
Progressive Virtual Topology Embedding in

OpenFlow Networks

Roberto Riggio, Francesco De Pellegrini

CREATE-NET, Via Alla Cascata 56/C, 38123 Trento, Italy

Emails: {rriggio,fdepellegrini,esalvadori,mgerola,rdoriguzzi}@create-net.org

Abstract—Future internet would provide a flexible and simpler
architectural design by combining novel low level clean–slate
techniques such as OpenFlow with high level design princi-
ples such as network virtualization. However, previous research
outlined that at the core of network virtualization stands a
new set of challenges for network resources allocation. In this
work we focus on one such challenge, namely the problem
of virtual topology embedding. In this context users need to
leverage the infrastructure substrate by accomodating logical
topologies with high degree of flexibility. The network provider,
on the other hand, aims at maximizing its revenue in term of
size and number of topologies accepted while minimizing costs
accounting for the substrate network resources used. To this
aim, we present VT-Planner a novel virtual network embedding
technique with reduced computational cost and very efficient over
substrate topologies encountered in practice. Extensive numerical
simulations are provided comparing this technique with state–
of–the–art solutions: our results show that VT-Planner is able to
achieve a good balance in terms of complexity and performance.

Index Terms—Resource allocation, Virtual Topology Embed-
ding, OpenFlow, Algorithms

I. INTRODUCTION

Network virtualization is expected to play an important role

in the networking domain by renewing the way resources

sharing is performed throughout networking and computa-

tional facilities. In particular, network virtualization allows

multiple heterogeneous virtual networks (VN) to coexists at

the same time over a shared physical infrastructure, namely, the

substrate network. This approach is set to favor both research

and operative activities. In fact, researchers will design new

protocols and algorithms while developing and testing them

over the production network, but, without affecting the users

who are not involved/interested in the experimentation. Prac-

titioners, conversely, will take advantage of new empowered

virtualization items; for instance, using network virtualization

they will be able shift their business paradigm and start

offering to their customers ad hoc usage of their infrastructure,

i.e., what is referred to as Infrastructure as a Service (IaaS).

However, in order to achieve these goals, the topology of

the VN must be completely decoupled from the underlying

physical topology of the substrate network. It should allow

experimenters to construct the VN according to the needs

of his/her research agenda, and the infrastructure provider to

tune how the details of the physical network are exposed to

its customers. The latter requirement is particularly important

in order to accommodate users who want direct control of

the network they run and users that instead are interested in

providing added–value services on top of their VN. Finding

an efficient mapping between VNs requested by the end–

users and the substrate network resources is the first step in

achieving such level of flexibility.

The VN embedding problem refers precisely to the mapping

of a VN requested by the user into the substrate network.

The VN consists of a topology where links and nodes are

both weighted to express precise constraints on both the

computational resources that should be made available at

each virtual node and the performance of the virtual links

between such nodes to be granted on a substrate network.

Performance figures can be represented by any isomorphic

performance metric, e.g. delay, throughput, jitter. The problem

is known to be NP-hard [1] and consequently there exists

a significant amount of literature on designing heuristics to

find suitable mappings between virtual nodes and virtual links

on the substrate network. In particular, we will focus on

the case of unsplittable paths [2]: in fact, our solution is

meant to permit network virtualization over OpenFlow enabled

substrate networks which do not encompass multipath routing.

OpenFlow [3] is an emerging networking technology that

allows virtualization and control of the network environment

through secure and standardized interfaces.

Furthermore, our target reference substrate network is well

represented by the infrastructure deployed in the OFELIA

project [4], a facility which exploits Software Defined Net-

working (SDN) concepts and is based on OpenFlow. The

testbed facility, i.e., the substrate network, is composed of sev-

eral sub–networks, called islands; each island is composed of

a variable number of switches and links including a virtualized

server infrastructure. Islands are geographically separated and

are interconnected using the public Internet. Moreover, within

each island only a subset of the switches is actually connected

to the virtualized server infrastructure.

Users of the infrastructure can leverage the substrate topol-

ogy by issuing requests for arbitrary VNs, together with some

computing resources in the form of virtual machine instances,

i.e., virtual hosts for simplicity’s sake. In this context, we

are compelled to ignore relocation techniques: once VNs are

allocated, mappings between VNs currently supported can not

be recomputed and re-issued in order not to impair ongoing

running experiments. For more information about the network

virtualization architecture and prototypical implementation the

reader can refer to [5]

This paper has two main contributions. First, we compare

the performances of state–of–the–art VN embedding heuristics

using both random and regular topologies. In particular we

are interested in investigating the challenges in embedding

canonical topologies such as clique and star topologies onto

the substrate networks. Besides random substrate networks,

meant to represent general topologies, we are interested also

in specific topologies such those typically found in data cen-

ters, e.g. fat–trees. Second, starting from the aforementioned

performance comparison, we propose an algorithm, named VT-

Planner, solving the VN embedding problem.

The rest of the paper is structured as follows. Related

work are discussed in Sec. II. In Sec. III we formalize the

network model and the virtual topology embedding problem.

Section IV introduces the heuristics exploited by the VT-

Planner in order to perform the virtual topology embedding.

Section V introduces the evaluation methodology and the

performance metrics. The results of our numerical simulations

campaign are reported in Sec. VI. Finally, Sec. VII draws the

conclusions and future research directions.

II. RELATED WORK

The problem of VN embedding has been explored in a

few reference works in literature. The work [6] describes the

problem and characterizes the core tradeoff for such resource

allocation problem. In particular, the authors introduce the

notion of node stress and of link stress. Those metrics describe

the concurrent effect of bandwidth requests and node capacity

requests. Assigning virtual nodes to substrate nodes, affects

the node stress, but also determines the substrate links that are

traversed by virtual links, which in turns affects the link stress.

The control parameter that we use to balance edge demands

and node loads resembles notion of stress in [6].

Chowdhury et al. [7] formulate the network embedding

algorithms as a mixed-integer program that jointly address

the nodes and the links mapping phases. Simulations carried

out using a large number of requests (i.e. virtual network

topologies) show that the proposed algorithms can effectively

improve the acceptance rate while minimizing a cost function

which takes into account the load generated on the underlying

network. The model that we follow in the rest of this paper

adopts the same formalism and the notation that is developed

in [7]. The work developed in [8] extends the virtual topology

embedding problem to the case where the substrate to be

covered spans multiple domains, and no centralized resources

broker is available; the focus is on protocol operations.

The paper [9] provides a primal-dual algorithm that is

able to optimize the VT embedding problem under convexity

assumptions and in the case when only the virtual link

capacity is accounted for. The authors of [10] adopt a graph

isomorphism approach to perform VT embedding based on

a revenue-cost mapping similar to what proposed in [7];

with such an approach, both nodes and links are embedded

simultaneously. Another technique is proposed in the paper [2]

where ant-colony methaheuristics are adopted in order to

search the solution space. The paper [11] demonstrate the

VT Planner

Storage

VeRTIGO

C
la

s
s

if
ie

r

OpenFlow Controller

Internal

Controller

Node Virtualizer

OpenFlow Switch

(VT con�gurations,

�ow statistics, databases)

Port Mapper

Control Framework

Web UI

Fig. 1: Main building blocks of VeRTIGO.

(a) (b)

Fig. 2: Substrate network (a) and VN Request (b). Round circles
denote switches whereas hexagons denote servers. Dashed lines
denote links between servers and switches, while solid lines denote
links between switches.

potential of multiple path splitting as an effective mean to

allocate substrate link bandwidth to virtual links; such an

approach is also encompassed in the solution proposed by [7].

As mentioned before, we intend to consider only unsplittable

paths because of technological constraints.

III. PROBLEM DEFINITION

In the VN embedding problem the input data are the VN

requests performed by the users, whereas the substrate network

provides the physical constraints in terms of bandwidth and

capacity. From an architectural standpoint the VN embedding

algorithm is the engine of the resource allocation component

in a virtualized networking infrastructure. In the specific case

of the OFELIA facility, the network virtualization enabler is

named VeRTIGO and its high level architecture is sketched

in Fig. 1. VeRTIGO is implemented around the latest release

of FlowVisor, the OpenFlow native network slicing layer, and

adds a set of additional modules aiming at providing enhanced

flexibility in the setup of network slices. More precisely, VeR-

TIGO allows to expose to the OpenFlow controller arbitrary

network topologies. For a detailed description of the VeRTIGO

architecture and implementation the reader can refer to [5].

Before introducing the proposed solution we need to detail

specific notation for the substrate and the virtual topologies.

A. Physical Network model

Let GS = (NS , ES) be an undirected graph modeling

the physical network, where N = NS
1 ∪ N

S
2 is the set of

n1 = |NS
1 | switches and n2 = |NS

2 | servers and ES is

the set of edges or links. An edge eSnm ∈ ES if and only

if a point–to–point connection exists between n ∈ NS and

m ∈ NS . With respect to the physical network, links are actual

wiring media, e.g., an Ethernet cable interconnecting the two

switches1. Servers can only connect to switches, but not to

other servers; to this respect, we denote ES
1 ⊆ N

S
1 ×N

S
1 the

set of links between switches and with ES
2 ⊆ N

S
1 ×N

S
2 the set

of links between switches and servers, where ES = ES
1 ∪E

S
2 .

A sample substrate network is sketched in Fig. 2a: as seen

there, the physical network is composed by a set of n1 = 4
switches interconnected together, plus a set of n2 = 3 servers

connected to one or more switches. Round circles denote

switches whereas hexagons denote servers or computational

nodes. In the picture dashed lines denote links between servers

and switches, while solid lines denote links between switches.

A weight c(nS) assigned to each node n ∈ NS
2 : c(nS) ∈

N
+ represents the amount of computational resources available

on that node; for the sake of simplicity we assume that com-

putational resources can be expressed as an integer number.

Another weight b(eS) assigned to each link eS ∈ ES
1 :

b(eS) ∈ N
+ represents the capacity of the link connecting

two switches. Observe that it will be possible that a server is

connected to two or more different switches, i.e., we account

for servers multi-homing. Also, we assume that servers will

implement onboard traffic shaping functionality, such in a way

that the capacity of links towards switches is never exceeded.

Finally, let PS be the set of all substrate paths and PS(s, t)
the set of all substrate paths between nodes s and t.

The resources required to embed a VN request GV onto a

substrate network GS can be quantified using the concepts of

substrate node SN and link SE stress defined as follows:

SN (nS) =
∑

nV →nS

c(nV)

SE(e
S) =

∑

eV →eS

b(nV) (1)

We define residual node capacity as the available capacity of

the substrate node nS ∈ NS

RN (nS) = c(nS)− SN (nS)

The residual capacity of a substrate link is defined as the total

amount of bandwidth available on the substrate link eS ∈ ES .

RE(e
S) = b(eS)− SE(e

S)

Finally, we can define the available bandwidth of a substrate

path P ∈ PS as the residual capacity of the bottleneck link

RE(P) = min
eS∈P

RE(e
S)

B. VN Requests

Users are allowed to request instances of arbitrary topolo-

gies GV = (NV , EV) on top of the physical network. Again,

NV
1 denotes the set of switches and NV

2 the set of computa-

tional nodes GV has two types of links: EV
1 ⊆ N

V
1 ×N

V
1 is

1In this work we consider undirected links for simplicity

the set of links between switches, and EV
2 ⊆ N

V
1 ×N

V
2 is set

of links between switches and servers, where EV = EV
1 ∪E

V
2 .

A sample slice composed by 3 virtual machines, 4 switches,

and several (virtual) links is sketched in Fig. 2b.

C. Decision

In the event of a VN Request the VT-Planner has to decide

whether it can be accepted or if it must be refused. If a request

is accepted then the VT-Planner is in charge of mapping the

request onto the substrate network, i.e., network resources

must be allocated on both the substrate nodes and the substrate

links. The embedding of a VN request GV onto the substrate

network is subject to the following constraints:

1) Node assignment. Each node in the VN request is mapped

to a different substrate node with sufficient computational

capacity. Notice that with node we refer to both switches and

virtual hosts. The mapping function MN : NV → NS from

virtual nodes to substrate nodes is such that ∀ nV , nS ∈ NV ,

MN (nV) ∈ NS

MN (mV) =MN (nV), iff mV = nV (2)

subject to: c(nV) ≤ RN (MN (nV)).
2) Link assignment. Each virtual link is mapped to a single

substrate path between the substrate nodes on top of which

the two endpoints of the virtual link have been mapped. Only

substrate paths with sufficient capacity on their bottleneck

links are considered. Link assignment is defined by a mapping

function ME : EV → PS from virtual links to substrate paths

such that ∀ eV = (mV , nV) ∈ EV ,

ME(m
V , nV) ⊂ PS(MN (mV),MN (nV))

subject to:
∑

P∈ME(eV)

RE(P) ≥ b(e
V).

Notice that the single flow constraints derives from the fact

that due to the OpenFlow protocol definition, it is not possible

to split a flow across multiple paths.

IV. VT-Planner

The objective of our algorithm is to embed multiple VN

requests consisting of a set of nodes and links each with its

own constraints on top of a given substrate network. We as-

sume that substrate network topologies can be either tree–like

topologies, e.g. fat–tree, commonly found in datacenters, and

random topologies which aim at modeling core networks. VN

requests coming from users can consist of random topologies

as well as more regular topologies such as clique and star.

VT-Planner is a recursive algorithm implementing a

Breadth–first traversal of both the substrate network and the

VN request. At each step the algorithm tries to map a virtual

node to the substrate node that minimizes a virtual edge stress

metric. Such metric has been designed in such a way to control

how VN request are embedded onto the substrate network.

More specifically the metric aims at balancing the load on both

the computational nodes and the substrate network resources.

Finally, the visit on both the substrate network graph and on

the VN request graph begins from the two highest capacity

Algorithm 1 VT-Planner

1: procedure Embed Graph(GV , GS)
2: nV ← Select Node(GV) ⊲ pick VN Request node
3: nS ← Select Node(GS) ⊲ pick substrate node
4: M(nV)← nS ⊲ embed node
5: φ(nS)← 1 ⊲ mark node as used
6: if not Embed Node(nV) then

7: Reject(GV)
8: end if
9: end procedure

Algorithm 2 Node embedding (Recursive)

1: procedure Embed Node(nV)
2: ψ(nV)← 1 ⊲ mark node as visited
3: for all {mV ∈ neighbors(nV)} do

4: if ψ(mV) == 0 then ⊲ Virtual node not visited
5: ΘS = GS \ {nS ∈ NS | φ(nS) == 0}
6: if ΘS == ∅ then ⊲ No substrate node available
7: return False
8: end if
9: mS = argmin

mS∈ΘS

[WS(eV ,mS)]

10: if mS == ∅ then
11: return False
12: end if
13: M(mV)← mS ⊲ embed node
14: φ(nS)← 1 ⊲ mark node as used
15: end if
16: Allocate path between M(mV) and M(nV)
17: end for
18: for all {mV ∈ neighbors(nV) | ψ(mV) == 0} do

19: if not Embed Node(mV ,M(mV)) then
20: return False
21: end if
22: end for
23: return True
24: end procedure

nodes. Notice that a node capacity is computed as the sum

of the weights of all links centered on that node. For the

ease of description we introduce φ : NS → {0, 1} and

ψ : NV → {0, 1} to track, respectively, the substrate nodes

and the virtual nodes that have been visited.

The algorithm (see Alg. 1) begins by picking two nodes

nV ∈ NV and nS ∈ NS . Then, it maps M(nV) ← nS

and starts a breadth–first traversal (see Alg. 2) on the virtual

topology starting at virtual node nV : the visit corresponds to

exploring a tree rooted on the substrate node nS . At each

step the visited node is mapped to the substrate node with

the minimum virtual edge stress. We define the virtual edge

stress WS : EV × NS → R between a virtual edge eV =
(nV ,mV) ∈ EV and a substrate node mS ∈ NS as follows:

WS(eV ,mS) = (1− α)min
eS

[

RE(e
S)− b(eV)

]

+ α
[

RN (mS)− c(mV)
]

(3)

where eS ∈ PS(nS ,mS). This distance is the convex com-

bination of the residual capacity of the substrate node mS

TABLE I: Simulation scenarios.

Substrate VN Request Nodes Nodes

(Substrate) (VN Request)

Random Random 25 [2, 5]
Fat–tree Clique 36 [2, 10]
Fat–tree Star 36 [2, 6]

after the mapping the virtual node mV and the residual

bandwidth on the bottleneck substrate link eS after mapping

the virtual link eV . The parameter 0 ≤ α ≤ 1 can be used

to give priority to the residual computational capacity or to

the residual bandwidth. For example, if α = 1 the algorithm

will embed the virtual node mV to the substrate node with

the highest residual computational capacity, instead if α = 0
the algorithm will try to embed the virtual node mV to the

substrate node whose path from M(nV) has the smallest

residual bottleneck link capacity. In our experimental setup we

used the value α = 1/2 in order to weight equally between

computational capacity and bandwidth.

After mapping the node M(mV)← mS the algorithm maps

the virtual edge eV to the shortest path between M(nV) = nS

and M(mV) = mS . The procedure stops when all the virtual

nodes have been visited or if the substrate network cannot

accommodate the VN Request. The latter case can happen if

there are not enough nodes in the substrate topology (ΘS ==
∅) or if either the computational capacity or the link bandwidth

has been exhausted.

We observe that the VT-Planner has complexity

O((NS)2 logNS) in the number of substrate nodes,

since it visits all NV nodes of the input VN, which are NS

in the worst case, and for each node it then builds a spanning

tree rooted at visited substrate node, at a cost O(NS logNS);
in the case of a bounded size NV for the input VT, the

complexity indeed becomes O(NS logNS).

V. PERFORMANCE EVALUATION

In this section we shall first describe the simulation envi-

ronment and then the performance metrics. The goal of this

study is to compare the relative performance of different node

and link mapping strategies using synthetic random topologies

and canonical topologies.

A. Simulation Environment

Simulations are carried out in a discrete event simulator

implemented in Matlab R© . In our simulations we assume that

VN request arrive according to a Poisson process and the

various algorithms are evaluated for increasing arrival rates,

staring with 4 VN requests and up to 8 VN requests every 100
time units. Each VN request has an exponentially distributed

lifetime with an average µ = 1000 time units after which the

resources occupied on the substrate network are freed.

The substrate network’s size is kept constant at 25 nodes

for the random topologies and at 36 nodes for the fat–tree

topologies, while the number of nodes in each VN request’s is

uniformly distributed between 2 and 5. The computational and

the bandwidth resources on the substrate nodes are uniformly

distributed between 50 and 100, while the computational

and bandwidth requirements for VN requests are uniformly

distributed between, respectively, 0 and 20, and 0 and 50. A

sample of each class of topology used in this study is reported

in Fig 3. Nodes in the random topologies are deployed over

a 25× 25 grid. Each pair of node (both substrate and virtual)

are connected with probability 0.5. Table I summarizes the

scenarios and the simulations parameters used in this study.

Notice that for the star–shaped topologies a single node acts

as switch (no computational capacity) while the rest of the

nodes are acting as hosts (computational capacity > 0) while

for the clique–shaped topologies each switch is connected to

an host.

B. Evaluation Metrics

The metrics used in this study are standard ones adopted in

several other related work (see, e.g., [7], [11], [6]).

1) Acceptance ratio. Measures the percentage of VN Re-

quest accepted by an algorithm.

2) Generated Revenue and Provisioning Cost. Denoting

with fe
V

eS
the total amount of bandwidth allocated on

the substrate link eS for the virtual link eV , we define

the revenue R and the cost C of a VN request as follows:

R(GV) =
∑

eV ∈EV

b(eV) +
∑

nV ∈NV

c(nV)

/home/rriggio

C(GV) =
∑

e∈EV

∑

eS∈ES

fe
V

eS
+

∑

nV ∈NV

c(nV)

3) Average node and link utilization. The average node and

link utilization of the substrate network computed as the

averages of, respectively, the node stress and the link

stress (1).

VI. RESULTS

In this section we shall report on the results of our numerical

simulation study. We compared 4 different embedding strate-

gies: Greedy, D-Vine and R-Vine [7], and VT-Planner. ViNe

algorithms are considered in their Shortest Path (SP) version

and with no constraint on the placement of virtual nodes [7];

indeed, the OpenFlow protocol which we are targeting as our

network virtualization enabler is not able to split flows across

multiple paths. Finally, notice that our comparison is limited to

the ViNe algorithms due to both space constraints and due to

the fact that they proved [7] to be significantly more efficient

than the algorithms presented in [6], [11].

The Greedy algorithm is a reference simple solution that

works as follows: it iteratively maps nodes in the VN request

to a random substrate with enough residual computational

capacity and substrate nodes are then interconnected via their

shortest path. The Greedy algorithm has same complexity as

VT-Planner. Results are reported for arrival rates increasing

from 4 up to 8 new VN requests every 100 time units.

First, we observe that all algorithms saturate both nodes

and links capacities in the case of random substrate network

topologies, i.e., node and link utilization for all algorithms

≈ 1. However, in the case of fat–tree shaped substrate

networks they tend to saturate links capacities before saturating

nodes capacity: this result is expected due to the reduced

bandwidth available on fat–tree topologies compared to the

random topologies used in this study.

Figure 4 reports on the results for the Random on Random

scenario, i.e, both the VN Requests and the substrate network

are random topologies. As seen there, the relative performance

of each algorithm does not depend on the load. In particular,

the VT-Planner algorithm is capable of accepting the highest

fraction of VN requests while at the same time delivering

the highest embedding revenue at the lowest embedding cost.

Moreover, increasing the load does not seem to impact the av-

erage embedding cost that remains constant while it does result

in a decrease in the average revenue. We ascribe this behavior

to the fact that, as the load increases, only small topologies,

whose revenue is lower, can be successfully mapped onto the

substrate network while large topologies, whose revenue is

proportionally higher, must be rejected due to lack of available

resources on the substrate network.

Figure 5 and Fig. 6 describe the results for, respectively,

the Clique on Fat-Tree and the Star on Fat–Tree scenarios. As

it can be seen the VT-Planner is again capable of accepting

the highest fraction of VN requests consisting of star and

clique shaped topologies. However, only in the case of star

topologies the VT-Planner delivers the highest average em-

bedding revenue at the lowest average embedding cost, while

in the case of clique topologies the VT-Planner does show the

lowest embedding cost but at the price of a lower embedding

revenue compared to all the other algorithms. This behavior

results in the fact that VT-Planner tends to accept small

topologies characterized by a low revenue rejecting larger VN

requests (this effect can be tuned by reducing by increasing

α; optimization of α is part of future work.). Finally, we

observe that the significantly lower performances delivered by

the ViNE algorithms is due to the fact that such family of

algorithms rely on a geographical vicinity localization of the

virtual node w.r.t. the substrate nodes. As mentioned before,

such localization assumption is not valid anymore in our

context: performance gain of VT-Planner is larger in the case

of highly structured topologies such as fat–trees and lower in

the case when the substrate is random. In the latter case in fact,

the impact of node placement is less severe, due to the lower

diameter of such topologies, i.e., bad placement of nodes is

compensated by the higher number of disjoint paths.

VII. CONCLUSIONS

In this paper we presented the VT-Planner algorithm, solv-

ing the joint nodes and links mapping in the VN embedding

problem. VT-Planner is a greedy algorithm implementing a

joint Breadth–first traversal of both the substrate network and

the VN request. Being the visit of the substrate based on span-

ning trees, It has low requirements in terms of computational

(a) Random (25 nodes). (b) Fat–tree (45 nodes). (c) Star (6 nodes). (d) Clique (10 nodes).

Fig. 3: Reference topologies used for our numerical evaluation. Notice that squares indicate node with computational capacity > 0 (hosts),
while circles indicate nodes with computational capacity = 0 (switches).

4 5 6 7 8
0.5

0.6

0.7

0.8

0.9

1

Arrival Rate

V
N

 R
e

q
u

e
s
ts

 A
c
c
e

p
ta

n
c
e

 R
a

ti
o

Greedy
D−ViNE (SP)
R−ViNE (SP)
VTPlanner

(a) Acceptance Rate.

4 5 6 7 8

140

160

180

200

220

Arrival Rate

A
v
e

ra
g

e
 C

o
s
t

Greedy
D−ViNE (SP)
R−ViNE (SP)
VTPlanner

(b) Cost.

4 5 6 7 8

90

100

110

120

Arrival Rate

A
v
e

ra
g

e
 R

e
v
e

n
u

e

Greedy
D−ViNE (SP)
R−ViNE (SP)
VTPlanner

(c) Revenue.

Fig. 4: Random on Random.

4 5 6 7 8

0.08

0.1

0.12

0.14

0.16

0.18

Arrival Rate

V
N

 R
e

q
u

e
s
ts

 A
c
c
e

p
ta

n
c
e

 R
a

ti
o

Greedy
D−ViNE (SP)
R−ViNE (SP)
VTPlanner

(a) Acceptance Rate.

4 5 6 7 8
300

350

400

450

500

Arrival Rate

A
v
e

ra
g

e
 C

o
s
t

Greedy
D−ViNE (SP)
R−ViNE (SP)
VTPlanner

(b) Cost.

4 5 6 7 8
100

110

120

130

140

150

Arrival Rate

A
v
e

ra
g

e
 R

e
v
e

n
u

e

Greedy
D−ViNE (SP)
R−ViNE (SP)
VTPlanner

(c) Revenue.

Fig. 5: Clique on Fat-Tree.

4 5 6 7 8

0.2

0.25

0.3

0.35

0.4

Arrival Rate

V
N

 R
e

q
u

e
s
ts

 A
c
c
e

p
ta

n
c
e

 R
a

ti
o

Greedy
D−ViNE (SP)
R−ViNE (SP)
VTPlanner

(a) Acceptance Rate.

4 5 6 7 8

150

200

250

Arrival Rate

A
v
e

ra
g

e
 C

o
s
t

Greedy
D−ViNE (SP)
R−ViNE (SP)
VTPlanner

(b) Cost.

4 5 6 7 8
50

55

60

65

70

75

80

Arrival Rate

A
v
e

ra
g

e
 R

e
v
e

n
u

e

Greedy
D−ViNE (SP)
R−ViNE (SP)
VTPlanner

(c) Revenue.

Fig. 6: Star on Fat-Tree.

and memory capacity. However, VT-Planner significantly out-

performs state–of–the–art solutions both for number of VN

requests accepted and for embedding cost/revenue.

Future work will extend the comparison to other scenar-

ios including different random substrate networks. Moreover,

testing over larger substrate networks will permit to verify

scalability properties of VT-Planner. Several other optimiza-

tions are possible: one of such tuning is how to select the

root node from which the Breadth–first traversal is started. We

expect this choices to have different impact of the algorithm

performance on different substrates.

Finally, tuning the control parameter α may provide addi-

tional degree of freedom to better fit the resource allocation

performed by VT-Planner to specific network substrates. In

future work we plan to provide a set of guidelines the will

help the network administrator in properly configuring this

parameters according to both the substrate network properties

and the expected workload.

REFERENCES

[1] A. Chakrabarti, C. Chekuri, A. Gupta, and A. Kumar, “Approximation
algorithms for the unsplittable flow problem,” in Proc. of APPROX,
Rome, Italy, 2002.

[2] I. Fajjari, N. Aitsaadi, G. Pujolle, and H. Zimmermann, “VNE-AC: Vir-
tual network embedding algorithm based on ant colony metaheuristic,”
in Proc. of IEEE ICC, 2011.

[3] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” SIGCOMM Comput. Commun. Rev., vol. 38, no. 2,
pp. 69–74, Mar. 2008.

[4] “Ofelia.” [Online]. Available: http://www.fp7-ofelia.eu/
[5] R. Doriguzzi Corin, M. Gerola, R. Riggio, F. De Pellegrini, and

E. Salvadori, “VeRTIGO: Network Virtualization and Beyond,” in Proc.

of EWSDN, 2012.
[6] Y. Zhu. and M. Ammar, “Algorithms for Assigning Substrate Network

Resources to Virtual Network Components,” in Proc. of IEEE INFO-

COM, Barcelona, Spain, April 23-29 2006.

[7] M. Chowdhury, M. R. Rahman, and R. Boutaba, “ViNEYard: Virtual
network embedding algorithms with coordinated node and link map-
ping,” Networking, IEEE/ACM Transactions on, vol. 20, no. 1, pp. 206
–219, February 2012.

[8] M. Chowdhury, F. Samuel, and R. Boutaba, “Polyvine: policy-based
virtual network embedding across multiple domains,” in Proc. of ACM

VISA, 2010.
[9] J. He, R. Zhang-Shen, Y. Li, C.-Y. Lee, J. Rexford, and M. Chiang,

“Davinci: dynamically adaptive virtual networks for a customized inter-
net,” in Proc. of ACM CoNEXT, 2008.

[10] J. Lischka and H. Karl, “A virtual network mapping algorithm based on
subgraph isomorphism detection,” in Proc. of ACM VISA, 2009.

[11] Y. Minlan, Y. Yi, J. Rexford, and M. Chiang, “Rethinking virtual
network embedding: substrate support for path splitting and migration,”
SIGCOMM Comput. Commun. Rev., vol. 38, no. 2, pp. 17–29, Mar.
2008.

