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Abstract—Reliable power consumption metering is important
for power consumption management and optimization in wireless
access networks. As a matter of fact, it is estimated that by
2015 wireless access networks will account for about 90% of
the entire wireless energy cloud footprint. This can be traced
back to the massive deployment of WiFi hotspots in the recent
years in order to partially offload cellular networks from the
load generated by modern data hungry mobile applications. In
such a scenario the first step in reducing the power consumption
of any IT infrastructure is to acknowledge it. Production–
level solutions for large–scale monitoring campaign do exist,
in the form, for example, of managed Power Over Ethernet
devices. These solutions are however expensive to install and
to manage especially for large legacy deployments. To overcome
this limitation we propose Joule a virtual power consumption
monitoring solution capable of estimating in real–time the actual
power consumption of WiFi Access Points. Field trials performed
using various benchmarks and applications show that Joule can
provide a precise estimation of the power consumed by a typical
IEEE 802.11 Access Point.

I. INTRODUCTION

WiFi is becoming a key element of the modern wireless
access, complementing and extending cellular networks both
in high density areas where they can provide additional capac-
ity to hungry mobile applications and in rural settings where
deploying LTE or LTE-A network is not economical. Such
trend will result in wireless access networks alone accounting
for 90% of the entire wireless cloud footprint by 2015 [1].

In such a scenario limiting the use of wireless networks
as point of entry to the cloud is hardly a choice. Instead it
becomes of capital importance for network operators to (i)
acknowledge each component contribution to cloud energy
footprint; and (ii) devise energy efficient wireless networks
and change how they are managed. However, deploying power
monitoring solutions in production networks is often not a
viable solution due to the setup and management costs. This
is particularly true in the case of large and/or autonomous
(from the energy standpoint) deployments. In the latter case,
achieving plug–load visibility can allow for smart power man-
agement strategies that can take into account the renewable
energy source unavailability as well as the impact of traffic on
the device’s power consumption profile.

In this paper we propose a new approach for power con-
sumption modeling and metering. This approach, called Joule
aims at tackling the limitations of other solutions requiring
dedicated power metering hardware, namely deployment and
operating costs. Joule does not require any additional hardware
and can be easily integrated with traditional as well as cloud–
based network management solutions. Joule exploit a set of
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power consumption models [2] generated during an initial
training phase in order to predict the actual power consumption
of any networking devices starting from observable statistics.
The prototype presented in this work can actually provide a
precise estimation of the power consumed by a typical IEEE
802.11 Access Point (APs). The software has been released to
the research community under a permissive BSD license1. This
paper extends our previous work [2] on energy consumption
modeling in UMTS femto–cells to a radically different radio
technology, namely WiFi. Our key contributions are:

• We present the design and implementation of a practical
system that applies power modeling techniques to off–
the–shelf WiFi APs.

• We evaluate this implementation using a set of synthetic
traffic sources as well as with real traffic in the form of
an FTP session.

We envision Joule to be used in large–scale energy man-
agement frameworks, such as the ones proposed in [3], [4]
replacing expensive and hard to manage hardware power
consumption meters.

The structure of this paper is the following. In Sec. II, we
provide some background on system–level power consumption
modeling. The modeling methodology is introduced in Sec. III.
Section IV describes the system architecture. We report on the
evaluation methodology and on the results of the measurement
campaign in Sec. V. Section VI surveys the related work.
Section VII provides some final thoughts on Joule and on its
limitations sketching a roadmap for future work.

II. SYSTEM–LEVEL POWER MODELING

For the purposes of this work, a power consumption model
is an empirical model that allows to estimate the power
consumption of a device starting from a set of observable
parameters. For example, in the case of WiFi APs, observ-
able parameters are: bytes/packets transmitted and received,
average CPU load, transmission power, and in general all the
parameters that can readily obtained trough standard manage-
ment interfaces such as SNMP.

Within this work we are interested in the system–level power
consumption of a typical WiFi AP, i.e. the power consumption
of the entire device as opposed to the component–level power
consumption where the contribution of CPU, wireless inter-
faces, etc., is considered separately. The rationale behind our
approach is that in typical networking devices, such as APs
and switches, CPU and other subsystems’ power consumption
statistics are highly correlated with the network traffic. As a
result it is reasonable to treat the entire system as a black box

1Available at: https://github.com/rriggio/joule978-1-4799-0913-1/14/$31.00 c© 2014 IEEE



rather than trying to isolate the contribution of the various
subsystems to the overall power consumption.

The power consumption model for a certain device can be
either generated in–lab under controlled conditions or directly
on the field by deploying a managed power consumption
meter on the production network and by correlating the
power consumption figures with the network statistics gathered
using commonly deployed network management solutions, e.g.
SNMP–based network monitoring applications.

Such empirical models are typically derived during an initial
training phase during which the system being modeled is sub-
jected to a set of well designed workloads meant to represent
all — or at least most of — the system’s operating states and
at the same time power consumption measurements are taken
using suitable metering devices. Starting from this dataset
matching the system’s operating state and the actual power
consumption can be done using several modeling techniques,
e.g. linear regression.

Once the power consumption models have been generated,
they can be exploited to estimate the consumption of an op-
erational network in real–time without requiring any physical
power consumption meter. Such a possibility is particularly
interesting in a cloud–based network management scenarios
where traditional network monitoring and management func-
tionalities are moved to the cloud operator’s datacenter and
offered to the customer following a Software as a Service
model. In such a context deriving a power consumption model
for a certain WiFi AP would allow the cloud operator to offer
a virtual power meter to all its customer using that particular
device. Such concept can be applied to other networked IT
equipment, such as switches, VoIP phones, IP video cameras,
however due to space constraints this work will focus on
802.11 APs. Nevertheless it is worth noticing that the reli-
ability of the models utilized in this work has already been
demonstrated for a radically different radio technology, namely
a CDMA–based UMTS femto–cells [2].

III. MODEL TRAINING

A methodology for characterizing the power consumption of
UMTS femto–cells has already been presented by the authors
in [2]. Here we shall briefly summarize the methodology and
we shall prove its applicability to 802.11 APs.

A. Experimental setup

The test environment is composed of a single AP and a
single client. The AP is built around the PCEngines ALIX
2D2 (500MHz x86 CPU, 256MB of RAM) processor board
equipped with one Mikrotik R52 IEEE 802.11 interface (a/b/g)
with RTC/CTS disabled. The AP exploits OpenWRT 12.09 as
operating system. The ath5k Wireless NIC driver has been
used during the measurements campaign. The AP’s operating
frequency was set to 5.240GHz (Channel 48). The rate adap-
tation algorithm has been set to auto and the transmission
power has been left to its default value equal to 17dBm for all
experiments. The notebook is a regular DELL Latitude 6420
equipped with an Intel PRO/Wireless 3945AB wireless adapter
and running Ubuntu 12.04 LTS.

Traffic is injected into the network at either the AP or the
client side as a single UDP stream using different datagram
sizes and transmission rates. Power consumption measure-
ments are taken also without traffic in order to assess the

Training Sets Datagram sizes [Bytes] Bitrates [Mb/s]
D1 32, 64, 128, 256, 384, 640 0.1, 0.5, 1, 2, 5

896, 1152, 1408, 1460 10, 15, 20, 25 30
D2 32, 64, 128, 256, 384, 640 0.1, 1, 10, 30

896, 1152, 1408, 1460
D3 32, 512, 1024, 1460 0.1, 0.5, 1, 2, 5

10, 15, 20, 25 30
D4 32, 512, 1024, 1460 0.1, 1, 10, 30

TABLE I: Training sets.

idle power consumption. Results reported in this section are
the average of measurements collected during 120 seconds
with a 95% confidence interval. During the training phase we
used a total of 10 different datagram sizes and 10 different
transmission bitrates (summarized in Table I, set D1). Streams
are generated sequentially for every possible permutation of
datagram size/bitrate, resulting in a total of 100 streams in
each direction (client to AP, and AP to client). Considering
an idle time of 5s between streams the entire measurements
campaign took ≈ 7 hours to complete.

We used a Energino2 power monitor [5], [6] to measure the
actual power consumption of the AP during the experiments.
Energino is real–time power consumption meter, which allows
measuring the energy consumption of any DC powered device,
as well as powering it off. The maximum sampling rate for
measurements is 10000 samples/s. Fluctuations in the values
read from the analog inputs are filtered out by continuously
polling the voltage and the current sensors between update
periods and by dispatching the average values. For example,
if the sampling period is set to 1s, both the voltage and
the current readings will be the average of ≈ 5000 samples.
Energino can monitor DC loads up to 60V and absorbing up
to 5A. The resolutions for the voltage and for the current
are, respectively, 54mV and 26mA. During our measurements
campaign Energino’s sampling interval has been set to 200ms.

B. Modeling methodology

In a regular WiFi AP we can identify three main subsystems,
namely: CPU, wired backhaul interface (typically an Ethernet
interface), and WiFi. In this work we model the power
consumption of just the WiFi subsystem. The reason behind
this choice is that frame processing and forwarding takes place
in dedicated silicon, i.e. the switch chip in the case of Ethernet
frames and the WiFi chip in the case of the WiFi frames, as
a result little load is imposed on the main CPU. Finally, the
Ethernet frame processing is responsible for a negligible power
consumption at the system level (one order of magnitude lower
than the WiFi power consumption). We empirically verified the
previous claims, however the results of such measurements are
not reported due to space constraints.

As the main purpose of this work is to demonstrate the
usability of Joule as energy monitoring subsystem, we do not
propose new power consumption models but rather we reuse
the ones developed in our previous works [2]:

P = α(d)sat(x, d) + β(d)δ(x) + γ (1)

where P is the AP power consumption in Watts, x is the
offered load in Mbps, d is the datagram size in bytes, δ(x) is

2Available at: http://www.energino-project.org.
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(b) 1460 bytes

Fig. 1: Average power consumption at the AP as a function of
the bitrate for a constant datagram length. The AP is acting
as transmitter.
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(b) 10 Mb/s

Fig. 2: Average power consumption at the AP as a function of
the datagram length when the offered load is held fixed. The
AP is acting as transmitter.
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Fig. 3: Network throughput as function of datagram size.

the step function, and

sat(x, d) =


x 0 ≤ x ≤ xmax(d)

0 x ≤ 0

xmax(d) x > xmax(d)

(2)

δ(x) =

{
1 x > 0

0 otherwise
(3)

In this model, sat(·) represents the power consumption satu-
ration regime reached when the offered load exceeds network
capacity. This can be seen in Fig. 2 where the average power
consumption is shown as function of the network load for
a constant datagram length. The measured values for xmax

are reported in Fig. 3. α(d) captures the fact that the rate of
increase in power consumption with offered load is observed to
depend on datagram size (also shown in Fig. 1). β(d) captures
the dependence of power consumption on datagram length
when the offered load is fixed as shown in Fig. 2. γ captures
the baseline power consumption when the AP is idle (no traffic
besides the standard WiFi beacons).

The power consumption of the AP in idle mode, i.e.,
without any data but the standard IEEE 802.11 beacons, has
been measured as γ = 2.955W. The dependence of α(d) on
datagram size is primarily due to the contribution of fixed
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Fig. 4: α(d) values when the AP is acting as transmitter.
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Fig. 5: β(d) values when the AP is acting as transmitter.

Parameter Transmitter Receiver

α0[
W

Mb/s
] 0.0065 0.0026

α1[Bytes] 967 1749
γ [W] 2.955

TABLE II: Energy model parameters

Access Point

Joule
Descriptor Profiler

Joule 
Daemon
(TX/RX)

Wireless Link Ethernet Link Joule 
Daemon
(TX/RX)

Models

Fig. 6: Joule network architecture. Synthetic traffic patterns
are loaded from the descriptor by the Profiler and executed
by the Daemons. Statistics are collected by the Profiler and
used to generate the power models.

overheads (framing, contention, etc.), we can select

α(d) = α0(1 +
α1

d
) (4)

where α0, α1 are parameters. α1 can be thought of as the per
datagram overhead, specified in bytes, while α0 is a factor
converting between units of bytes and energy. Figure 4 reports
the empirical values of α(d) (as dots) and the fitted model (as
dashed line). The fitting parameters are reported in Table II.
The empirical values for β(d) are shown Fig. 5.

IV. SYSTEM DESIGN

A. Architecture

As noticed before, measuring the energy consumption of a
WiFi AP can be done trough suitable power meters. However,
even for small-sized networks, i.e. tens of APs, deploying
such solutions can be a daunting task in terms of both
deployment and management costs. In order to work–around
such problems we design and implemented Joule. The system
architecture, sketched in Fig. 6, is composed of two main
components:
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Training Phase (e.g. at the Manufacturer) Online Phase (e.g. operational network)

Energino

Data 
Gathering

WiFi

Synthetic 
Traffic

WiFi

Data 
Gathering

Stats

Fig. 7: The Joule workflow. During the Training Phase the
Profiler generates different workloads while collecting power
consumption samples. The models generated using these statis-
tics are used by the Virtual Meter during the Online Phase
to estimate the actual power consumption of the AP from
measurable network statistics.

• The Daemons. They are software processes in charge of
generating (and receiving) synthetic traffic patterns. At
least two Daemons must be active in the network in order
to obtain meaningful statistics. Daemons are implemented
using the Click Modular Router [7].

• The Profiler. It is a software process in charge of trigger-
ing the transmission of different traffic patterns from any
active Daemon in the network and collecting the power
consumption statistics using a power consumption meter.

B. Workflow

Joule’s’ exploits a workflow consisting of two phases (see
Fig. 7): the Training Phase and the Online phase. In the
Training Phase the Profiler runs a series of synthetic traffic
patterns between the AP/client and client/AP while collecting
the power consumption statistics from the Energino in order
to build the power consumption models. In the Online phase
the Virtual Meter exploits such models in order to estimate the
actual power consumption of the AP using measurable network
statistics as input. We imagine that the training phase could
be performed by the manufacturers in their lab, the resulting
model could then be made available to the customers or be
integrated in traditional Network Management software, e.g.
Nagios [8].

Notice that the power consumption meter is not represented
in the picture. It can actually be any device capable of
exporting the instantaneous power consumption of the AP
trough a serial interface. The current implementation of the
Profiler supports the Energino device. However, the system
can be easily extended to support other commercial solution
such as managed POE switches and injectors commonly used
in enterprise WLANs.

The Profiler takes as input a file named Joule Descriptor
which is composed of two sections. In the first section all
the Daemons currently active in the network are listed. For
each Daemon information like IP address and control ports
are provided. The second section defines a set of synthetic
traffic patterns named Stints. Each stint specifies the source
and the destination Daemons as well as the stream bitrate,
its duration and the datagram size. At the moment only UDP
streams are supported. The system does not impose any limit
on the number of Daemons, At any given time a Daemon can
transmit traffic to a single Daemon. However, Daemons can
receive traffic from multiple Daemons.

After a Stint has been completed, the Profiler polls the
Daemons in order to collect the network level statistics, i.e.
the number of packets transmitted and received. The Profiler
computes then the average and the median power consumption
and their confidence interval. Finally, after all the stints have
been completed, the Profiler computes the power consumption
models and save the results to a model file which will be later
used for the online power estimation.

It is worth noticing that, albeit depicted as separate entities,
the Daemons and the Profiler can actually collapse into a
single device, e.g. a powerful PC capable of generating the
synthetic traffic patterns and of polling the power consumption
meter for the power consumption samples.

V. EVALUATION

In this section we report on the evaluation of the Joule
virtual power meter. In particular we are interested in studying
models generation time and accuracy.

A. Methodology

In order to study the relationship between model accuracy
and stint duration we developed four different training pro-
grams using the combinations of packet lengths and bitrates
summarized in Table I (sets D1) and differentiated by the
duration of each stint. The value considered have been 30s,
60s, 90s, and 120s. Each training program took between ≈ 2
hours and 7 hours to complete.

The actual composition of the training program in terms
of datagram sizes and bitrates has a significant impact on the
time required to generate the models. In order to understand
the tradeoffs involved in the definition of the training sets we
developed three additional training programs whose datasets
used are summarized in Table I (sets D2,3,4). Stint duration
was set to 30s. Each training program took between ≈ 20
minutes and 2 hours to complete.

Finally, we also used a real application, namely FTP, in
order to assess the accuracy of Joule under real–world work-
loads. The FTP session consisted in downloading a single file
from a public FTP server3 while monitoring the actual and the
estimated power consumption. Although representative only
for a fraction of the total Internet traffic, FTP provides us with
a significant insight into the operation of a WiFi network when
its back–haul link is completely saturated, i.e. when the power
consumption of the WiFi AP depends only the conditions of
the wireless link. Results reported in the next sections are the
average of 10 runs. The 95% confidence intervals were always
smaller than 5mW.

B. Implementation details

Traffic statistics have been obtained by running a simple
instance of the Click Modular Router on the AP. Click is
mostly used as high performance software for forwarding
and manipulating packets. However, its architecture naturally
supports other tasks such as traffic generation and monitoring.
In our case we used Click to aggregate incoming and outgoing
wireless frames according to their length. The process takes
very little CPU resources (less than 1%). The aggregated
statistics are accessed by the Virtual Meter over a Socket
interface made available by Click. Binning is used in order to

3The Linux kernel version 3.10.6 (≈ 73Mb).



−0.15 −0.1 −0.05 0 0.05 0.1 0.15
0

0.2

0.4

0.6

0.8

1

x=Error [W]

F
(x

)

Empirical CDF

Fig. 8: Empirical CDF of the power estimation error for 120
seconds long stints. AP is acting as transmitter.

−0.2

−0.1

0

0.1

30 60 90 120

Stint length [s]

E
rr

o
r 

[W
]

Fig. 9: Power estimation errors for different stint duration
values. AP is acting as transmitter.

consolidate this data into the intervals used during the training
phase. Statistics are periodically polled by the Virtual Meter
that exploits them in order to compute the estimated power
consumption using Eq. 1.

C. Model Accuracy

The power consumption model described in Sec. II is
simple and easy to calibrate: γ, β(d), and xmax(d) can be
directly measured while α(d) varies in accordance with fixed
overheads. Such model provides a good fit to the empirical
measurements across the full spectrum of operating condition
considered in this study. For example the energy consumption
predictions are reported as dashed line in Fig. 1 and Fig. 2.

In Fig. 8 we report the empirical CDF of the power
estimation error when using models generated from 120s long
stints. The figure refers to the outgoing traffic, i.e. the AP–as–
transmitter model has been used. The median error is very
small (23mW) while the 10% and the 90% quantiles are,
respectively, −0.132W and 0.130W.

Figure 9 summarizes the power estimation errors resulting
from models generated using different stint duration values.
As it can be seen, the error distributions are quite similar for
all training sets. This allows us to conclude that even very
short stints (30s) can actually lead to reliable models.

Finally, Fig. 10 summarizes the power estimation errors
resulting from models generated using the training set in
Table I. As it can be seen, using smaller training set in
terms of either datagram sizes and/or bitrates does not affect
significantly the accuracy of the models. On the contrary, it
seems that using smaller training set can actually slightly
improve the model accuracy. We ascribe this behavior to
beneficial statistical smoothing effects achieved by considering
fewer training points. However, it is worth noticing that, the
selection of the training points in the alternatives training
set has been done with some a–priori knowledge about the
network MTU (1500 bytes) and about the maximum goodput
achievable by an IEEE 802.11g AP (≈ 28Mb/s).
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Fig. 11: Real (solid line) and virtual (dashed line) power
consumption while download a large file using FTP.

D. FTP Download

Figure 11 reports the instantaneous power consumption
of the AP while downloading a large file from a public
server. The graph refers to one particular run, out of the
10 performed during the measurements campaign, where an
network slowdown happened between the 5th and the 15th
second of the download. The network slowdown is caused by
an interfering WiFi station active on a different network SSID
and sharing the same channel with our experimental setup.
As it can be seen, the virtual power meter closely tracks the
actual power consumption during the slowdown. The median
values of the actual and estimated power consumption across
the 10 runs are, respectively, 3.437W and 3.446W. The median
absolute error is 28mW.

VI. RELATED WORK

System–level power consumption models are important for
power management and optimization on a broad range of
scenarios and use cases ranging from per–application energy
consumption to datacenters power monitoring.

In the last years considerable attention has been devoted,
for example, at devising on–line power modeling and esti-
mation solutions for smartphones under the assumption that
such model would enable the development of energy efficient
“Apps”. System calls made by applications are traced in [9]
in order to infer the energy used by specific processes.
WattsOn [10] is in principle similar to the approach pre-
sented in this work in that it aims at generating accurate
power consumption model for the various sub–systems found
in a smartphones by exploiting reference benchmarks and
empirical measurements. Similar approaches are presented
in [11], [12]. The latter eliminates the need for external
power measurement equipment, by using the battery drain
measurements available on the mobile device itself. The V-
Edge system [13] on the other hand is self–constructive and
does not require current sensing, by exploiting instantaneous



fluctuations in the battery voltage reading in order to infer the
actual current absorption.

The body of literature on energy–aware solution for Ad–
Hoc networks is humbling. In [14] an on–line power aware
routing for Ad–Hoc network is proposed. A detailed study
of the energy efficinecy of a number of contention–based
MAC–layer protocols, including IEEE 802.11, is presented
in [15]. However, most of these works exploit linear or step–
wise power consumption models ignoring the non–linearity
found in these networks. The authors already devised both
a cheap and accurate power meter and a set of models for
WiFi networks [5], [16], [17] and for Femtocell–based UMTS
networks [2], however these works stopped at the analysis
stage, while in this paper we refined and exploited those
models for on–line estimation of an AP’s power consumption
under both synthetic and real workloads.

Energy efficiency is becoming evermore important in the op-
eration of large IT infrastructures. The importance of achieving
plug–load visibility is acknowledged in [18] where a power
measurement study of a variety of networking gear such as
hubs, edge switches, core switches, routers and wireless access
points is performed. The authors then propose a benchmarking
suite that allow network administrators to compare the power
consumed by networking gear using different configuration
profiles. The challenge of power metering in virtualized dat-
acenters in tackled in [19], [20]. Power models are used
in order to infer the power consumption at application and
virtual machines level. The authors also show that existing
instrumentation in server hardware and hypervisors can be
used to build the required power models on real platforms
with low error.

Sentilla [21] and JouleX [22] are two commercial solutions
providing power consumption intelligence in datacenter envi-
ronments. The former started as a wireless power metering
company exploiting hardware sensors for tracking the actual
energy consumption of datacenter gear. Acknowledging that
such an approach does not scale well in terms of deploy-
ment and management costs, they moved to a software only
approach exploiting virtual meters to calculate the power
consumption of datacenters assets by extracting information
about the equipment’s workload. Similarly, JouleX exploits
knowledge already available within a customer network in
order to support the implementation of energy saving policies.
However, the hardware requirements and the high licensing
fees (JouleX is now part of the Cisco EnergyWise [23]
offering) make JouleX not affordable for large scale hotspots
deployment, that are already moving toward cloud–based
network management solutions [24], [25] in order to reduce
operational costs.

VII. DISCUSSION

In this paper, we presented Joule a new approach for imple-
menting large scale energy consumption tracking applications
that do not rely on additional and expensive hardware power
meters. The proposed solution relies on a flexible power
consumption modeling framework capable of generating ac-
curate models without any human intervention. Such models
can then be embedded within traditional network monitoring
and management solutions providing empirical support for
adaptive energy saving strategies (such power cycling of APs

according to the traffic conditions). A preliminary implementa-
tion tested over a real–world deployment has shown that Joule
can indeed support accurate power consumption monitoring
with a median error of 26mW and that such performances can
be achieved with a training phase as short as ≈ 20 minutes.
The system is also capable of closely tracking fluctuations in
power consumption. As future work we plan to further study
the impact of environmental noise on the power consumption
model as well as to investigate mixed packet size scenarios and
the applicability of the models to other wireless technologies
such as the high throughput 802.11n and 802.11ac extensions
and mobile technologies such as LTE and LTE-A.
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