
X–MANO: Cross–domain Management and
Orchestration of Network Services

Antonio Francescon∗, Giovanni Baggio∗, Riccardo Fedrizzi∗,
Ramon Ferrús†, Imen Grida Ben Yahia‡, Roberto Riggio∗

∗FBK CREATE-NET, Trento, Italy; Email: {rriggio,rfedrizzi,afrancescon,g.baggio}@fbk.eu
†Universitat Politécnica de Catalunya, Barcelona, Spain; Email: ferrus@tsc.upc.edu

‡Orange Labs, Paris, France; E–Mail: imen.gridabenyahia@orange.com

Abstract—The orchestration of network services is a well
investigated problem. Standards and recommendation have been
produced by ETSI and IETF while a significant body of scientific
literature can be found exploring both the theoretical and practi-
cal aspects of the problem. Likewise several open–source as well
as proprietary tools for network service orchestration are already
available. Nevertheless, in most of these cases network services
can only be provisioned across a single administrative domain
effectively preventing end–to–end network service delivery across
multiple Infrastructure Providers (InP). In this paper we present
X–MANO, a cross–domain network service orchestration frame-
work consisting in an inter–domain confidentially–presenting
federation interface and in an information model for multi–
domain network service life–cycle programmability. X–MANO is
effectively deployment–agnostic and can be used in hierarchical,
peer–to–peer and cascading (or recursive) configuration. We
validate X–MANO trough a proof–of–concept implementation
over a multi–domain testbed. Finally, we release all the code
under a permissive APACHE 2.0 license making it available to
researchers and practitioners.

Index Terms—Network Management, Network Function Virtu-
alization, Multi-domain orchestration, Multi–technology orches-
tration, Proof–of–concept.

I. INTRODUCTION

Driven by the ever increasing demand for new services
and applications, telecommunication networks are witnessing a
major revolution in both their architecture and service delivery
model. In particular, the consideration that not all services are
born equal has led to the creation of the term demand–attentive
networks [1] highlighting the paradigm shift from a supply–
push to a demand–pull service delivery model.

Network Function Virtualization (NFV) is the key techno-
logical enabler for demand–attentive networks. NFV is already
used by telecommunications operators to deliver services at a
fraction of the cost it would take to run them using dedicated
appliances. Nevertheless, future network services already call
for a pooling of resources across multiple InPs. Examples
include mobile operators leveraging on satellite network op-
erators for back–hauling connectivity [2] or content providers
aggregating cloud, network, and mobile resources to deliver
an end–to-end user experience [3], [4].

One of the biggest challenge in multi–domain network
service orchestration is to compose resources from different
InPs under a single umbrella framework without imposing
requirements or restrictions on the different InPs. In particular
each InP shall be allowed to orchestrate its part of the
network service according to its own internal administrative

policies without having to disclose confidential information,
such as traffic matrices and internal topology, to the other InPs
involved in the service. As a result, existing NFV Management
and Orchestration frameworks [5], [6] that assume global
network knowledge are not applicable.

In a multi–InPs scenario a network service may span
across different administrative as well as technological do-
mains. Notice how the different domains can leverage on
specific orchestration frameworks addressing the management
requirements of that particular technology. Moreover, even if
technological heterogeneities can be abstracted away under a
single network orchestrator, network services deployed across
different administrative domains will face unique challenges
due to the lack of network service orchestration frameworks
capable of enabling inter–InP communications.

In this work we take a step in the direction of enabling
cross–domain network service orchestration by introducing the
X–MANO framework. X–MANO consists in a confidentially–
preserving interface for inter–domain federation and in a set
of abstractions (backed by a consistent information model)
enabling network service life–cycle programmability. Said
abstractions tackle all the aspect of cross–domain network
service provisioning including on–boarding, scaling, and ter-
mination. We validate the proposed federation interface and
information model by implementing them in a proof–of–
concept X–MANO prototype and by using it to deploy a video
transcoding network services in a multi–domain InP testbed.
Finally, we release the proof–of–concept X–MANO imple-
mentation under a permissive APACHE 2.0 license making
it available to researchers and practitioners1.

The rest of the paper is organized as follows. In Sec. II
we present the related work. Section III introduces the cross–
domain orchestration challenges and the associated require-
ments. The X–MANO architecture and interfaces are described
in Sec. IV. Finally, we draw our conclusions in Sec. V.

II. RELATED WORK

In the deployment and orchestration of network services,
one of the most important problem to take into account is the
so–called virtual network embedding (VNE) problem. While
the literature on single–domain VNE is already significant [7],
works on multi–domain VNE have just started to appear [8],
[9], [10], [11], [12]. Distributed approaches for VNE are
provided in [8], [9]. However, they are more focused on

1On line resources available at: https://github.com/5g-empower978-1-5090-6008-5/17/$31.00 c© 2017 IEEE

the theoretical analysis of the proposed protocols and not on
architectural issues. In [10] the authors propose a method for
abstracting domain resources. However, the proposed solution
uses a centralized orchestrator requiring operators to rely on
a 3rd party for cross-domain orchestration. Thus, the proposed
solution is generally suitable for multi–technology orchestra-
tion (single operator) rather than for the multi–InP case. In [11]
the authors propose a solution for the multi-domain VNE prob-
lem. However, they rely on a centralized broker model which
hardly meets all possible use-cases. Indeed, operators will
hardly agree to rely on a 3rd party entity unless a huge added
value is forecast. Moreover, the problem formulation described
in [11] is limited to the case of two InPs. In [12] authors
propose a distributed multi–domain orchestration framework.
Information about local infrastructures is kept within each
domain. However, the framework forecast a specific domain
orchestrator to be deployed which might constitute a high entry
barrier for the solution.

Recent works can be found in literature investigating dif-
ferent architectural approaches for cross–domain orchestra-
tion [13], [14], [15], [16]. In [13] an inter– and intra–domain
routing approach is investigated. However, the proposed so-
lution relies on a centralized service controller which hardly
meets the requirements identified for the multi-domain envi-
ronment. In [14] the authors propose a reference framework
for multi–domain orchestration coming from the work carried
out within the H2020 5GEx project [17]. To the best of our
knowledge, this is the first initiative to design a complete
framework to achieve multi-domain orchestration. However,
this work does not define an information model to abstract
domains resources and to compose network services. Further,
in [15] different multi–domain orchestration approaches are
summarized: centralized, hierarchical, and cascading (or recur-
sive). Recently, also ETSI released a report on architectural op-
tions taking into account multiple administrative domains [16].

The works above either address the multi–domain network
service provisioning problem only from the VNE standpoint
or, when tackling also the service management and orches-
tration aspects of the problem, support only one specific
architecture, e.g. hierarchical, peer–to–peer, or recursive. Con-
versely in this work we set to defined a deployment–agnostic
federation interface and information model for cross–domain
network service orchestration.

III. CROSS–DOMAIN ORCHESTRATION

In this section we introduce the challenges and requirements
for cross-domain network service orchestration. Then in the
next section we will describe how X–MANO addresses such
requirements. Notice how throughout the paper we will use
extensively the ETSI NFV terminology. For a detailed ex-
planation of terms such as Virtual Network Function (VNF),
VNF Descriptor (VNFD), Network Service (NS), and NS
Descriptors (NSD) we refer the reader to [16], [18].

A. Business aspects and Architectural Considerations
Several architectures, each driven by different business

requirements and use cases, can be used to enable multi–
domain network service orchestration. The simplest approach
is the hierarchical one [16] where different domains rely on

a centralized orchestrator. From a business point–of–view this
is a viable solution only for a single administrative domain
as different operators will hardly provide global control of
their infrastructures to a third party. Another approach is the
cascading (or recursive) one where an operator exploits the
network services exposed by another operator to serve its
customers (e.g. a mobile network operator using a satellite
operator for back–hauling). Finally, in the peer–to–peer model
a network service is provided by pooling resources across
several InPs possibly covering different geographical/tech-
nological domains. X–MANO supports all the use cases
and architectural solutions described above by introducing
a flexible, deployment–agnostic federation interface between
heterogeneous administrative and technological domains.

B. Orchestration and Confidentiality

In the single–domain case, network service orchestration
is performed assuming complete knowledge of the under-
lying resources. While this is still a valid assumption in
the case of network services spanning across heterogeneous
technological domains that belongs to the same operator,
confidentially will be broken when multiple administrative
domain are introduced. This highlights an important require-
ment for a multi–domain orchestration framework, i.e. the
capability to hide operator specific details (e.g. traffic matrix).
Similar considerations are made by the authors of [8], [9],
[15]. X–MANO address this requirement by introducing an
information model enabling each domain to advertise in a
confidentially–preserving fashion capabilities, resources, and
VNFs to an external entity. A Multi–Domain Network Service
Descriptor (MDNS) implementing the aforementioned infor-
mation model, allows network service developers to define
network services without being exposed to the implementation
details of the single domains.

C. Life–cycle Management

Irrespectively of the number of administrative and/or tech-
nological domains involved, VNFs and network services have
specific life–cycle management requirements. For example, a
video transcoding VNF may require a streaming VNF to be
configured and running before it can start operating. Similarly
an initialization script may require as input the output of other
initialization scripts. As a result when VNFs belonging to the
same network service are deployed across different domains
it becomes harder to ensure consistent service on–boarding,
scaling, and termination. This is due to the fact that different
orchestrators must cooperate in order to deploy and operate
a single network service. Notice how given the heterogeneity
of all the possible scenarios and use cases, a unified cross–
domain orchestration logic could prove either too rigid, if only
a few hard–coded primitives are made available to network
service developers, or too lax, if instead direct access to the
single–domain orchestrator is provided. X–MANO addresses
this requirement by introducing the concept of programmable
network service which relies on a domain specific scripting
language in order to allow network service developers to
implement custom life–cycle management policies.

IV. X–MANO OVERVIEW

In this section we will introduce the main X–MANO
components then we will describe in detail the X–MANO
interfaces and the concept of programmable network service.
It is worth stressing that the focus of this paper is to define
the interfaces for cross–domain orchestration as a result the
components described below are to be intended as logical
leaving space for them to be implemented in different ways.

A. Components and Interfaces

The following components and interfaces can be identified:
• Domain Orchestrator/Manager (DOM). An entity in

charge of all management activities in a given domain.
Even if the X–MANO design has been inspired by the
ETSI MANO architecture, no constraints are imposed
on the Domain Northbound Interface (D–If) except that
it must support basic VNF and network service life–
cycle management operations (creation, chaining, and
deletion). The DOM must also support, multi–tenancy,
user management, and basic monitoring operations.

• Federation Manager (FM). An entity in charge of the
cross–domain orchestration. The FM is essentially a
cross–domain DOM. The FM exposes the Virtual Domain
Interface (VD–If) which is essentially a D–If with support
for the X–MANO information model. The FM supports
the Federation Interface (F–If) which enables communi-
cation with the federated domains either via the FA (see
below) or via direct connection to the DOMs, if they
support the F–If communication protocol. Finally, the FM
is in charge of splitting the MDNS into many single–
domain NSD and to push them toward their relatives
DOMs. In this manner a domain will only be aware about
only a portion of the full network service.

• Federation Agent (FA). An entity bridging one or more
DOMs with a FM. The FA is in charge of retrieving all the
information related to VNFs and NSs available within one
or multiple domains and of exposing them to the FM. The
FA is also responsible for translating the requests coming
from a FM into DOM–compliant requests and returning
to the FM the responses generated by the DOMs. Each FA
supports a northbound and a southbound interface. The
former is the federation interface, i.e. the F–If, while the
later is the DOM northbound interface, i.e. the D–If. A
FA can be embedded inside a DOM allowing the DOM
to natively support the communication toward a FM.

The F–If interface allows a FM to hide the complexi-
ty/fragmentation of the underlying federated domains and let
the upper entities to work over the them as if they were a
single domain. The first immediate consequence offered by
this approach is the possibility to recursively nest an FM under
the control of another FM effectively enabling the creation of
Federation of Federators. Figure 1 illustrates several cross–
domain orchestration architecture that are supported by the
X–MANO interfaces. Notice how this include hierarchical,
cascading, and peer–to–peer. In the latter case (peer–to–peer)
the same FM behaves as master and slave at the same time,
depending on request’s origin point.

B. VNF Manifests

Resource advertisement is the way an FM is informed
of the resources available at each federated domain. The
advertisement is performed by each FA plugged to a federated
domain. The way each FA retrieves such information is an
implementation detail. Since we are focusing on VNFs and
their compositions, the advertised resources will be the VNFs
available in a given domain.

All the information advertised to the FM for a given VNF
are provided in a manifest called VNF Manifest. A VNF
Manifest contains the following information: (i) the VNF
identifier and descriptor, (ii) a human readable description of
the VNF, (iii) the set of functions that can be invoked on the
VNF and the list of their expected parameters, and (iv) the set
of parameters that can be monitored.

Notice how network services can be advertised by the FA as
atomic VNFs. In particular a domain administrator can decide
if some local network services shall be exposed to the FA.
In this case, the FA will advertise each network service to
the FM as a VNF with its own VNF Manifest. The FM will
proceed advertising such a NS trough its VD–If as if the
network services were VNFs hiding any information about
their internal structure.

Domain administrators can advertises to the FM only a
subset of the actions that can be triggered on VNFs, limit
the connection points that available for chaining operations,
constrain the set of VNF input parameters, and control the list
of monitors that can be requested on a particular VNF. Notice
how the translation between domain VNFs and VNF Manifest
is currently done manually, nevertheless it is envisioned that
such translation could be automated at the FA level using
state–of–the–art model translation techniques.

C. Life–cycle Management

The module in charge of managing the network service life–
cycle is the FM. This is done using a flexible programmable
NSD which allows network service developers to customize
the way network services are deployed and managed. NSDs
have been extended with the scripts defining their life–cycle.
Such scripts enable features like execution of operations in
series or in parallel, storage of intermediate results in local
variables (Data Stores) for later usage (across multiple do-
mains), locking/unlocking of shared resources, and triggering
of actions in response to a specific event or set of events.

NSD Scripts are interpreted by FM. In particular we can
identify two main functions that are closely related with
programmable NSD scripts: the Trigger function, and the
Handler function (see Fig.2). The Trigger functions keeps
track of a list of conditions defined in the NSDs, conversely
the Handler function stores all the scripts that can be executed
when one or more of the defined conditions is verified. It is
worth noticing that Triggers, defined in the MDNS, are stored
in the FM, since they are part of the multi–domain network
service orchestration.

A notification system is in charge of detecting the events
that can be part of a trigger (e.g., a change in the status of
the network service, a new measurement, a given response
from a previous operation, an error, etc.). The Trigger function

D1 D2

FAX.1 FAX.2

FMX
FAX.Y

FAK.X

D3 D4

FAY.3 FAY.4

FMY
FAY.X

FAK.Y

FMK

Federation X
hierachical

Federation Y
hierachical

Federation X+Y
peer-to-peer

Federation K
hierachical

VD-If
D-If
F-If
IDC

LEGEND

DOM2DOM1 DOM4DOM3

Fig. 1. Example of the different architectures supported by the X–MANO framework. Domains D1, D2, D3, and D4 have some Inter-Domain Connections
(IDC) established between them. Each domain has its own DOM managing its local resources. D1 and D2 are federated by FMX via Federation Agents
FAX.1 and FA X.2, respectively. Similarly, D3 and D4 are federated by FMY via FAY.3 and FAY.4, respectively. FMX and FMY federate each other via
FAX.Y and FAY.X , forming a peer–to–peer federation, whilst FMK federates them both in a hierarchical fashion via FAK.X and FAK.Y , respectively.

HANDLER
scripts

TRIGGER
conditions

Other FM´s
modules

FM managed
FAs

Notification
System

FM
requests/responses

notifications

check

invoke

configure

configure

Fig. 2. Trigger-Handler mechanism.

continuously monitor the notification stream in order to check
if one or more triggering conditions are met. When this
happens, the Trigger looks up for the Handler that must be
invoked and executes the associated script(s). While a script
is running, new events (possibly generated by the same script)
can be generated potentially triggering new handlers.

A MDNS can define multiple triggers declaring which
operations have to be performed when certain conditions
are met. A Condition specifies a comparison between two
elements (the left item and right item fields) according to a
logical comparison operator (the operator field). These two

elements yield a type and a value. The type specifies the nature
of the value (bool, int, double, string, etc.) while the value can
be an hardcoded value or a Data Store. It is worth noticing that
a Trigger can contain many “Condition” objects arranged in a
hierarchical manner, where relations among these conditions
are specified through logical operators.

Data Stores allows storing the results of an operation in
one domain and use it as an argument for a another operation
in different domain. Monitors, VNFs notification, and state
change are all treated as Data Stores and can be accessed
globally. Data Stores are particularly important because, when
performing multi–domain orchestration it is often required to
share information among VNFs located on different domains.

Tied to the conditions there are the operations, or Steps, that
can be performed. Four types of Steps can be defined:

• VNFs actions. A list of VNF actions. For each VNF
Action it is possible to provide a set of parameters and
store the result of this operation in a Data Store. It is
worth noticing that the actions that are defined in the
same step are executed in parallel.

• Elaborations. This step allows to perform computations
on Data Stores, e.g summing the value of two variables.

• Conditional Step. This step allows to check if a certain
condition is valid and to react accordingly.

• Lock/Unlock Domain. This step is necessary whenever
atomic operations have to be performed. This step pro-
vides exclusive access to the federated domain resources

INIT

ACT

TERM

ERR

I1
I2 I3

A1
A2

T1

Fig. 3. X–MANO state machine with some user–defined internal states.

to a network service preventing collision with other
network services that may run in parallel.

By the above description, it should be clear that the life–
cycle of a network service can be totally managed by using
user–defined NSD scripts. Nevertheless, a set of default states
and the associated triggers/handlers is defined in order reduce
the scripting burden for users that require only basic life–
cycle management functions (see Fig. 3). Following these
considerations, four main states can be identified:

• Initialization (INIT). Resources have been allocated and
configured according to the network service requirements.

• Active (ACT). The network service has been fully instan-
tiated and is ready to serve end–users.

• Termination (TERM). The network service has been
terminated and all the resource have been released.

• Error phase (ERR). An un–handled exception occurred in
the network service. The Error phase can be entered/ex-
ited from any of the other phases.

Starting from these four main phases, the network service
developer can define other states and transition using the NSD
scripting functionality. Depending on the number of VNFs
and on the complexity of their interaction, the definition of
the NSD script can become a complex task. However, we
assume that such burden could be lighten by the adoption of
a dedicated IDE providing a simplified graphical composition
environment with auto–completion, debugger, and other tools
for network service developers.

V. CONCLUSIONS

One of the main difference between single–domain and
multi–domain network service orchestration is the level of
awareness of the involved DOMs about the whole process. In
the single–domain scenario the DOM has the whole situation
under its control. Conversely, in the multi–domain scenario
such global view is missing, since usually the different DOMs
are not designed to interact with each other and to share
information about the network service deployment process.
This lack of synchronization among the involved DOMs can
be fatal for the network service creation process, in particular
when steps, which are supposed to be taken in a given order,
are performed with no respect of the planned sequence.

The X–MANO framework proposed in this paper allows
to coordinate the operations of different DOMs. This brings

orchestration to the multi-domain level: indeed, the FM (the di-
rector) following the NSD (the score) coordinates and triggers
the actions of the DOMs (the players). The combination and
integration of the resource advertisement mechanism together
with the flexibility in defining the NS life–cycle is the key of
the proposed solution. A proof–of–concept implementation of
the proposed framework has also been evaluated and released
to the broader community under a permissive license.

As future work we can imagine a number of directions. The
first is related to the automatic translation of domain VNF
descriptors into VNF Manifest. Moreover also the decomposi-
tion of multi–domain NSDs into many single–domain NSD is
also an challenging aspect. Likewise we also plan to formalize
the programmable NSD scripting language definition and to
embed it into a mainstream IDE such as Eclipse.

ACKNOWLEDGEMENT

Research leading to these results has received funding from
the European Union’s H2020 Research and Innovation Pro-
gramme under Grant Agreement H2020-ICT-644843 (VITAL).

REFERENCES

[1] IET, “Demand Attentive Network (DAN),” 2013.
[2] R. Ferrús, H. Koumaras, O. Sallent, G. Agapiou, T. Rasheed, M.-A.

Kourtis, C. Boustie, P. Glard, and T. Ahmed, “SDN/NFV-enabled satel-
lite communications networks: Opportunities, scenarios and challenges,”
Physical Communication, vol. 18, Part 2, pp. 95 – 112, 2016.

[3] T. Taleb, A. Ksentini, and R. Jantti, “Anything as a Service for 5G
Mobile Systems,” IEEE Network, vol. 30, no. 6, pp. 84–91, 2016.

[4] NGMN Alliance, “5G White Paper,” Feb 2015.
[5] “OpenBaton.” [Online]. Available: https://openbaton.github.io/
[6] “OPNFV.” [Online]. Available: https://www.opnfv.org/
[7] A. Fischer, J. F. Botero, M. Till Beck, H. De Meer, and X. Hessel-

bach, “Virtual network embedding: A survey,” Communications Surveys
Tutorials, IEEE, vol. 15, no. 4, pp. 1888–1906, 2013.

[8] M. Chowdhury, F. Samuel, and R. Boutaba, “Polyvine: policy-based
virtual network embedding across multiple domains,” in Proc. of ACM
VISA, New Delhi, India, 2010.

[9] T. Mano, T. Inoue, D. Ikarashi, K. Hamada, K. Mizutani, and O. Akashi,
“Efficient virtual network optimization across multiple domains without
revealing private information,” IEEE Transactions on Network and
Service Management, vol. 13, no. 3, pp. 477–488, Sept 2016.

[10] I. Vaishnavi, R. Guerzoni, and R. Trivisonno, “Recursive, hierarchical
embedding of virtual infrastructure in multi-domain substrates,” in Proc.
of IEEE NetSoft, London, UK, 2015.

[11] I. Houidi, W. Louati, W. B. Ameur, and D. Zeghlache, “Virtual network
provisioning across multiple substrate networks,” Computer Networks,
vol. 55, no. 4, pp. 1011 – 1023, 2011.

[12] Q. Zhang, X. Wang, I. Kim, P. Palacharla, and T. Ikeuchi, “Vertex-centric
computation of service function chains in multi-domain networks,” in
Proc. of IEEE NetSoft, Seoul, South Korea, 2016.

[13] P. Iovanna, F. Ubaldi, F. Giurlanda, S. Noto, A. Priola, L. M. Contreras,
V. Lopez, and J. P. F. P. Gimenez, “Effective elasticity for data cen-
ters interconnection in multi-domain wan: Information modelling and
routing,” in Proc. of ECOC, Valencia, Spain, 2015.

[14] R. Guerzoni, D. Perez-Caparros, P. Monti, G. Giuliani, J. Melian,
R. Figueiredo, A. Ramos, C. J. Bernardos, G. Biczk, B. Sonkoly, F. Tusa,
A. Galis, I. Vaishnavi, F. Ubaldi, A. Sgambelluri, C. Santana, and
R. Szabo, “Multi-Domain Orchestration and Management of Software
Defined Infrastructures: a Bottom-Up Approach,” in Proc. of EuCNC,
Athens, Greece, 2016.

[15] C. Bernardos, L. Contreras, and I. Vaishnavi, “Multi-domain net-
work virtualization,” Working Draft, Internet-Draft draft-bernardos-
nfvrg-multidomain-01, October 2016.

[16] European Telecommunications Standards Institute (ETSI), Network
Functions Virtualisation (NFV); Management and Orchestration; Report
on Architectural Options, Std. ETSI GS NFV-IFA 009, July 2016.

[17] H2020 5G Exchange (5GEx). [Online]. Available: http://www.5gex.eu
[18] European Telecommunications Standards Institute (ETSI), Network

Functions Virtualisation (NFV); Architectural Framework, Std. ETSI GS
NFV 002, December 2014.

