A8 : E4 : C3” : [2 1 5 , 3 , 1323 , 2324 , 1 3 2 5] ,
” 5C : E0 : C5 :AC: B4 : A3” : [1 2 3 1 , 3 , 201 , 202 , 203]

}

Listing 4: LVNF handler output.

Handlers can also be accessed in write mode allowing the
Network Service developers to modify the internal state of an
LVNF. For example, the following listing adds a new entry in
the LVNF duplicates table.

l v n f . d u p e s t a b l e (v a l u e =[” a0 : d3 : c1 : a8 : e4 : c3 ” , \
215 , 3 , 1323 , 2324 , 1 3 2 5])

Listing 5: Accessing an LVNF handler (write).

Migration is supported by leveraging on the Click “hotswap-
ing” feature. Such feature allows to replace the Click config-
uration with a new one while preserving the state of some
elements (e.g. the duplicates table). We extended this feature
by allowing Click configurations to be removed from one CPP
and re–created on another one. This is achieved by serializing
the state of the Click elements with a custom serialization
function implemented using Boost [45]. This approach allowed
us to dramatically reduce the state to be migrated across CPPs.
The actual amount of state depends on the LVNF, and can
range from few bytes for simple statistics gathering LVNFs to
several MBytes for more complex LVNFs.

The cpu_util primitive allows the programmer to trigger
a callback the first time the CPU utilization of an LVAP verifies
a certain. For example:

c p u u t i l (l v n f s = ’ 1 1 : 2 2 : 3 3 : 4 4 : 5 5 : 6 6 ’ ,
r e l a t i o n = ’GT ’ ,
v a l u e =80 ,
t enan t name = ’ G ues t s ’ ,
c a l l b a c k = c p u c a l l b a c k)

Listing 6: Create an CPU Utilization trigger.

After the trigger has fired the first time and as long as
the CPU utilization remains above 80%, the callback method
is not called again. Specifying ff:ff:ff:ff:ff:ff as
lvnfs will trigger the callback when the CPU Utilization
of any LVNFs is above 80%. Similarly, the mem_util
primitive allows developers to get a callback when the memory
utilization of a certain LVNF verifies a certain condition.

Finally, the packets/bytes_count primitives allow
programmers to track the traffic transmitted and received by
a certain LVNF Virtual Port. Their details have been omitted
due to space constraints.

B. Virtual Port
The Virtual Ports supported by an LVNF can be accessed

from the ports property. Virtual Ports can be concatenated
using their next property which maps a certain portion of
the flow space to another Virtual Port (typically belonging
to a different LVNF). For example the following routine
implements the VNF chaining depicted in Fig. 5:

A l l t r a f f i c
o t h e r = make wi ld ca rd f low ()
HTTP t r a f f i c
h t t p = make wi ld ca rd f low ()
h t t p [’ t p d s t ’] = 80
LVNF Chain ing
l v a p . p o r t s [0] . next [o t h e r] = l v n f c o u n t . p o r t s [0]
l v n f c o u n t . p o r t s [0] . next [h t t p] = l v n f d p i . p o r t s [0]
l v n f c o u n t . p o r t s [0] . next [o t h e r] = l v n f n a t . p o r t s [0]
l v n f d p i . p o r t s [0] . next [o t h e r] = l v n f n a t . p o r t s [0]

Listing 7: LVNF Chaining.

This essentially implements an intent–based interface for
VNF composition allowing Network Service developers to
specify the logical sequence of LVNFs the traffic should tra-
verse. The intent is eventually conveyed to a network controller
which is responsible for implementing it by computing the
optimal route and by configuring the individual network ele-
ments (i.e. switches and routers). Currently the Scylla runtime
supports two network controllers: Ryu [46] and ONOS [47].
In the former case (Ryu) a new module has been developed
implementing the intent–based interface. In the latter Case
(ONOS) the embedded intent–based interface has been used.

C. Network Graph
The Network Graph is exposed to the network programmer

by means of three data structures: the User Channel Quality
Map (UCQM), the Network Channel Quality Map (NCQM),
and the Link Quality Map (LQM). The first two data structures
are 3–dimensional matrices where each entry is the channel
quality over one Resource Block between: an LVAP and a WTP
in the case of the UCQM; and between twoWTPs in the case of
the NCQM. Similarly, the LQM is 2–dimensional matrix where
each entry is the load of the between two CPPs. In the current
implementation we use the link bandwidth computed starting
from the Openflow port statistic primitive as the measure of
the link load. The code below periodically queries the specified
CPP for all its neighboring CPPs:

lqm (a d d r s = ’ 5C : E0 : C5 :AC: B4 : A3 ’ ,
e v e r y =5000 ,
t enan t name = ’ G ues t s ’ ,
c a l l b a c k = l q m c a l l b a c k)

Listing 8: LQM query creation.

The query is executed periodically with the period set by
every parameter (in ms). Specifying every = −1 will result
in a single query being issued. In the above example specify-
ing ff:ff:ff:ff:ff:ff will return the link statistics of
every CPP in the slice. The report includes the packets/bytes
transmitted/received on that port. If every > 0, the primitive
will compute also the average bit–rate and packet–rate in the
last observation window.

VI. EVALUATION

In this section we evaluate the performance of the duplicate
filtering LVNF described in Sec. V-A. Our evaluation is
divided into two parts. In the first part we report on the LVNF
throughput and latency, while in the second part we quantify
the LVNF migration overhead.

A. Throughput and Latency
In this scenario we deploy a single duplicate filtering

LVNF. Two high– end server–class machines connected to
two different ports of the CPP hosting the LVNF are then
used as the endpoints of a saturated synthetic UDP stream.
UDP packets are encapsulated into WiFi frames and then
into the LWAPP frames by the transmitter. Traffic is then
dispatched to the CPP where it is processed by the duplicates
filtering LVNF. Finally, the processed stream is delivered to
the receiver. Measurements are taken using different payload
sizes (100 and 1400 bytes) and with either an empty duplicates

Scenario Mb/s C.I. (95%) Kp/s

100 bytes (empty table) 34.6 0.2 30.5
100 bytes (10k entries) 33.1 1.1 29.1
1400 bytes (empty table) 317.6 7.7 27.5
1400 bytes (10k entries) 318.4 3.9 27.6

TABLE II: Basic packet processing performance.

Payload Size (Bytes)

100 200 500 1000 1400

T
h
ro

u
g
h
p
u
t
[K

p
/s

]

0

10

20

30

40
Dupes Null No VNF

(a) Throughput (packet/s).
Payload Size (Bytes)

100 200 500 1000 1400

T
h

ro
u

g
h

p
u

t
[M

b
/s

]

0

100

200

300

400
Dupes Null No VNF

(b) Throughput (bit/s).

Fig. 8: Performance of the duplicate filtering LVNF as a function of
the payload size (bytes).

table, i.e. the data structure keeping track of the last sequence
numbers seen from a particular client, and a duplicates table
with 10000 entries. Each measurement is 60 seconds long and
has been repeated 10 times. Results are shown in Table II.
As it can be seen the LVNF performance essentially does not
depend on size of the duplicate table.

We also study the impact of LVNF processing on end–to–
end performance. Figure 8 shows the system performance for
different payload sizes using three different setups, namely:
with the duplicate filtering LVNF, with an LVNF which does
not perform any manipulation, and without any LVNF. As it
can be seen a single low–power Atom CPU running at 1.6
GHz can easily process WiFi frames at 300 Mb/s when the
frames are larger than 1400 bytes. Moreover, the performance
penalty introduced by the LVNF processing is also negligible.

We also evaluate the performance of multiple concurrent
duplicates filtering LVNFs running on a single CPP. The
network setup is the same as the one used in the previous
experiment. However, in this scenario the server is generating
an increasing number of UDP streams (equal to the number
of LVNFs), each stream is forwarded to a different LVNF
instance over the same Ethernet port. The payload length is
kept constant at 1400 bytes. Each measurement is 60 seconds
long and has been repeated 10 times. As it can be seen
from Figure 9, the average LVNF throughput decrease sub–
linearly with the number of concurrent LVNFs. However,
the aggregated throughput remains essentially constant as the
number of concurrent LVNFs increases.

B. Migration Overhead

In this section we evaluate the performance of our LVNF
migration strategy by implementing an application that peri-
odically migrates the duplicate filtering LVNF between two
CPPs. Unlike the previous scenarios where UDP flows were
used, in this case we use TCP traffic in that it is in general
more sensitive to packet loss and/or out–of–order delivery. We
use iperf [48] to generate a saturated TCP stream between
the two servers. Traffic is encapsulated at the transmitter into
WiFi frames and then into LWAPP packets. The duplicate

Concurrent LVNFs (#)

2 3 4 5 6 7 8

T
h

ro
u

g
h

p
u

t
[M

b
/s

]

50

100

150

200

250

(a) LVNF throughput.
Concurrent LVNFs (#)

2 3 4 5 6 7 8

T
h
ro

u
g
h
p
u
t
[M

b
/s

]

300

400

500

(b) Aggregated Throughput.

Fig. 9: Performance of the duplicate filtering LVNF for an increasing
number of concurrent instances.

Time [s]

10 20 30 40 50 60

B
it
ra

te
 [

M
b

/s
]

310

320

330

340

350

360

Fig. 10: Impact of LVNF migration on TCP throughput.

filtering LVNF is migrated every 20s between the two CPPs.
Figure 10 shows the instantaneous throughput achieved by
the TCP connection. As it can be seen from the figure, there
is a sensible decrease in performance when the migration is
occurring (at seconds 10, 30, and 50), however in each of these
case the performance degradation is in the order of 25/30 Mb/s.

VII. CONCLUSIONS

In this paper we presented Scylla, a high–level declarative
language for programming network functions that allows pro-
grammers to implement per–flow custom packet processing.
We implemented the proposed abstractions on top of the
EmPOWER SDN/NFV platform consisting of a proof–of–
concept controller and a Python–based SDK. We used the SDK
to implement a number of applications for MAC offloading in
Enterprise WLANs. The entire stack including the datapath
implementation, the controller, and the Python–based SDK
have been released under a permissive BSD license making
it available to the broad research community.

In its current implementation, our framework can accommo-
date only Click–based LVNFs. While this feature allows for
high throughput and low–latency data–plane, it also imposes
several constraints on the Network Service developers, above
all, the fact that Click must be used as packet processing
engine. As future work, we plan to remove this constraint by
extending the LVNF concept to third–party network functions.
In parallel we also plan to implement a broader set of
network functions and to extend and validate the programming
abstractions to 4G/5G mobile networks. Finally, we intend to
enhance the Scylla language with new constructs aimed at al-
lowing Network Services developers to express processing and
forwarding constraints (e.g. minimum throughput or maximum
latency). We expect such features to play a key role in the
design and implementation of service aware state management
strategies such as VNF consolidation and scaling.

REFERENCES

[1] G. Bianchi, P. Gallo, D. Garlisi, F. Giuliano, F. Gringoli, and I. Tin-
nirello, “MAClets: active MAC protocols over hard-coded devices,” in
Proc. ACM CoNEXT, Nice, France, 2012.

[2] M. Bansal, J. Mehlman, S. Katti, and P. Levis, “OpenRadio: a pro-
grammable wireless dataplane,” in Proc. of ACM HotSDN, Helsinki,
Finland, 2012.

[3] F. Ferreri, M. Bernaschi, and L. Valcamonici, “Access points vulnera-
bilities to dos attacks in 802.11 networks,” in Proc. of IEEE WCNC,
Atlanta, GA, USA, 2004.

[4] K. Bicakci and B. Tavli, “Denial-of-service attacks and countermeasures
in ieee 802.11 wireless networks,” Comput. Stand. Interfaces, vol. 31,
no. 5, pp. 931–941, Sep. 2009.

[5] R. Riggio, M. Marina, J. Schulz-Zander, S. Kuklinski, and T. Rasheed,
“Programming abstractions for software-defined wireless networks,”
Network and Service Management, IEEE Transactions on, vol. 12, no. 2,
pp. 146–162, June 2015.

[6] European Telecommunications Standards Institute (ETSI), “Etsi gs nfv
002 network functions virtualisation (nfv); architectural framework,”
December 2014.

[7] “OPNFV.” [Online]. Available: https://www.opnfv.org/
[8] “OpenMano.” [Online]. Available: https://github.com/nfvlabs/openmano
[9] “OpenBaton.” [Online]. Available: http://openbaton.github.io/

[10] “SFC: Service Function Chaining.” [Online]. Available:
https://datatracker.ietf.org/wg/sfc/charter/

[11] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun, K. Fall, G. Iannaccone,
A. Knies, M. Manesh, and S. Ratnasamy, “Routebricks: Exploiting
parallelism to scale software routers,” in Proc. of ACM SOSP, Big Sky,
Montana, USA, 2009.

[12] S. Han, K. Jang, K. Park, and S. Moon, “Packetshader: A gpu-
accelerated software router,” SIGCOMM Comput. Commun. Rev.,
vol. 40, no. 4, pp. 195–206, Aug. 2010.

[13] J. Hwang, K. Ramakrishnan, and T. Wood, “Netvm: High performance
and flexible networking using virtualization on commodity platforms,”
Network and Service Management, IEEE Transactions on, vol. 12, no. 1,
pp. 34–47, March 2015.

[14] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco,
and F. Huici, “ClickOS and the Art of Network Function Virtualization,”
in Proc. of USENIX NSDI 14, Seattle, WA, USA, 2014.

[15] “OpenStack.” [Online]. Available: http://www.openstack.org/
[16] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-

bauer, I. Pratt, and A. Warfield, “Xen and the art of virtualization,”
SIGOPS Oper. Syst. Rev., vol. 37, no. 5, pp. 164–177, Oct. 2003.

[17] A. Gember-Jacobson, R. Viswanathan, C. Prakash, R. Grandl, J. Khalid,
S. Das, and A. Akella, “Opennf: Enabling innovation in network function
control,” in Proc. of ACM SIGCOMM, Chicago, Illinois, USA, 2014.

[18] B. Kothandaraman, M. Du, and P. Sköldström, “Centrally controlled
distributed vnf state management,” in Proc. of ACM HotMiddlebox,
London, United Kingdom, 2015.

[19] A. Gember-Jacobson and A. Akella, “Improving the safety, scalability,
and efficiency of network function state transfers,” in Proc. of ACM
HotMiddlebox, London, United Kingdom, 2015.

[20] “The Bro Network Security Monitor.” [Online]. Available:
https://www.bro.org/

[21] “The Squid Caching Proxy.” [Online]. Available: http://www.squid-
cache.org/

[22] S. Rajagopalan, D. Williams, H. Jamjoom, and A. Warfield,
“Split/merge: System support for elastic execution in virtual middle-
boxes,” in Proc. of USENIX NSDI, Lombard, IL, USA, 2013.

[23] V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, and G. Shi, “Design and
implementation of a consolidated middlebox architecture,” in Proc. of
USENIX NSDI, San Jose, CA, USA, 2012.

[24] J. W. Anderson, R. Braud, R. Kapoor, G. Porter, and A. Vahdat, “xomb:
Extensible open middleboxes with commodity servers,” in Proc. of
ACM/IEEE ABCS, Austin, Texas, USA, 2012.

[25] T. L. Hinrichs, N. S. Gude, M. Casado, J. C. Mitchell, and S. Shenker,
“Practical declarative network management,” in Proc. of ACM WREN,
Barcelona, Spain, 2009.

[26] C. Monsanto, J. Reich, N. Foster, J. Rexford, and D. Walker, “Compos-
ing software-defined networks,” in Proc. of USENIX NSDI, Lombard,
IL, USA, 2013.

[27] A. Voellmy and P. Hudak, “Nettle: Taking the sting out of programming
network routers,” in Proc. of ACM PADL, Austin, TX, USA, 2011.

[28] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford,
A. Story, and D. Walker, “Frenetic: A network programming language,”
SIGPLAN Not., vol. 46, no. 9, pp. 279–291, Sep. 2011.

[29] A. Voellmy, H. Kim, and N. Feamster, “Procera: A language for high-
level reactive network control,” in Proc. of ACM HotSDN, Helsinki,
Finland, 2012.

[30] A. K. Nayak, A. Reimers, N. Feamster, and R. Clark, “Resonance:
Dynamic access control for enterprise networks,” in Proc. of ACM
WREN, Barcelona, Spain, 2009.

[31] C. Monsanto, N. Foster, R. Harrison, and D. Walker, “A compiler and
run-time system for network programming languages,” in Proc. of ACM
POPL, Philadelphia, PE, USA, 2012.

[32] M. Casado, N. Foster, and A. Guha, “Abstractions for Software-defined
Networks,” Commun. ACM, vol. 57, no. 10, pp. 86–95, Sep. 2014.

[33] M. Chowdhury, M. R. Rahman, and R. Boutaba, “ViNEYard: Virtual
network embedding algorithms with coordinated node and link map-
ping,” Networking, IEEE/ACM Transactions on, vol. 20, no. 1, pp. 206
–219, February 2012.

[34] M. Chowdhury, F. Samuel, and R. Boutaba, “Polyvine: policy-based
virtual network embedding across multiple domains,” in Proc. of ACM
VISA, New Delhi, India, 2010.

[35] A. Fischer, J. Botero, M. Till Beck, H. de Meer, and X. Hesselbach,
“Virtual network embedding: A survey,” Communications Surveys Tuto-
rials, IEEE, vol. 15, no. 4, pp. 1888–1906, Fourth 2013.

[36] D. Breitgand, A. Epstein, A. Glikson, A. Israel, and D. Raz, “Network
aware virtual machine and image placement in a cloud,” in Proc. of
IEEE CNSM, Zurich, Switzerland, 2013.

[37] M. Barshan, H. Moens, and F. De Turck, “Design and evaluation of
a scalable hierarchical application component placement algorithm for
cloud resource allocation,” in Proc. of IEEE CNSM, Rio de Janeiro,
Brazil, 2014.

[38] M. Barshan, H. Moens, S. Latre, and F. De Turck, “Algorithms for
efficient data management of component-based applications in cloud
environments,” in Proc. of IEEE NOMS, Krakow, Poland, 2014.

[39] R. Guerzoni, R. Trivisonno, I. Vaishnavi, Z. Despotovic, A. Hecker,
S. Beker, and D. Soldani, “A novel approach to virtual networks
embedding for sdn management and orchestration,” in Proc. of IEEE
NOMS, Krakow, Poland, 2014.

[40] S. Clayman, E. Maini, A. Galis, A. Manzalini, and N. Mazzocca, “The
dynamic placement of virtual network functions,” in Proc. of IEEE
NOMS, Krakow, Poland, 2014.

[41] H. Moens and F. De Turck, “VNF-P: A model for efficient placement of
virtualized network functions,” in Proc. of IEEE CNSM, Rio de Janeiro,
Brazil, 2014.

[42] R. Riggio, A. Bradai, T. Rasheed, J. Schulz-Zander, S. Kuklinski,
and T. Ahmed, “Virtual network functions orchestration in wireless
networks,” in Proc. of IEEE CNSM, Barcelona, Spain, 2015.

[43] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The
click modular router,” ACM Trans. Comput. Syst., vol. 18, no. 3, pp.
263–297, Aug. 2000.

[44] J. Sherry, P. X. Gao, S. Basu, A. Panda, A. Krishnamurthy, C. Maciocco,
M. Manesh, J. a. Martins, S. Ratnasamy, L. Rizzo, and S. Shenker,
“Rollback-recovery for middleboxes,” in Proc. of ACM SIGCOMM, ser.
SIGCOMM ’15, London, United Kingdom, 2015.

[45] “Boost C++ Libraries.” [Online]. Available: http://boost.org/
[46] “Ryu.” [Online]. Available: https://osrg.github.io/ryu/
[47] “ONOS.” [Online]. Available: http://onosproject.org/
[48] “Iperf.” [Online]. Available: http://iperf.sourceforge.net/

