
Intent–based Mobile Backhauling for 5G Networks
Tejas Subramanya, Roberto Riggio, and Tinku Rasheed

CREATE-NET, Trento, Italy; E–Mail: t.subramanya,roberto.riggio,tinku.rasheed@create-net.org

Abstract—Intent–based networking is a major component that
will transform the manner in which the SDN/NFV–enabled future
network infrastructures are operated. In particular, Intent-based
networking is expected to play a major role in the multi–
technological and software–defined 5G systems development
roadmap. In this paper, we present the design and prototype
implementation of an Intent–based mobile backhauling interface
for 5G networks. Finally, we report on the empirical evaluation
of of the proposed Intent–based interface over a small Enterprise
WLAN. We also release the entire software stack under a
permissive license for academic use.

Index Terms—Wireless Networks, Network Function Virtual-
ization, Intent–based Networking

I. INTRODUCTION

Despite the fact that mobile networks are growing more
complex over the years, the network management tools have
not conceptually changed in the last decade. Software Defined
Networking (SDN) has brought to the networking landscape
concepts and paradigms that have been common for a long
time in the computer science domain, such as high–level
programming abstractions and declarative languages. At the
same time, a new trend has recently emerged in the networking
domain calling for a radical refactoring of network functions.
This trend, known as Network Function Virtualization (NFV),
points toward a transition from hardware based middleboxes to
virtual network functions (VNF) running as software processes
on general purpose platforms.

If, due to the improved economies of scale, this transition
is set to reduce the deployment and operational costs of
current networks, several implications of such software–centric
networks are still unknown. New bugs, increased latency, and
in general less predictable performances are just some of the
pitfalls typically linked to NFV. Moreover, the requirements
of a network service are often specified by business stake-
holders and customers as high level policies. For example,
the customer of an Infrastructure as a Service provider may
be interested in a overlay network spanning all its worldwide
branch offices. However, the same customer may also want
assurance that its traffic is not routed across certain nodes.
Similarly, a virtual wireless network operator may want all
the traffic coming for its wireless users to be routed trough
a certain node (e.g. a Performance Enhancement Proxy).
Finally, recent advances in wireless communications, such as
Coordinated Multipoint (CoMP), are also set to raise new
network control and coordination challenges.

In this paper, we introduce a novel multi–domain/multi–
technology Intent–based networking interface. Its design is

Research leading to these results received funding from the European
Union’s H2020 Research and Innovation Action under Grant Agreements
H2020-ICT-671639 (COHERENT).

based on the requirements of future 5G mobile networks which
blur the line between radio access and backhaul in favor
of a programmable data–plane combining computational and
networking resources (including radio). Our design accounts
for several scenarios including mobility management, uplink/-
downlink decoupling, and fine grained packet processing. This
paper also reports on a preliminary implementation of the
proposed Intent–based interface and on its evaluation over an
enterprise WLAN network. Preliminary results show that our
design can ensure functional correctness of the requested net-
work service while at the same time demonstrating good per-
formance. We also release a proof–of–concept implementation
of our intent–based networking interface under a permissive
APACHE 2.0 License for academic use.

The rest of the paper is structured as follows. Section II
discusses the related work. Section III introduces the require-
ments and the system design. The proof–of–concept and its
validation are presented respectively in Sec IV and in Sec V,
respectively. Finally, Sec. VI draws the conclusions pointing
out our future research directions.

II. RELATED WORK

Rapidly emerging technologies such as SDN, NFV, and
Cloud computing are transforming Telco networks from a
network–centric to an application–centric view. Intent–Based
Networking is one such approach which allows network ser-
vice developers to express their requirements and constraints
in the form of policies, i.e. what to do, rather than the
mechanism, i.e. how to configure the network. These direc-
tives, known as “Intents”, are composed by network service
developers with little or no knowledge about the underlying
infrastructure. Eventually, intents are compiled into low–level
forwarding rules by an Intent–decoder. Currently, researchers
from academia, industry and open software communities are
actively investigating the importance of the intent–based ap-
proach in the field of networking [1], [2], [3].

SDN and Cloud Computing Platforms. The OpenDay-
Light [4] project is developing a Network Intent Composition
(NIC) framework as part of the OpenDaylight Controller
platform [5]. OpenDayLight also supports two other types
of intent, namely GBP–intent [6] and NEMO [7]. The Open
Source Network Operating System (ONOS) project also pro-
vides an intent framework that allows applications to specify
network control desires in terms of policies [8]. OpenStack [9],
a popular open source cloud computing platform, also supports
the GBP framework [10].

Network Policies. Many works have recently focused on
flexible network policies [11], [12], [13]. These frameworks
are however complex to use by non-expert users because

978-3-901882-85-2 c© 2016 IFIP

RAN
Controller

Access Point(s)

RAN Agent

802.11
Radio(s)

Switch(es)

OpenFlow
Agent

OpenVSwitch

In
fr
as
tr
uc

tu
re

 L
ay

er
C
on

tr
ol

 L
ay

er
A
pp

lic
at
io
n

 L
ay

er

Intent
Interface

Control Applications

Backhaul Controller (e.g. Ryu)

Intent Engine

R
ES

TPath
Computation

Element

OpenFlow
Agent

OpenVSwitch

Mobility
Management

Traffic
Engineering

Fig. 1: System Architecture.

policy expressions are tied with low level details of the packet
forwarding nodes. In [14], [15], the authors propose frame-
works to manually compose network policies. In [16], [17], the
authors argue that the manual composition of network policies
by tenants, operators, network admins, end–users and control
programs (network services) independently might result in
network policy conflicts and unexpected runtime behavior.
Therefore, they propose a graph based approach to resolve
policy conflicts. In [18], the authors argue that currently there
is no comprehensive network virtualization platform and that
it is time to revise the network management state of the art.
Therefore, they propose an intent-based modeling abstraction
for specifying the network as a policy and also present
an efficient network virtualization platform called DOVE to
realize their proposed abstractions.

Nevertheless, to the best of our knowledge, this is the
first work to propose an intent–based interface addressing the
requirements of a programmable mobile backhaul capable of
supporting the advanced features that will characterize 5G
systems, including multiple points of attachment in both the
uplink and downlink directions, flexible functional split, and
fine grained packet control.

III. INTENT–BASED NETWORKING ABSTRACTIONS

A. Requirements

In this section we set to define a reference model for
Intent–based networking in a multi–domain/multi–technology
scenario combining radio access and backhauling. Figure 1
depicts the high–level reference system architecture. As it can
be seen, it consists of three layers: infrastructure, control and
application. The infrastructure layer includes the data–plane
network elements (e.g. Wi–Fi Access Points and OpenFlow
switches) which are in constant communication with the
(logically) centralized controller(s) situated at the control layer.
Applications run in the application layer leveraging on the
global network view exposed by the controller(s) to implement
the network control and coordination tasks. The backhaul is
assumed to be OpenFlow–enabled [19].

Let us consider a WLAN deployed in a football stadium
such as the one depicted in Fig. 2a. Notice that, this work

is agnostic w.r.t. the specific radio access technology, conse-
quently the use of a Wi–Fi based WLAN in this section is
to be considered merely as an example and not as a system
requirement. Due to both the high number of potential wireless
clients (football stadiums can often accommodate more than
100000 people) and the contention–based nature of the Wi–Fi
MAC, the quality of experience perceived by the users can
quickly degrade as more and more user–generated content is
injected into the network (e.g. tweets and vines). However,
although in a typical Wi–Fi network clients are connected to a
single AP which acts as their point of attachment to the wired
backhaul (see Fig. 2a), the broadcast nature of the wireless
medium allows, in principle, to opportunistically receive a
wireless user’s transmission at multiple in–range APs (see
Fig. 2b). If the collisions are i.i.d., then the overall frame
delivery probability will increase with the number of APs that
are within decoding range of the transmitting user. However,
a naive implementation of this mechanism will inevitably
generate a high number of duplicates on the wired backhaul.
This is detrimental to the performance of both the backhaul,
due to the increased traffic, and of TCP, because duplicate
segments are interpreted by TCP as a sign of congestion.

Off–the–shelf Wi–Fi APs already implement local dupli-
cates filtering, since duplicate frames can be received in case
of a lost acknowledgment. In Fig. 2c instead, the duplicate
filtering functionality which is typically embedded within the
Wi–Fi APs is decoupled and moved to the backhaul. Dupli-
cate filtering could be performed by either dedicated servers
deployed in the backhaul or it could be performed by hybrid
switching nodes embedding packet processing capabilities.
In either case the duplicate filtering operation can be seen
as VNF executed on a general purpose, possibly virtualized
platform. Finally, a the stadium infrastructure owner could
require that web traffic generated by the users must be sent
to a Deep Packet Inspection VNF while the remaining traffic,
e.g. emails, can be forwarded directly to the global Internet.
The requirements imposed by this use case on the backhaul
Intent–based interface are the following:

• Dynamic chaining: precise portions of wireless traffic
must be processed by a set of VNFs in a pre–defined
order; no knowledge of the underlying substrate network
shall be required on the Intent interface consumer.

• Multiple Points of Attachment: wireless clients can have
multiple points of attachment to the wired backhaul;
traffic for a single destination may thus be required to
be routed to/from different point of attachment.

• Mobility Management: wireless users’ points of attach-
ment can change at run–time due to user mobility; the
intent interface consumer shall be allowed to declare
the actual point of attachment(s) leaving to the runtime
system the burden of re–configuring the backhaul.

B. Design

The requirements listed above are captured by the Intent–
based mobile backhauling abstractions depicted in Fig. 3 as a
UML class diagram. As it can be seen, an Intent is defined as
a collection of Virtual Links. Each Virtual Link represents a

Duplicates Filtering

(a) Single uplink.

Duplicates Filtering

(b) Multiple uplinks, no duplicates fil-
tering.

Duplicates Filtering

(c) Multiple uplinks, with duplicates
filtering.

Fig. 2: A Wi–Fi WLAN deployed in a football stadium. In (a) transmissions from wireless users are received at a single AP
while in (b) transmissions are opportunistically received at multiple APs. Duplicates are filtered in the backhaul (c).

Intent

Virtual Link

Target
DPID <Ethernet Address>
Port <Int>

Source
DPID <Ethernet Address>
Port <Int>

0..1

1

Matches

*
1

1

Fig. 3: Intent–based mobile backhauling abstractions.

backhaul forwarding policy. Virtual Links must specify at least
the Target Termination Point (TTP) and the portion of the flow
space to which the Intent shall be applied. An optional Source
Termination Point (STP) can also be specified. A Virtual Link
with just the TTP requires the backhaul to forward all the
matching flows to the TTP. Conversely, a Virtual Link with
both the TTP and the STP requires the backhaul to forward
all the matching flows at the STP to the TTP. Termination
points are defined as the pair Datapath Identifier (DPID) /
Port. The portion of the flow space affected by the intent is
instead defined as a standard OpenFlow matching rule.

For example, let us consider the scenario sketched in Fig. 4.
The network is composed of three Wi–Fi APs and two
OpenFLow switches. The single wireless user has one point
of attachment in the downlink direction and three points of
attachment in the uplink direction. One duplicate filtering VNF
is available in the network attached to one of the OpenFlow
switches. The Intent configuration required by this scenario is
composed of four Virtual Links. The first Virtual Link requires
the backhaul to deliver all the traffic destined to the wireless
station AA:BB:CC:DD:EE:FF to DPID 00:00:00:00:00:00:01
port 1. The remaining Virtual Links require the backhaul
network to deliver all the traffic transmitted by the wireless
station AA:BB:CC:DD:EE:FF and received by the three APs,
to the 00:00:00:00:00:00:0A port 4. The latter is essentially
the port to which the Duplicate filtering VNFs is attached. The
Virtual Links are depicted as dashed blue lines in Fig. 4.

IV. IMPLEMENTATION DETAILS

A. Wireless Access Platform

The proposed Intent–based networking interface has been
implemented and validated using the EmPOWER platform.
EmPOWER is an open toolkit for SDN/NFV research and

VNF

00:00:00:00:00:03

00:00:00:00:00:01

00:00:00:00:00:02

1

1

1

4

aa:bb:cc:dd:ee:ff 00:00:00:00:00:0a

00:00:00:00:00:0b

Fig. 4: A sample backhaul network. Virtual links are repre-
sented as dashed blue lines.

experimentation in wireless and mobile networks. Its flexi-
ble architecture and the high–level programming APIs allow
for fast prototyping of novel services and applications. Em-
POWER relies on a centralized controller to implement control
and management tasks. EmPOWER currently supports both
Wi–Fi and LTE radio access nodes [20]. EmPOWER also
supports NFV Function Management and Orchestration for
Click–based [21] Light Virtual Network Functions [22].

B. Intent Engine

As OpenFlow controller for the wired backhaul we have se-
lected the Ryu [23]. Notice however, that although the proof–
of–concept presented in this work targets he Ryu Controller,
the Intent interface design itself is controller agnostic. We
extended Ryu by implementing a new component named Intent
Engine. Such component is in charge of both receiving new
Intents and translating them into actual rules for the backhaul.
The Intent Engine is composed of two parts: a REST interface
and a Path Computation Element. Intents are received from
the REST interface as series of POST commands, one for each
Virtual Link in the Intent. For each valid Virtual Link, the Path
Computation Engine generates a set of FlowMod commands
implementing the requested Virtual Link forwarding policy.

The listings below contains the REST requests implement-
ing the intent depicted in Fig. 4. In particular the follow-
ing REST request contains the downlink Virtual Link. As
it can be seen, the Virtual Link is requiring the backhaul

network controller to forward all the traffic addressed to station
aa:bb:cc:dd:ee:ff to DPID 00:00:00:00:00:01 on port 2.

Listing 1: Basic mobility management Intent
{

” t t p d p i d ” : ” 0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0 1 ” ,
” t t p p o r t ” : 2
” matches ” : {

” d l d s t ” : ” aa : bb : cc : dd : ee : f f ”
}

}

Instead, the next listing contains the REST request for the
uplink Virtual Links. In this case the Virtual Link is requiring
the backhaul network controller to forward all the traffic with
the specified pairs of Ethernet source/destination addresses
received on DPID 00:00:00:00:00:01 on port 2 to the DPID
00:00:00:00:00:0A on port 4.

Listing 2: Duplicate filtering Intent.
{

” s t p d p i d ” : ” 0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0 1 ” ,
” s t p p o r t ” : 1
” t t p d p i d ” : ” 0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0A” ,
” t t p p o r t ” : 4
” matches ” : {

” d l s r c ” : ”AA:BB:CC:DD: EE : FF”
” d l d s t ” : ” 5C : E0 : C5 :AC: B4 : A3”

}
}

Notice how, during the serialization, the Virtual Link defini-
tion has been slightly changed. This is due to the fact that, in
order to properly operate, the Duplicate Filtering VNF must
have access to the sequence number in the Wi–Fi header.
However, Wi–Fi frames cannot be directly transported over
the backhaul, since their format would not be recognized by
the OpenFlow switches. Instead, before entering the wired
backhaul, Wi–Fi frames must be first encapsulated into a suit-
able transport protocol such as the Lightweight Access Point
Protocol (LWAPP) [24]. LWAPP frames can then be carried
over Ethernet. In our prototype LWAPP frames source Ethernet
Address is set to the MAC Address of the wireless client,
while the destination address is set to the MAC address of the
interface to which the LWAPP message is sent. This process
of encapsulation is transparently performed by the AP. That is
why the Virtual Link requires the backhaul network controller
to match on the Ethernet source AA:BB:CC:DD:EE:FF and on
the Ethernet destination address 5C:E0:C5:AC:B4:A3 which
we assume to be the VNF interface MAC address.

C. Duplicate Filtering

The duplicate filtering VNF is implemented using Click [21]
on a standard laptop attached to one of the backhaul switches.
The Click configuration is reported following listing.

Listing 3: Duplicates filtering VNF.
FromDevice (e t h 0)
−> C l a s s i f i e r (1 2 / 8 8 bb)
−> S t r i p (1 8)
−> W i f i D u p e F i l t e r ()
−> WifiDecap ()
−> ToDevice (e t h 0)

As it can be seen non–LWAPP traffic is discarded, while le-
git frames are stripped of their Ethernet (14 bytes) and LWAPP
(4 bytes) headers and passed to the duplicate filtering element
(WiFiDupeFilter). Unique WiFi frames are then converted to
Ethernet frames and sent back to the backhaul.

V. EVALUATION

A. Methodology

The main goal of our experiments is to determine the
benefits of Intent–based networking on Mobility Management.
The experimental setup is the one depicted in Fig. 4. The
wireless access network and the backhaul network controllers
(not represented in the figure) communicate with the net-
working elements using dedicated Ethernet links (out–of–band
signaling). During the measurement we instructed the WLAN
controller to periodically hand–over the single wireless station
to a different APs. Details about how Wi–Fi handovers are
implemented can be found in [20].

Measurements are taken in the downstream and upstream
directions using TCP traffic with and without the Intent–
based interface. In the latter case, the backhaul reconfiguration
is left to the learning switch algorithm implemented by the
OpenFlow switches. Iperf [25] was used as synthetic traffic
generator. Handovers are performed every 5 seconds. Each
measurement was 300 seconds long.

B. Measurement results

Results for both the downstream and upstream traffic are
reported in, respectively, Fig. 5 and in Fig. 6. As it can be
seen the introduction of the Intent–based interface provides
some benefits. The performance improvement is particularly
noticeable in the upstream direction where the use of the
Intent–based interface essentially eliminates any performance
degradation due to the handovers. This is to be ascribed to
the fact that in the upstream scenario the wireless client is
uploading a significant amount of data to a remote server.
However, in the legacy scenario TCP acknowledgments may
be delivered to the old AP when a handover happens. This
is interpreted by TCP as a sign of congestion triggering a
reduction in the transmission rate at the sender.

Conversely, in the downstream direction the performance
improvement is not as remarkable. In fact, a non–negligible
performance degradation can be noticed when handovers
happen. This degradation is nevertheless smaller than the
one experienced when no intent–based interface is used. The
difference in behavior can be ascribed to the higher data–
rate in the downstream direction which means that some TCP
segments may still be on route to the old AP a handover
happens. Finally, Fig. 7 plots the TCP throughput (samples are
taken every 1 second) distribution with and without Intent–
based interface. The experiments was also performed using
UDP traffic (single CBR flow at 20 Mb/s), however in this
case the performance improvement brought by the intent–
based interface was essentially null.

0 100 200 300

Time (s)

0

10

20

30
T

h
ro

u
g

h
p

u
t

[M
b

/s
]

(a) w/o Intent–based Interface.

0 100 200

Time (s)

0

10

20

30

T
h

ro
u

g
h

p
u

t
[M

b
/s

]

(b) w/ Intent–based Interface

Fig. 5: TCP throughput in the downstream direction with and
without Intent–based interface.

0 100 200 300

Time (s)

0

10

20

30

T
h

ro
u

g
h

p
u

t
[M

b
/s

]

(a) w/o Intent–based Interface.

0 100 200

Time (s)

0

10

20

30

T
h

ro
u

g
h

p
u

t
[M

b
/s

]

(b) w/ Intent–based Interface

Fig. 6: TCP throughput in the upstream direction with and
without Intent–based interface.

0 20 40

x=Mb/s

0

0.5

1

F
(x

)

w/o Intent

w/ Intent

(a) Downstream direction.

0 10 20 30

x=Mb/s

0

0.5

1

F
(x

)

w/o Intent

w/ Intent

(b) Upstream direction.

Fig. 7: TCP throughput distribution with and without Intent–
based interface.

VI. CONCLUSIONS

In this paper we presented an Intent–based backhauling
interface for 5G systems. The proposed interface draws a clear
line between the concerns of the wired backhaul controller and
the concerns of the wireless access controller. We have also
reported on a preliminary proof–of–concept implementation
of the proposed interface. Empirical results show significant
performance improvements.

As future work we plan to extend the Intent interface with
support for VNF migration, path restoration, and telemetry.
Moreover, we also plan to extend the Intent interface with
bidirectional communications allowing the backhaul controller
to notify the wireless access controller about network failures
and topology changes. Conflict resolution between policies is
also left as future work. Finally, we also plan to port the
interface to other platforms, such as ONOS [26].

REFERENCES

[1] “Intent As The Common Interface to Net-
work Resources.” [Online]. Available: http://www.ietf.org/mail-
archive/web/i2nsf/current/pdfEhAfL7kT9F.pdf

[2] “Intent: Don’t Tell Me What to Do! (Tell Me What You Want).” [Online].
Available: https://www.sdxcentral.com/articles/contributed/network-
intentsummitperspectivedavidlenrow/2015/02/

[3] “The Most Important Work in SDN: Have
We Got It Backward?” [Online]. Avail-
able: https://www.sdxcentral.com/articles/contributed/important-work-
sdn-got-backwards/2014/04/

[4] “The OpenDaylight Project.” [Online]. Available:
https://www.opendaylight.org/

[5] “OpenDayLight Network Intent Composition.” [Online]. Available:
https://wiki.opendaylight.org/view/Network Intent Composition Use Cases

[6] “OpenDayLight Group Based Policy.” [Online]. Available:
https://wiki.opendaylight.org/view/Group Based Policy (GBP)

[7] “NeMo: An Applications Interface to Intent Based Networks.” [Online].
Available: http://nemo-project.net

[8] “ONOS Intent Framework.” [Online]. Available:
https://wiki.onosproject.org/display/ONOS/Intent+Framework

[9] “OpenStack Open Source Cloud Computing Software.” [Online].
Available: https://www.openstack.org/

[10] “OpenStack Group Based Policy.” [Online]. Available:
https://wiki.openstack.org/wiki/GroupBasedPolicy

[11] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford,
A. Story, and D. Walker, “Frenetic: A network programming language,”
SIGPLAN Not., vol. 46, no. 9, pp. 279–291, Sep. 2011.

[12] C. Monsanto, J. Reich, N. Foster, J. Rexford, and D. Walker, “Compos-
ing software-defined networks,” in Proc. of USENIX NSDI, Lombard,
IL, USA, 2013.

[13] A. Voellmy, J. Wang, Y. R. Yang, B. Ford, and P. Hudak, “Maple:
Simplifying sdn programming using algorithmic policies,” in Proc. ACM
SIGCOMM, Hong Kong, China, 2013.

[14] C. J. Anderson, N. Foster, A. Guha, J.-B. Jeannin, D. Kozen,
C. Schlesinger, and D. Walker, “Netkat: Semantic foundations for
networks,” SIGPLAN Not., vol. 49, no. 1, pp. 113–126, Jan. 2014.

[15] N. Foster, D. Kozen, M. Milano, A. Silva, and L. Thompson, “A
coalgebraic decision procedure for netkat,” SIGPLAN Not., vol. 50, no. 1,
pp. 343–355, Jan. 2015.

[16] J. Lee, J.-M. Kang, C. Prakash, S. Banerjee, Y. Turner, A. Akella,
C. Clark, Y. Ma, P. Sharma, and Y. Zhang, “Network policy white-
boarding and composition,” SIGCOMM Comput. Commun. Rev., vol. 45,
no. 4, pp. 373–374, 2015.

[17] C. Prankash, J. Lee, Y. Turner, J.-M. Kang, A. Akella, S. Benerjee,
C. Clark, Y. Ma, P. Sharma, and Y. Zhang, “PGA: Using Graphs to
Express and Automatically Reconcile Network Policies,” in Proc. of
ACM SIGCOMM, New York, NY, USA, 2015.

[18] R. Cohen, K. Barabash, B. Rochwerger, L. Schour, D. Crisan, R. Birke,
C. Minkenberg, M. Gusat, R. Recio, and V. Jain, “An Intent-based
Approach for Network Virtualization,” in Proc. of IFIP/IEEE IM, Ghent,
Belgium, 2013.

[19] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: enabling innovation
in campus networks,” SIGCOMM Comput., vol. 38, no. 2, pp. 69–74,
Mar. 2008.

[20] R. Riggio, M. Marina, J. Schulz-Zander, S. Kuklinski, and T. Rasheed,
“Programming abstractions for software-defined wireless networks,”
Network and Service Management, IEEE Transactions on, vol. 12, no. 2,
pp. 146–162, June 2015.

[21] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The
click modular router,” ACM Trans. Comput. Syst., vol. 18, no. 3, pp.
263–297, Aug. 2000.

[22] R. Riggio, I. G. B. Yahia, S. Latr, and T. Rasheed, “Scylla: A Language
for Virtual Network Functions Orchestration in Enterprise WLANs,” in
Proc. of IEEE NOMS, Istanbul, Turkey, 2016.

[23] “Ryu.” [Online]. Available: https://osrg.github.io/ryu/
[24] “Lightweight Access Point Protocol,” Internet Requests for

Comments, RFC Editor, RFC 5412, 2010. [Online]. Available:
https://www.ietf.org/rfc/rfc5412.txt

[25] “Iperf.” [Online]. Available: http://iperf.sourceforge.net/
[26] “Open Network Operating System (ONOS).” [Online]. Available:

http://onosproject.org/

