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Abstract—Traditionally, network management tasks manually
performed by system administrators include monitoring alarms
based on collected statistics across many heterogeneous systems,
correlating these alarms to identify potential problems or changes
to management policies and responding by performing system
re-configurations to ensure optimal performance of network
services. System administrators have a narrow focus of factors
impacting network service provisioning and performance due
to the heterogeneity and scale of generated underlying net-
work events. However, self-adaption principles are conceptual
approaches for autonomously managing such complex distributed
systems. Network management systems that harness such prin-
ciples can dynamically and autonomously optimise the operation
of network services, responding quickly to changes in user
requirements and underlying network conditions. In this paper,
we present a novel self-adaptive network management framework
that takes advantage of a recursive network architecture for
a simpler and more comprehensive application of ontologies,
semantic web rules and machine learning to form the basis of an
autonomic network management system that can automatically
adjust network configuration parameters to provide more optimal
QoS management of network services. We demonstrate the
applicability of the approach using a content distribution network
(CDN) operating over such a recursive network architecture.

I. INTRODUCTION

In traditional network management approaches, network
re-configurations are manually performed by administrators
based on collected statistics, alarms, or even by changing man-
agement policies. System administrators have a narrow view
of correlated network events, as it is difficult to understand and
leverage the large amount of heterogeneous data generated and
collected from a multitude of network systems and devices
at runtime. This problem worsens as the network data-set
increases with more complex event correlation required.

Self-adaption principles known as the self-* properties
(i.e. self-configuration, self-healing, self-optimisation and self-
protection) [1] are conceptual approaches for autonomously
managing complex distributed systems. Network manage-
ment approaches that employ such principles can dynamically
change network service behaviour without manual system ad-
ministrator intervention, responding more quickly to changes

in user requirements or the underlying networking environ-
ment and with less risk of introducing network configuration
errors. In this paper we investigate how self-adaption prin-
ciples can be better applied to network management tasks
when a recursive network architecture is used, facilitating the
optimisation of network service operations at runtime.

We propose a novel self-adaptive network management
approach capable of autonomously managing network services
by rigorous analysis of low-level network data to make high-
level decisions in order to optimise network service perfor-
mance. The goal is to develop a solution that provides a higher,
more intelligent management of network services and appli-
cations by improving operational efficiencies and facilitating
the requirements of an autonomous network management
system for a recursive network architecture. The self-adaptive
framework correlates low-level network events and alarms to
recognise pertinent network event patterns that are analysed
using Machine Learning (ML) algorithms to yield insights and
performance predictions, responding to them autonomously by
modifying underlying networking configurations as required.
This allows the network management system to adapt to and
actively learn from changes in network service characteristics
and demands that can occur where demand may vary over the
lifetime of the network service.

The approach exploits leading research in the areas of data
gathering, complex event correlation, machine learning, data
analytics and self-adaptive network management principles
to improve network service performance; beneficial for both
end-users in terms of Quality of Experience (QoE), and
network service operators by lowering capex and opex costs
through improved operational efficiencies for network service
providers. This allows network service operators scale network
services in volume and complexity while still maintaining
optimal network manageability achieving objectives such as
reliability and efficiency.

The outline of this paper is as follows: §II provides context
and motivation for the work; §III outlines the self-adaption
framework. §IV outlines a typical use case for self-adaptive
network management of a content distribution network. §V



provides an implementation of the self-adaptive network man-
agement approach. §VI outlines related work in the area;
Finally, §VII summarises the paper and outlines directions for
further work.

II. CONTEXT / MOTIVATION

In the last few years, interest has grown in Future Internet
architectures. This interest is mainly driven by the pragmatic
concerns of large scale ISPs and data center deployments,
cloud providers and businesses that want a more adaptable,
configurable, flexible, resilient network on which to build net-
work services for end-users. These goals have been addressed
by applying different, and orthogonal, enabling technologies
that have grown during recent years, such as network virtu-
alisation [2] (deploy separate logical networks on a common
networking infrastructure), Software Defined Networking [3]
(programmable and logically centralized control over packet
flows) and Network Function Virtualisation [4] (decouple net-
work capacity and functionality by applying cloud principles).
However, these approaches are stand-alone point solutions that
address a particular aspect of the problem space. Whereas, a
more encompassing approach is the recursive internetwork ar-
chitecture (RINA) [5], an emerging clean-slate programmable
networking approach that aims to support high scalability,
multi-homing, built-in security, seamless access to real-time
information and operation in dynamic environments. RINA
takes as a starting point the basic premise that networking is
inter-process communication (IPC) and only IPC [6], and the
network is modelled as the interconnection of applications over
different scopes, known as Distributed Application Facilities
(DAFs). RINA considers one single layer, recursively repeated
as needed, implementing specialized DAFs (i.e. IPC processes
on each system work together to form a Distributed IPC
Facility (DIF)), and two protocols at each layer: one for
data transfer, with a consistent QoS model [5], and another
for application (layer) management. RINA uses a Resource
Information Base (RIB) for the logical representation of in-
formation held by the IPC Process (IPCP) for the operation of
the DIF. RINA conceives a DIF Management System (DMS)
as a centralized tool to perform management tasks over the
systems of the network capable of making complex configu-
ration changes affecting multiple layers at once and optimizing
the performance of a set of layers working together. The
DMS follows a manager-agent (MA) model for its network
management tasks using two protocols, the Common Appli-
cation Connection Establishment Phase (CACEP) allowing
application processes to establish an application connection
and the Common Distributed Application Protocol (CDAP)
enabling distributed applications to communicate at an object
level rather than using serialisation to assist the DMS runtime
operations.

III. SEMANTIC NETWORK MANAGEMENT FRAMEWORK

This section describes the individual self-adaptive functions
within the overall self-adaption framework, outlined in Figure

1, that includes event monitoring and correlation for identify-
ing pertinent network events, machine learning for both intra-
and inter layer cognitive network management and model-
driven development techniques for DIF layer instantiation and
re-configuration.
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Fig. 1. Semantic Network Management Framework

Ontology-driven network management [7] using ontological
models offer powerful modelling constructs to represent the
structural and behavioural aspects of managed network en-
tities and more importantly enables semantic reasoning over
the relationships that exist between those managed network
entities for further analysis [8]. Domain adaptation methods
enable the application of machine learning techniques to cor-
related network events, where a large number of heterogeneous
events requires a higher level of abstraction so that automatic
classifiers can effectively make more reliable network service
predictions. The automatic self-adaption mechanisms enable
self-control (i.e. self-FCAPS [9]) of underlying network op-
erations, functions and state minimising expensive, manual
system administrator intervention.

The semantic network framework correlates generated
alarms with their associated DIF and calculates the effective
network management impact caused by the alarm and specif-
ically application impact. For example, analysis on the actual
usage of network resources as opposed to the declared ex-
pected usage or if there are historical basis to these alarms (e.g.
greater than 20% under utilisation, greater than 10% admission
failures, etc.). This allows network service performance tuning,
where the allocated resources are optimised to the aggregate
needs, increasing resources to over-loaded network services
and reducing resources to under-utilised ones. This involves
adjusting the DIF configurations and in particular the QoS
cubes to a more optimised form.

The framework considers an initial network configuration
and re-configurations of the network over the lifetime of
network service provisioning for continuous re-configuration
updates to provide optimal network service performance. Man-
agement policies provide the overall system goals to actively
guide the machine learning algorithms for improved decision-



making. The framework provides a convenient method to
instantiate and destroy DIFs as required and support re-
configuration of DIFs programmable behaviours and in par-
ticular its QoS cube parameters according to changes in the
network service requirements. This implies the discovery,
inventory and re-configuration of programmable behaviours
within a DIF from the DMS, as well as ensuring consistency
on the programmable behaviours across a group of associated
DIFs.

A. Event monitoring & correlation function

The recursive nature of RINA facilitates a much better
aggregation of events and correlation of alarms, with a con-
sistent protocol for data transfer differentiated by means of
policies at each layer. This function identifies specific event
triggers from deployed DIF configurations and ensures event
collection from network systems and devices that involves
pre-processing and correlating events to classify the events
generated and identify the most important and irregular events
for submission to the machine learning function while filtering
routine and regular events. This is an important step in the
development of a scalable self-adaptive network management
solution as it dramatically reduces the scale of events required
for processing by the machine learning algorithms.

B. Intra- & Inter- layer cognitive network management
function

The availability of a single management protocol and con-
sistent object model for the RIBs, supports a simpler and more
powerful application of the ontologies and machine learning
models. This function applies machine learning algorithms
from statistical learning theory to balance desired changes in
network configuration with protecting existing configurations.

Specifically, this function analyses changes in network op-
erations (state, configuration, functions) as a result of changes
in the underlying network conditions, network service or user
context and uses either supervised or unsupervised machine
learning algorithms to facilitate domain adaptation by devel-
oping a system of service demand prediction and provisioning
which allows the network to resize and resource itself to serve
predicted demand according to various parameters such as
location, time and/or network service demand from specific
users or user groups.

This function facilitates addressing network resilience is-
sues, identifying network errors, faults or conditions such
as congestion at both a network wide and a local level
and automatically prompts mitigating actions to minimise the
overall impact on network service provision. This is achieved
while optimising performance, use of available underlying
network resources and minimising overall network costs for
network service providers.

C. DIF Layer Instantiation/re-configuration function

Initial DIF layer configuration and re-configuration requires
an execution environment, i.e. DMS management policies need
to be translated into specific DIF configuration policies and

deployed into the appropriate IPC Processes (IPCPs) within
each DIF. In particular, this function performs automated
instantiation/re-configuration of DIFs through the use of DIF
templates by automatically configuring the variable DIF pa-
rameters such as name, scope, addressing schema and in the
case of performance, QoS cube parameters.

Another feature of this function is to check the consistency
of the system state after instantiation, destruction or re-
configuration of DIF layers has been performed both within
each DIF and between a group of associated DIFs as it is
imperative to check that these DIFs have been transitioned
to a consistent state. If not, a rollback of the modified DIFs
will need to be performed and notification sent to a system
administrator to take appropriate remedial action that may
include invoking policy analysis processes. This is an area
for future work.

IV. USE CASE

We provide an automated network service provisioning use
case based on a content distribution network which is one of
the key services provided by of data centers as it provides the
capability of acquiring and releasing underlying networking
resources on-demand as required. However, data center oper-
ators find it non-trivial to allocate and de-allocate resources
dynamically to accommodate network service requirements to
satisfy its Service Level Objectives (SLOs) and its Service
Level Agreements (SLAs) while minimizing operational costs.
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Fig. 2. Use Case Scenario

Our example use case, depicted in Figure 2 is based on
a user that started watching a football game on their mobile
phone in Standard Definition (SD) quality. However, half-way
through the game the user decides to watch the remainder of
the game on their T.V. in High Definition (HD) quality. Un-
fortunately, the current QoS cube provided by the underlying
network flow currently only supports a SD quality QoS rate.
This means the user’s device initiates a flow request to the
”App cache HD” application process on the Delivery Server
(IPCP3) for a higher rate QoS Cube (HD). There is currently
no QoS cube deployed to support HD quality video in the DIF



which results in an allocateNotifyPolicy firing, and generating
an event for the Management Agent. The Management Agent
has been pre-configured to report these faults to the DMS.

Within the DMS there are a number of management strate-
gies in operation. One of them is to optimise DIFs such that,
unused QoS cubes (daily) are removed from the active DIF
configuration. In this case, the QoS cube supporting HD has
been garbage collected as there have been no flows in the last
two days. A second set of management strategies (for HD)
are triggered, and examine the currently available DIFs to see
which is the most appropriate DIF that contains the QoS cube
supporting HD, from the flow allocation request. The DMS
sends a CDAP create operation to the Management Agent to
create a QoSCube in the CDN DIF and the consumer DIF. It
is assumed that the allocateRetryPolicy in the Consumer DIF
will retry the flow allocation four times (at 500, 1000, 2000
and 3000 ms). The following list details the steps that are
performed:

• Management agent adds a new QoS cube to the DIF
specification.

• DIF allocator retries the flow allocation and discovers the
DIF Consumer supports it.

• Flow allocator then notifies the application process (in
this case the App cache) to accept or reject the flow
allocation request.

• Assuming a positive response, the flow allocator reserves
required resources, and responds to the TV application.

• A new flow (HD) is instantiated as the response is acted
upon.

• Streaming content from old flow (SD to the mobile
device) is now streamed to the new flow (HD to the TV).

• A old flow is discarded as the consumer closes the
application.

In the above scenario, event correlation is trivial as there is
a single event triggering the action. In a more realistic environ-
ment, QoS degradation is a possibility leading to multiple QoS
Violation events being generated (from each node concerned).
Additionally, an application instance may have multiple flows
active concurrently, more advanced correlation algorithms are
needed to isolate the affected application instance, as multiple
instances of the viewing application could be in use on the
same network segment.

V. IMPLEMENTATION

Our prototype implementation includes the creation of
ontology models used to represent both the RINA network
within the data center and the network services running over
the RINA network. Jena [10] is an api implemented in the
Java programming language used for manipulating ontology
models. Some components of the test-bed were implemented
in the Java programming language using the Jena API. In order
to implement our prototype we used the RINA source code that
is available from the GitHub repository [11].

The autonomic control loop used in the autonomic man-
agement system is based on control loop [12] that refers to
a decision cycle originally designed by John Boyd, a military

strategist, and includes the sub-processes of Observe, Orient,
Decide and Act (OODA). In our system the sub-processes
perform the following tasks:

• Observe (correlate events) - Observe network events
from systems/devices to identify pertinent events as input
to the knowledge model (i.e. pattern matching). Due
to the sheer volume of events generated from sys-
tems/devices, events need to be aggregated/correlated.

• Orient (update/query model) - Sparul is used to update
and query the DIF/DAF models to accurately reflect the
current runtime state of the system.

• Decide (ML algorithms over model) - Machine learning
algorithms are run over identified subsets of the knowl-
edge model to make predictions for more optimal service
provisioning.

• Act (create/update configurations) - DIF templates are
populated with QoS cube parameters to either create new
DIF configurations or modify existing ones as required
(focusing on QoS cube).

The network (DIF/DAF) and policy models were created
in the web ontology language (OWL) [13] using Protege
[14], a tool for creating and editing ontologies where a
network model and a policy model have been defined for
both DIF/DAF and management policy models. The Resource
Description Framework (RDF) [15] is a language standard for
representing information about resources on the web. An RDF
triple contains three elements, a subject {s}, a predicate {p},
and an object {o}, these elements are used to form a tuple
{s, p, o}. The tuple represents a property that holds between
the subject and object. The property can be a data type or
object property. Data type properties refer to the attributes that
compose a concept. Object properties refer to the relationship
between concepts. Semantic queries are executed over the
properties of concepts specified in a knowledge model and
are defined over sets of triples to form a basic graph pattern.
The semantic queries act as filter returning only a subset of
the complete network and policy models. SPARUL [16], a
semantic language was used to query and update the domain
and policy knowledge bases. Fuseki [17] was used to load the
required domain and policy ontologies, issue semantic queries
over the loaded ontological knowledge bases and store the
results in a data structure.

RabbitMQ [18] an open-source messaging broker based on
the Advanced Message Queuing Protocol (AMQP) [19] is used
to aggregate and correlate the large number of network events
by taking a similar approach as that outlined in [20], so that
only the most pertinent network events are used to update
the knowledge models and consequently used as input to the
machine learning algorithm. Weka [21] is a machine learning
software tool written in Java that implements many machine
learning algorithms such as naive bayes, bayesian networks
and decision tree learners, etc. for performing data analysis
and predictive modelling tasks. Weka supports a number of
essential data mining functions such as data pre-processing,
clustering, classification and regression. In our approach we



TABLE I
PRIORITISATION TRAINING INFORMATION

Priority 1 2 3 4
Delay 100ms 250ms 600ms 2s
Jitter 20ms 45ms 55ms 65ms
Loss 10 -5 0.5% 1.5% 4%
Application VoIP HD-video SD-video Best effort

opted to use Weka’s naive bayes algorithm, a well known
supervised learning algorithm whose classification approach
is based on probabilistic knowledge. Naive bayes is used to
classify flow requests to an associated priority as shown in
Table I.

Thus each new flow request receives a priority which
assists in the decision making process. The premise being
that within this consumer DIF, higher priority flow requests
(and associated QoS cube) should be accommodated even at
the expense of existing lower priority ones. A more complex
classifier could also take into account the device initiating the
flow and with suitable RINA authentication policies applied on
the DIF, the person using the device. This will be a direction
for future work. Based on the results of this orientation step,
a decision can be made to allow the new flow (and support
the associated QoS class) within the current DIF according
to high-level management policies that dictate the overall
network service behaviour.

Assuming the flow allocation is to be allowed, a simple test
is made in the form of a SPARUL query for the existence of an
appropriate ”priority” QoS cube in the DIF. The result triggers
the current DIF configuration to be either maintained as is
or modified to support a new QoS class. We used the String
Template [22] engine to create pre-defined DIF templates with
place-holders for the various QoS Cubes for DIFs. If a DIF
configuration change is required, the DIF QoS place-holders
are populated with the appropriate QoS parameters for that
network service according to the goals of the management
policy and deployed onto the devices.

VI. RELATED WORK

A. Protocols and platforms

A large number of protocols exists to support network
management applications. Common protocols include SNMP
[23], ICMP [24], and NetConf [25]. A database with more
than 400 network measurement and management tools is
maintained by the MOME project [26]. Most of such tools
are designed around the characteristics, and thus the limitation,
of the TCP/IP which in time often results in a collection of
ad-hoc monitoring and management tools aimed at addressing
the requirements of a particular part of the networking stack.
Example includes tools for wireless network troubleshooting
like Kismet or traffic analysis tools like Bro. In this context,
when a problem is recognized, the centralized/distributed mon-
itoring processes usually escalate the event to the management
plane where complex root-cause analysis algorithm need to
be implemented in order to correlate the event happening at
various layers of the networking stack. Conversely in this

work we leverage on an recursive network architecture where
each layer is architecturally the same, which in time allows to
reason about the current state of the network.

B. Autonomic Network Management

In [27], a conceptual architecture for autonomic computing
is sketched. The authors analyse the motivation behind the
quest for autonomic computing and focus on the control loops
introduced by the self-management routines. Several control
disciplines are identified (e.g. self-configuring, self-healing,
etc) together with the need for an high level orchestrations
among them in order to control the mutual interaction of
control loops, that could otherwise lead to unpredicted and
possibly disruptive effects. In the architecture envisioned in
[27], control loops leverage a common knowledge of the sys-
tem. Along this line, in [28] the authors summarize this need
in the Knowledge Plane concept. In the envisioned scenario,
the Knowledge Plane is supposed to collect information about
the network status as well as about services constraints and
polices. A comparison with the Internet is due in this case.
The current Internet is the offspring of a simple idea: building
a transparent core network and move all the complexity to
the edges. This approach led to a situation where the network
core is not aware of its expected behaviour and the end-user
applications cannot tell whats happening in the network that
appears to them as a black box. According to the authors of
[28], the use of a Knowledge Plane has two main targets. On
one hand it will make a network able to describe itself, and as
result capable of supporting self-configuring and self-healing
operations. On the other hand it should give the applications
the capability to reason about the operating environment.
Unfortunately the achievement of such goals goes through
an architecture design following the philosophy of saying
as little as possible about the network state, while, on the
other hand, RINA aims at describing as much as possible
about the network, paving the way to actual Knowledge Plane
implementation.

C. Software Defined Networking

Software-defined networking has recently emerged as a
supposedly new way of re-factoring a network control plane.
By moving all control intelligence into a logically central-
ized controller, SDN aims at simplifying the life of network
developers that can now exploit a clean and consistent in-
terface to the networking fabric. In this context OpenFlow
[8] has emerged as the de-facto standard (especially in the
data-centres) environment for SDNs. Unfortunately, the ex-
pressiveness of the OpenFlow protocol is severely limited,
and it has been argued that programming current networks
using OpenFlow is equivalent to programming applications
in assembler, i.e. the interface is too lowlevel and exposes
the programmers with too many implementation details. As a
result, we have witnessed a plethora of efforts in recent years
aimed at providing developers with higher level interfaces
to their SDN [29], [30], [31], [32], [33], [34], [35]. These
approaches however still provide point solutions and patches



to an highly heterogeneous architecture, while the approach
presented in this work builds upon a clean-slate design (RINA)
which clearly separate policies from mechanism putting the
former in the hands of the network developers.

VII. CONCLUSIONS

In this paper we have demonstrated an approach to auto-
nomic network management, able to support optimal network
service management in the current environments in which
traffic evolves towards increasing volume and complexity. To
achieve this aim, we investigated and implemented a self-
adaptive network management framework to autonomously
control the provision of network services running over RINA-
based networks, taking advantage of the nature of this re-
cursive architecture to simplify the application and intensify
the suitability of semantic modelling and machine learning
techniques. Given that there will be a large number of network
events/alarms triggered in a multi-layer management frame-
work, future work will investigate how to efficiently monitor
and analyse these numerous events as the system scales. Future
work will also investigate mechanisms for verification of DIF
configurations after modifications have been performed to
avoid introducing inconsistencies into the system. We also plan
to expand the use case to include scenarios where network
services cannot be readily replicated and cached such as on-
line multi-player gaming scenarios.
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