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Abstract—Network virtualization sits firmly on the Internet
evolutionary path allowing researchers to experiment with novel
clean–slate designs over the production network and practitioners
to manage multi–tenants infrastructures in a flexible and scalable
manner. In such scenarios, isolation between virtual networks
is often intended as purely logical: this is the case of address
space isolation or flow space isolation. This approach neglects
the effect that network virtualization has on resource allocation
network–wide. In this work we investigate the price paid by a
purely logical approach in terms of performance degradation.
This performance loss is paid by the actual users of a multi–
tenants datacenter network.

We propose a solution to this problem leveraging on a new
network virtualization primitive, namely an online link utilization
feedback mechanism. It provides each tenant with the necessary
information to make efficient use of network resources. We
evaluate our solution trough a real implementation exploiting the
OpenFlow protocol. Empirical results confirm that the proposed
scheme is able to support tenants in exploiting virtualized
network resources effectively.

I. INTRODUCTION

Due to the recent introduction of Software Defined Net-
working (SDN), network virtualization appears one of the
rising stars in the area of networking technology innovations.
From a practical standpoint, in fact, virtualization is a con-
venient technique to handle storage and computing resources
in a flexible and scalable manner. Furthermore, virtualization
configures more and more as the native approach to handle
network resources associated to the switches interconnecting
modern data centers. In that context, tenants purchase comput-
ing, storage, and networking resources from a cloud operator.
As such, a tenant would expect a virtual network to provide the
same usage experience as one would expect when operating
the same resources on a dedicated physical network deployed
at the customer’s premises. With respect to the network fabric
this corresponds to ensure the isolation of the network slices
assigned to each tenant.

In practice, a request for a network slice is represented by a
virtual network (VN) connecting a set of virtual machines,
i.e., the nodes of the virtual network. Also, each virtual
link requires a certain capacity. In literature, the problem
of mapping VN requests coming from customers on top of
the cloud operator infrastructure is know as Virtual Network
Embedding (VNE) problem. VNE has been studied in several
recent works [1], [2], [3], [4], [5], [6], [7], [8]. Throughout
this paper, we will assume that virtual networks requested
by customers have been already been embedded onto the

substrate network, e.g., making use of available solutions in
the literature such as [8].

Conversely, our focus is the feasibility of VN isolation.
In fact, we argue that, even if an optimal VNE solution is
provided, and even if protocols ensure that virtual networks
are indeed logically isolated, at the link level tenants still
share outgoing buffers at each switch. Furthermore, according
to the mainstream view of virtualization and network slicing,
resources of alien slices are typically hidden by the virtu-
alization layer. Thus, each tenant’s controlling logic makes
resource allocation decisions without complete information on
the network status.

The combination of these factors may lead to sub–optimal
usage of the networking resources, poor performance isolation
between competing slices and, ultimately, fairness issues.

Clearly, one of the major roadblocks toward fair perfor-
mance isolation in multi–tenants networks would be to enable
coordination between the different slices. However, at present
it is still unclear how this goal can be achieved. One feasible
option could be the definition of a cross–platform/cross–
controller interface between SDN–controllers (the so called
eastbound interface). An alternative is the introduction of
an orchestration layer above all the tenants. Finally, the
virtualization layer could provide to the tenant’s controlling
logic a feedback about the actual network conditions. In
this work we set to investigate the latter option, since it
has the clear advantage of requiring lesser signaling and has
feasible latency requirements compared to the coordination
mechanisms mentioned before.

The main contribution of this work is a practical on–line
feedback mechanism aiming at providing each tenant with
the necessary information about per–link available bandwidth.
The proposed solution relies on a hose model in order to
specify the tenants’ bandwidth requirements. Traffic shaping
at the network edges is assumed in order to enforce bandwidth
demands. Based on this model, tenants would need to specify
just one additional parameter, i.e., the virtual network interface
card (VNIC) bandwidth, alongside with the amount of memory
and the number of CPU cores.

The rest of the paper is structured as follows. In Sec. II we
expose the network slicing problem which is tackled in the
rest of the paper. The high level description of our solution is
introduced in Sec. III, whereas the system design is presented
in Sec. IV. Results of a preliminary evaluation performed using
the network emulation tool mininet [9] are reported in Sec. V.
Finally, Sec. VI resumes our conclusions and draws a roadmap978-1-4799-0913-1/14/$31.00 c© 2014 IEEE



for future research.

II. FAIRNESS AND ISOLATION

Hereafter, we first illustrate how network virtualization can
lead to a sub–optimal utilization of networking resources in
multi–tenants networks. In the following sections we will
provide an high level description of the proposed solution.

In a network that is fully under the control of the cloud
operator, solutions capable of exploiting full bisection band-
width topologies available in modern data centers [10], [11],
[12] do exist. Examples include the Equal–Cost Multi–Path
protocol [13] and Hedera [14].

Nevertheless, such techniques alone do not guarantee ef-
ficient utilization of network resources. A counterexample is
depicted in Fig. 1. In that scenario, two tenants (Red and Blue)
demand one virtual network each. The VNs are composed
of 2 and 4 virtual machines, respectively, a set of links and
switches. More specifically, the Red tenant requires two VMs
with a 8 Gb/s NIC while the Blue tenant requires two pairs
of VMs; the first is equipped with 10 Gb/s NICs, while the
second is equipped 2 Gb/s NICs. Notice that the bandwidths
associated to each host are the VNIC speeds requested by each
tenant during the booking phase (hose model). In this example
we assume 10 Gb/s links across the entire infrastructure.

Figures 1b and 1c report a possible mapping between the
two requests onto the cloud operator infrastructure depicted in
Fig. 1a. For the sake of clarity we assume that both tenants
made equal requests w.r.t. computing and storage. In such
a scenario, each tenant expects full control of the resources
assigned to it. E.g., each tenant may want to implement its own
controlling logic in order to perform load balancing between
different virtual machines.

In Fig. 1d we observe that full bisection bandwidth is avail-
able at the substrate network and the two virtual topologies
can thus be considered an optimal allocation with respect to
the capacity allocation. However, because routing decisions
are taken locally by the two controllers, flows belonging to
distinct virtual networks may compete for bandwidth at links
(S1→ S3) of the substrate network (Fig. 1d). More in detail:
in the above example the 10 Gb/s link between the switch S1
and the switch S3 is shared between the two flows originating
at hosts A and E and terminating on, respectively, hosts B
and F . If active traffic shaping is used at the network ingress
points, then it could be reasonable to proportionally share the
10 Gb/s according to the host’ demanded VNIC capacity. If
no shaping is enforced at the edges, then the two flows would
equally share the available bandwidth in the case of elastic
(e.g., TCP) traffic and such reasoning still holds with different
values of traffic, though.1

This will result in 4 Gb/s allocated to the flow A→ B and
6 Gb/s allocated to the flow E → F . Finally, the spare 6 Gb/s
available at server 3 can be allocated to the flow C → D. We
can observe two effects:

1) sub-optimality: despite the full bisection bandwidth (20
Gb/s) is theoretically available (optimal VME), the total

1However, given the fact that host in a tenant’s network can also use non–
elastic and bursty traffic, the use of suitable shaping techniques is advised [15].
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Fig. 1: Albeit full bisection bandwidth is available in the substrate
network, the partial network view exploited by the two tenants in
order to make routing decision can lean to sub–optimal use of the
available resources.

aggregated bandwidth accessible to the flows will be
then 16 Gb/s.

2) unfairness: depite the Blue tenant requested a VMs pair
with 2 Gb/s NICs and another one with 10 Gb/s NICs,
the system eventually gives both VMs pairs same band-
width. Even worse: the Red tenant’s VM A bandwidth
is even lower than Blue tenant’s VM E.
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III. ENFORCING PERFORMANCE ISOLATION: CONCEPT

In order to guarantee performance isolation in multi-tenants
networks our solution leverages on two technical features: (i)
bandwidth requests made by the tenants must be enforced
at the edges, and (ii) a feedback about the actual network
utilization must be provided to each tenant’s controlling logic.
In this section we shall provide the reader with a conceptual
view of our solution, leaving its design and implementation
details to Sec. IV.

Enforcing bandwidth requests falls into the broad category
of QoE provisioning. An effective and efficient mechanisms is
presented in [15] where traffic shaping is used at the edges in
order to make sure the endpoints, i.e., VMs, do not overload
the network. Notice that albeit elastic traffic, i.e, TCP, can
share proportionally the available bandwidth, such sharing is
per-flow and not per-tenant. Moreover, TCP congestion control
does not handle well bursty and/or UDP traffic, which may be
present.

The second component (which is this work’s contribution)
is a feedback mechanism that provides each tenant with the
information required in order to make efficient routing choices.
We would like to stress that, today’s algorithms commonly
used in datacenters, such as ECMP [13], assume full view
(and control) of the network resources. Such assumption does
not hold anymore for tenants that are given control of the
network slice corresponding to their VN.

The mechanism presented in this work aims precisely at
restoring such view at the tenant-level in a scalable manner.
From a logic standpoint this is equivalent to labeling each link
in the network with a weight proportional to the fraction of
the link bandwidth in use by other tenants. Note that such load
information is aggregated over all the tenants and over all the
flows sharing the link, i.e., customers ignore how many tenants
share the network, nor the type or number of their flows.2

Intuitively, this means that each link in a virtual network
is labeled with its residual capacity, computed considering the
bandwidth of all other flows currently utilizing that link. We
remark again that this formulation assumes that traffic shaping
is used before such a labeling in order to ensure that the
aggregated bandwidth exploited by a virtual machine does not
exceed the VNIC’s bandwidth assigned during the reservation
phase to the tenant owning the VM.

We will now apply this link labeling concept to the previous
example. Note that a different set of labels (indicated with
different color in the example) is maintained for each tenant
in the network, i.e., the Blue tenant will see only the blue
labels while the Red tenant will see only the red ones.

Assume that at the instant t1 a saturated TCP connection
between nodes A and B begins (Fig. 2a). Given the current
status of the network, the Red tenant’s controller decides to
route this new flow through the path S3 → S1 → S4 (any
other path would have also been satisfactory). The connection
can exploit the full line rate of 10 Gb/s. The blue labels
associated to the link used by the new flow are then updated
by subtracting the nominal capacity this flow is allocated. This

2Privacy issues of malicious tenants inferring and exploiting the behavior
of other tenants is out of the scope of the paper.
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(a) Instant t1, flow A → B begins. Labels are updated re-
flecting the flow nominal capacity. Assuming work–conserving
shaping, the flow is provisionally allocate full line rate.
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(b) Instant t2, flow E → F begins. An alternative path
is selected by the Blue tenant’s controlling logic. Labels are
updated and the flow is assigned full line rate.
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(c) Instant t3, flow C → D begins. The Blue tenants routes
the flow over the path with higher residual bandwidth. Network
resource usage is maximized.

Fig. 2: Resource allocation with link labeling.

is done in order to reflect the fact that this new flow shares a
link with another virtual machine and will be throttled down
if necessary.

At instant t2 (Fig. 2b), node E starts a new saturated TCP
connection to node F ; given the network status, the Blue
tenant’s controller decides to route this new flow trough the
path S3 → S2 → S4. The new flow can then exploit the 10
Gb/s path between nodes E and F .

Finally, at instant t3 (Fig. 2c) a bursty UDP connection is
generated between nodes C and D (Fig. 2b). The Blue tenant’s
controller can now either decide to share the bandwidth with
its other flow (of which it has visibility) or load balance the
new connection on the alternative path. Let’s assume that the
controller chooses to exploit the S3 → S1 → S4 path for the
new flow. The rate control algorithm detects the Blue tenant
flow at node B and implements traffic shaping at both nodes
A and B in such a way to avoid congestion at the receiver
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Fig. 3: The design of our performance isolation scheme relies on
a distributed bandwidth shaping system combined with a reactive
link labeling scheme and a label distribution mechanism exploiting
existing OpenFlow messages (the port status message) although with
minor modifications.

side. As a result the flow A → B is allocated 8 Gb/s while
the flow C → D is allocated 2 Gb/s.

Observe that, by leveraging link labels, each tenant’s con-
trolling logic can actually choose routing paths that do not
collide onto the substrate network without leveraging either
a direct communication (impractical for a large number of
tenants) or an orchestration mechanism (limiting the tenant’s
control on its virtual network).

IV. SOLUTION DESIGN

The system architecture implementing our solution is
sketched in Fig. 3. As it can be seen, our performance isolation
technique relies on three logical blocks:

• a traffic shaping mechanism scheduling each tenant flows
according to the bandwidth demands made during the
reservation phase;

• a link labeling block exposing each tenant with the
amount of bandwidth it can exploit on a given link;

• a label distribution unit promptly updating such label
upon detecting flow changes in a virtual network.

We would like to stress once again that in this work we
assume that the VN request coming from the tenants have
already been embedded onto the substrate network using
one of the algorithms already available in the literature. The
temporal relationship between the actions performed by the
three modules is reported in Fig. 3. In particular, new flows
are first detected at their termination point, triggering a rate
update message. Such message is processed at the virtual-
ization layer in order to configure the traffic shaper at the
flow origination point. After end-to-end flow control has been
achieved, the virtualization layer updates the link label and
notifies each tenant controller of the changes. In this section
we shall describe in detail the three components. Observe
that, albeit the performance isolation challenges highlighted
in the previous sections are independent from the particular
networking virtualization stack employed by the data center
operator, our system design and its evaluation will rely on the
OpenFlow protocol [16].

OpenFlow is a flow–based forwarding plane abstraction
which allows network developers to control how packets are

forwarded in a switched network exploiting a vendor–agnostic
interface, i.e. the OpenFlow protocol. The simplicity of the
flow abstraction which lies at the heart of OpenFlow has paved
the way to network slicing solutions such as FlowVisor [17].
FlowVisor allows infrastructure providers to partition network
resources among different tenants while giving each of them
full control of their virtual network (in the OpenFlow termi-
nology, each tenant is allowed to run its own controller).

A. Traffic Shaping

Traffic shaping and in general QoE enforcement is a widely
investigated topic: our design choice has been EyeQ [15].
EyeQ is a system capable of providing tenants with bandwidth
guarantee in data centers networks. The main assumption
of EyeQ is that full–bisection bandwidth is available in the
switching fabric, which is also one of our assumption along-
side with the hose model used by tenants to make bandwidth
requests.

The EyeQ system exploits a distributed architecture lever-
aging rate meters and link shapers. The former (rate meters)
detect possible congestion situation at the flow termination
point and provides the later (link shaper) with the necessary
information in order to enforce admission control at the flow
origination point. Doing so, EyeQ performs congestion control
at a time scale smaller than the one typically implemented by
TCP, thus avoiding possible performance oscillations.

B. Link labeling

Residing between the switching fabric and the control layer,
FlowVisor has complete knowledge of all network flows. More
specifically, according to the OpenFlow model, switches are
requested to contact the controller in order to learn how to treat
new flows. Alternatively, the controller can push proactive flow
processing instructions in order to reduce signaling overhead
at least for a set of flows. In either case FlowVisor sits
between the controller and the actual switches marshaling all
the signaling traffic exchanged by the two entities. As a result,
at any instant FlowVisor has a detailed view of all the flows
currently active in the network for any tenant and thus can
compute link labels.

C. Labels distribution

Finally, in order to implement the last piece of our archi-
tecture we need to modify the OpenFlow port status message.
This message is used by OpenFlow switches to notify their
controller about changes in the status of a port, e.g. link
up/down event. The port status message is defined by the
OpenFlow 1.0 standard as follows:

struct ofp_port_status {
struct ofp_header header;
uint8_t reason; /* One of OFPPR_*. */
uint8_t pad[7]; /* Align to 64-bits. */
struct ofp_phy_port desc;

};

where the reason can be add, delete, or modify. Each
physical port is fully described using the following structure:

struct ofp_phy_port {
uint16_t port_no;
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uint8_t hw_addr[OFP_ETH_ALEN];
char name[OFP_MAX_PORT_NAME_LEN];
uint32_t config;
uint32_t state;
uint32_t curr;
uint32_t advertised;
uint32_t supported;
uint32_t peer;
uint32_t label;

};

Observe the additional label field added at the end of
the structure. Port status message are typically generated by
the switch as physical ports are added, modified, and removed
from the datapath and directed to the controller. In a virtualized
environment FlowVisor will receive port status updates from
the switches and will rely them to the suitable controller(s).
Similarly, FlowVisor can trigger new port status messages in
order to convey to the controller an updated set of labels.

Albeit such change may appear disruptive, it shall be
also considered that OpenFlow currently accommodates for
optional features. Examples are traffic counters and headers
rewriting, both features are not mandatory for vendors to
implement. Similarly, we can envision our label distribution
protocol to be implemented using an optional OpenFlow
message. Nevertheless, for ease of implementation we decide
to modify the port description structure for the purposes of
this work.

V. PERFORMANCE EVALUATION

We would like to point out that albeit no additional signaling
is requested compared to standard operations, our solution
mandates FlowVisor to track all the flows in the network,
as opposed to its normal passive mode where only a policy
compliance check is performed. Nevertheless, we decided not
to report on the performance penalty incurred by applying our
technique. Our implementation is hence to be considered a
proof–of–concept with little or no code optimization because
the main goal here is to prove the viability of the proposed
approach.

A. Methodology

Mininet [18] has been used in order to evaluate the pro-
posed link labeling solution. Mininet emulates a network of
software–based virtual switches [19] supporting (among other
things) the OpenFlow protocol. Mininet enables testing of
OpenFlow–based applications before deploying them on the
actual network. Given the fact that packets are exchanged
between several Open vSwitches instances running on the
emulating machine, Mininet is best suited for testing new func-
tionalities rather the crude network performance. For example,
emulating the network setup sketched in Fig. 1 allowed us to
achieve up to about ≈ 120 Mb/s end–to–end TCP throughput
between a pair of nodes. The testing machine was a laptop
equipped with an Intel Core i7 (quad core) running at 2.7
GHz with 8 Gb of RAM. As result, we decided to emulate a
network exploiting 10 Mb/s links.

In order to evaluate our solution, we replicated the scenario
reported in Sec. II. More precisely, the first flow A → B

arrives at the instant t1 = 0s, while the second (E → F ) and
third (A → B) flows arrive respectively at instants t2 = 60s
and t3 = 120s. All flows are saturated TCP streams generated
using the iperf [20] tool. Slicing is performed by exploiting the
VLAN field. Each tenant runs its own controller instance. A
modified version of the Pox [21] OpenFlow controller is used
in this experiment. The additional feature we implemented
supports load balancing across multiple paths exploiting link
labels.

Both the link labels calculation and the setup of traffic
shapers are implemented off–line: they have not been inte-
grated into FlowVisor yet. Instead, they have been computed
within the Mininet scripting environment and then sent to the
controller over a dedicated signaling channel. All the results
reported in the following section are the average of 10 runs.
Confidence intervals are always smaller than 0.1 Mb/s.

B. Results

The results of emulation–based evaluation are reported in
Fig. 4. In particular Fig. 4a shows the TCP throughput of
each active flow in the network. As it can be seen, as long as
the A→ B is the only active flow in the network, full rate can
be achieved. However, when then second and third flows start,
the actual network utilization depends on the routing choices
made by the blue tenant controller.

The final bandwidth allocated to the three flows are reported
in Fig. 4a. We assumed that the controller randomly selects
one of the two available paths with probability 0.5.

On the other hand when link labels are exploited by the
controllers, it is always possible to converge to the optimal
network bandwidth utilization reported in Fig. 4b. The result of
this behavior is made clearer in Fig. 4c where the instantaneous
aggregated network throughput is plotted. As it can be seen
in that figure, without link labels the aggregated throughput
in the worst case scenario (which, we remind, happens with
probability 0.5) is just 10 Mb/s. When link labeling is used it
approaches closely the nominal network capacity of 20 Mb/s.

VI. DISCUSSION

Virtualization of computing and storage resources has al-
lowed cloud providers to improve spatial reuse by multiplexing
tenants across a wide array of high volume servers. Also,
tenants pay per resource usage only, thus cutting entrance
costs for leveraging on advanced computing assets. Similar
motivations are nowadays pushing toward a virtualization of
the fabric of switches that interconnects data centers. In this
context, tenants will expect to have full control of their virtual
networks. However, albeit network virtualization has made sig-
nificant strides forward, current solutions still leave each tenant
blind to the resource allocation performed by other tenants.
As a matter of fact, unlike in the computing domain where
advanced hypervisor technologies provides effective resource
partitioning, the SDN community is only now starting to
investigate network virtualization abstractions, which deliver
true performance isolation.

In this paper we provided a preliminary empirical evidence
that sub–optimal resource allocation may result from the
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Fig. 4: Link labeling allows to achieve up to 100% performance increases in the worst case scenario. Flow rate samples are taken every 2s.
Results are the average of 10 runs. Confidence intervals were smaller than 0.1 Mb/s.

utilization of state–of–the–art network virtualization technolo-
gies. We also designed, implemented, and tested a new virtu-
alization primitive. It leverages an online feedback mechanism
providing at runtime each tenant with minimal information to
make sensible resource allocation choices. As part of future
work we are developing a proof–of–concept implementation
and we are investigating the effectiveness of the feedback
mechanism in the case of malicious tenants.
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