
Joule: Software–Defined Energy Metering
Roberto Riggio, Dejene Boru, and Tinku Rasheed

CREATE-NET, Italy

Abstract—In this demo we present Joule, a software enabling
real–time power consumption monitoring of networking devices
without having to deploy physical meters in the form of,
for example, managed Power–Over–Ethernet supplies. We will
demonstrate how Joule can estimate the power consumption of
commercial WiFi Access Points by exploiting observable network
statistics and under different workloads, e.g. browsing, video
streaming, and background FTP traffic. An interactive web
dashboard will allow attendees to have a first hand experience
on the correlation between traffic and power consumption.

I. INTRODUCTION

According to [1] it is envisioned that by 2015 wireless
access networks alone will be responsible for 90% of the
carbon footprint of the entire cloud networking ecosystem.
Reducing the energy consumption of wireless access network
becomes thus crucial in order to ensure the long–term sus-
tainability of these technologies. The first steps toward this
goal are (i) to acknowledge each component contribution to
cloud energy footprint; and (ii) to devise energy efficient
wireless networks and change how they are managed. Real
time monitoring of the power consumption of each network el-
ement can provide operators with an increased insight into the
relationship between network traffic and energy consumption,
supporting an energy efficient evolution of their infrastructure.
Nevertheless, deploying network–wide energy consumption
monitoring solutions is often not viable due to the setup and
management costs.

Drawing on these needs we designed and developed Joule
a virtual energy consumption meter capable of estimating
in real–time the power consumption of networking devices
by jointly exploiting easily observable network statistics and
empirical power consumption models [2]. In this demo we
will demonstrate Joule operations over a small WiFi network
and using different workloads, e.g., browsing, video streaming,
and background FTP traffic. An interactive web dashboard
will allow attendees to have a first hand experience on the
correlation between traffic and power consumption.

II. SYSTEM ARCHITECTURE

This demo is built on top of EmPOWER [3] an SDN
platform1 for research and experimentation on programmable
wireless and mobile networks. Following an SDN philosophy,
EmPOWER allows new features and services to be deployed
as applications. Network developers can exploit a set of
high–level primitives to both control and query the status
of the network. Such primitive are designed is such a way
to relieve the developers from the implementation details
specific to the underlying wireless technology, such as, in
the case of a WiFi network, the association/de–association
mechanisms, control frame exchange and status management.
Network virtualization allows each application to be executed

1Online resources available at: http://empower.create-net.org/

Chassis Manager (Energino)

EmPOWER
Agent

OpenFlow Switch
(OpenVSwitch)

N
O

S
W

iF
i

AP
s

Virtual Power Meter Mobility Manager

OpenFlow
Controller

EmPOWER
Access Controller

Sl
ic

es SSID: NOMS-Demo

Fig. 1: The EmPOWER system architecture.

in a sand–boxed environment providing isolation and security.
EmPOWER supports off–the–shelf WiFi Access Points and is
currently being extended to include programmable wireless
base stations (LTE and LTE-A).

A sketch of the EmPOWER system architecture is provided
in Fig. 1. As it can be seen, EmPOWER consists of a logically
centralized Access Controller and multiple Agents running on
each AP. The Access Controller, has a global view of the
network in terms of clients, flows, and topology. Network
services run within logically isolated slices and have full
control of the resources allocated to them. From a end–
user perspective each slice effectively corresponds to a WiFi
network advertising its SSID (NOMS–Demo, in the figure).

Two applications running within the same slice have been
implemented for this demo. The Virtual Power Meter gathers
the network statistics and estimates the power consumed by
the AP in a given observation period. The Mobility Manager
handovers new clients to one of the available APs.

A. Implementation Details
From a technical standpoint, an EmPOWER application

consist in a Python module that is dynamically loaded by
the Access Controller at bootstrap. A REST interface is also
available. In this demo we exploit the following primitives:

• Packets and bytes counters. Used to track the traffic
generated and received by a certain wireless client. Traffic
statistics are aggregated by frame length.

• RSSI triggers. Generate a callback to an user defined
method when a condition has been met. Triggers are
evaluated at each AP by the Agent.

Upon initialization, the Mobility Manager creates a new
RSSI trigger in order to detect new clients joining the network.
The trigger is created using the following statement:

T = rssi(relation=’GT’,
value=-90,
sta=’ff:ff:ff:ff:ff:ff’)

T.callback = handle_new_client

This trigger fires the first time a frame coming from any
client is received by an AP with an RSSI higher than −90
dB (a value slightly above the detection threshold for WiFi978-1-4799-0913-1/14/$31.00 c© 2014 IEEE

interfaces). The handle_new_client callback takes care
of handing over the client to a random AP. Triggers are gen-
erated once when the condition is met and do not repeat while
the condition remains verified. Consequently if it is necessary
to be notified when the condition is no longer verified another
trigger with the opposite conditions must be created. Once the
handover has been performed, the Virtual Power Meter creates
two periodic queries gathering the necessary traffic statistics:

C1 = packets_count(bins=[50,500,1460,8192],
sta=new_client)

C2 = bytes_count(bins=[50,500,1460,8192],
sta=new_client)

The queries above basically ask the controller to pool the
AP new_client is communicating with and to gather the
its statistics. Such statistics consists in the number of packets
and bytes transmitted and received by the station aggregated
by frame length into the specified bins. In the example above,
4 bins are defined (50, 500, 1460, and 8192 bytes). The Virtual
Power Meter periodically polls the above counters in order to
obtain the requested statistics, e.g.:

>>> C1.tx_samples
[10, 1, 500, 0]

This means that since joining the network, the station trans-
mitted 10, 1, 500, and 0 packets with a frame length L, such
that, respectively, L ≤ 50, 50 < L ≤ 500, 500 < L ≤ 1460,
and 1460 < L ≤ 8192. Similarly, C2 provides the number of
bytes transmitted.

B. Power Consumption Models

In this demo we reuse the power consumption models
developed in our previous work [2]:

P = α(d)sat(x, d) + β(d)δ(x) + γ (1)

where P is the AP power consumption in Watts, x is the
offered load in Mbps, d is the datagram size in bytes, δ(x) is
the step function, and

sat(x, d) =

x 0 ≤ x ≤ xmax(d)

0 x ≤ 0

xmax(d) x > xmax(d)

(2)

α(d) = α0(1 + α1/d) (3)

In this model, sat(·) represents the power consumption
saturation regime reached when the offered load exceeds
network capacity. α(d) captures the fact that the rate of
increase in power consumption with offered load is observed
to depend on datagram size. β(d) captures the dependence of
power consumption on datagram length when the offered load
is fixed. γ captures the baseline power consumption when the
AP is idle (no traffic besides the standard WiFi beacons). The
dependence of α(d) on datagram size is primarily due to the
contribution of fixed overheads (framing, contention, etc.), α0

and α1 are parameters. The specific values of all the model’s
parameters are determined during an initial training phase
during which the system being modeled, the WiFi AP in this
case, is subjected to a set of well designed workloads meant to
represent all — or at least most of — the system’s operating
states and at the same time power consumption measurements
are taken using suitable metering devices.

0 10 20

3

3.2

3.4

Time [s]

P
o

w
e

r
C

o
n

s
u

m
p

ti
o

n
 [

W
]

Real
Virtual

(a) Entire download.

4 6 8 10 12 14
3.2

3.3

3.4

3.5

Time [s]

P
o

w
e

r
C

o
n

s
u

m
p

ti
o

n
 [

W
]

Real
Virtual

(b) During slowdown.

Fig. 2: Real (solid line) and virtual (dashed line) power
consumption while download a large file using FTP.

By combining the statistics gathered by EmPOWER and (1)
we can estimate the energy consumed by the AP. Notice that
this is possible due to the fact the power consumption is highly
correlated with traffic [4], [5].

III. DEMO SCENARIO

The demo setup will consist of three APs and three En-
ergino [4] power meters connected via a switch to a laptop
acting as network controller. The APs are embedded boards
running OpenWRT and equipped with one Ubiquiti SR71-A
802.11n interface. Each AP runs the Agent while the laptop
runs the Access Controller. We will have a few wireless clients
consisting of laptops, tablets, and mobile phones. The demo
will display the following aspects of our system:

• Using a web based dashboard we will show in real–time
the power consumption of the three APs as measured by
the physical power meter and as estimated by Joule.

• We will start the download of a large file using FTP from
one of the wireless clients and we will show how the
virtual power meter closely tracks the physical one in the
power consumption figures.

• We will force the wireless client to perform an handover
in order to demonstrate how Joule can promptly react to
network changes.

• Attendees will be able to use the wireless clients in order
to perform normal Internet tasks, e.g. browsing the web,
watching a video on YouTube, etc. allowing them to have
a first hand experience on the correlation between traffic
and power consumption.

Figure 2 reports the instantaneous power consumption of
the AP while downloading a large file from a public server.
The graph refers to one particular run where an artificially
generated network slowdown happened between the 5th and
the 15th second of the download. As it can be seen, the virtual
power meter closely tracks the actual power consumption
during the slowdown. The median values of the actual and esti-
mated power consumption across the 10 runs are, respectively,
3.437W and 3.446W. The median absolute error is 28mW.

REFERENCES

[1] “The Power of Wireless Cloud: An analysis of the energy consumption
of wireless cloud,” CEET, Tech. Rep., June 2013.

[2] Roberto Riggio and Douglas J.Leith, “A measurement-based model of
energy consumption in femtocells,” in Proc. of IEEE WD, 2012.

[3] Roberto Riggio et al., “EmPOWER: A Testbed for Network FunctionVir-
tualization Research and Experimentation,” in Proc. of IEEE SDN4FNS,
2013.

[4] R. Riggio et al., “Energino: energy saving tips for your wireless network,”
in Proc. of ACM SIGCOMM, 2012.

[5] K. M. Gomez et al., “Energino: An hardware and software solution for
energy consumption monitoring,” in Proc. of WinMee, 2012.

