
What’s around me? Location analytics over
Software–Defined WLANs

Roberto Riggio∗, Iacopo Carreras† and Erinda Jaupaj†
∗CREATE-NET, Trento, Italy; Email: rriggio@create-net.org
†U–Hopper, Trento, Italy; Email: name.surname@uhopper.com

Abstract—Software–Defined Networking is gaining increasing
interest in the academic and the industrial communities alike.
SDN principles call for commodity networking devices and for
shifting all intelligence to a logically centralized controller. In this
demo we build on a programmable enterprise WLAN platform
in order to implement and deploy a location analytics solution
to be used in shopping malls, airports, and similar venues for
location–based advertisement and visitors profiling. Our solution
can run on commodity devices and in many cases can be adapted
to run over an existing WLAN infrastructure.

I. INTRODUCTION

Software–Defined Networking (SDN) is reshaping the way
networks are controlled and managed opening the way to more
flexible and manageable IT infrastructures. At its foundation,
SDN relies on two main concepts: (i) control and data plane
decoupling; and (ii) high–level programming primitives pro-
viding network developers with a programmatic interface to
control and configure their SDNs. Similar concepts are also
making their way into the wireless networking domain [1].
However, if OpenFlow has emerged as the de–facto stan-
dard for packet switched networks, an idempotent solution
has yet to emerge for wireless networks. In fact, the flow
abstraction on which OpenFlow relies does not account for:
(i) the stochastic nature of wireless links (which are not
equivalent to ports in Ethernet switches); (ii) the resource
allocation granularity (the flow abstraction is too coarse for
wireless networks); and (iii) the significant heterogeneity in
the link and radio layer technologies (state management for
network elements can differ significantly across currently
deployed Radio Access Networks technologies). Preliminary
programming abstractions for enterprise WLANs have already
been proposed by the authors [1], [2]. Such abstractions
tackle wireless client state management, resource provisioning,
network monitoring, and network reconfiguration. A proof–of–
concept controller as well as an SDK exposing the proposed
abstractions have also been implemented.

In this demo we take a step forward toward a truly general
purpose and programmable IT infrastructure by implementing
a location analytics and mobile advertisement platform using
our SDK and by deploying it on top of our programmable
WLAN controller. This Network App, targeting shopping
malls, airports, and similar venues, aims at computing statistics
such as the average time spent by a visitor in a certain area,
returning visitors, and hot–zones. Such information can then
be leveraged for targeted advertisements and/or user profiling.
As opposed to commercially available indoor localization so-
lutions, which rely on proprietary hardware and/or controllers,

SD-RAN Controller

SCTP

Wireless Termination Point

Slice 1:
Indoor Analytics

Slice 2:
OpenStack

Slice 3:
Mobility Manager

Wireless Terminals Backhaul

EmPOWER API: REST, Python

LVAPP
Service

Queries
Service

Triggers
Service

Network Slicing

WiFi / LTE

EmPOWER Agent OpenFlow Agent
(OpenVSwitch)

Ethernet

Fig. 1: The EmPOWER system architecture.

our framework supports any WiFi Access Point (AP) capable
of running an open firmware (e.g. OpenWRT) while our
WLAN controller can run on any platform capable of running
a Python interpreter (Linux, MAX OS, Windows, etc.).

II. SYSTEM ARCHITECTURE

We named our programmable enterprise WLAN platform
EmPOWER [3]. An high level view of the EmPOWER system
architecture is depicted in Fig. 1. The network is composed
by a variable number of Wireless Termination Points (WTPs),
i.e. the WiFi APs that form the WLAN providing clients
with wireless connectivity. The SD–RAN Controller can run
multiple virtual networks or slices on top of the same physical
infrastructure. A network slice is a virtual network with a
specific SSID and its own set of WTPs. Clients can opt–in a
certain slice by associating to its SSID. Each Network App is
instantiated in its own slice of and can only change the state of
the clients in that slice. Network Apps exploit the programming
primitives trough either a RESTful interface or a native Python
API. Finally, the controller ensures that a Network App is only
presented a view of the network corresponding to its slice.

III. Channel Quality Map

In this section we summarize the main features of the
Channel Quality Map abstractions which is leveraged in this
demo in order to implement the location analytics Network
App. The Channel Quality Map abstraction provides network
programmers with a full view of the network state in terms of
channel quality between clients and WTPs. The Channel Qual-
ity Map is exposed to the network programmer by means of
two data structures: the User Channel Quality Map (UCQM)
and the Network Channel Quality Map (NCQM). Both are 3-
dimensional matrices where each entry is the channel quality

over a certain frequency band between a client and a WTP in
the case of the UCQM; and between two WTPs in the case of
the NCQM. For example, the code below periodically queries
the specified WTP for its neighboring stations.

ucqm (a d d r s = ’ f f : f f : f f : f f : f f : f f ’ ,
b l o c k =(’ 0 4 : f0 : 2 1 : 0 9 : f9 : 9 6 ’ , 36 , L20)
e v e r y =5000 ,
s s i d = ’ Gu es t s ’)

Listing 1: UCQM query creation.

From the implementation standpoint, a monitor interface is
created on top of each physical radio available at each WTP
in the network. The RSSI readings reported by the wireless
driver for each decoded frame are then used as a measure
of the interference between the transmitter and the WTP. For
each For each neighbor within the decoding range, the WTPs
computes the average of the RSSI over windows of 500ms, an
exponential weighted moving average (Yewma) and N–points
smoothing moving average (Ysma) are also maintained.

The query is executed periodically with the period set
by the every parameter (in ms)1. Similarly, the RSSI
from neighboring WiFi Access Points can be tracked us-
ing the ncqm primitive. In the above example specifying
ff:ff:ff:ff:ff:ff will return the RSSI of any station
within the decoding range of WTP 04:F0:21:09:F9:96 on the
legacy channel 36 (i.e., an 802.11a channel).

A sample output of the ucqm primitive is reported be-
low. In this case the station a0:d3:c1:a8:e4:c3 is a neigh-
bor of the WTP 04:f0:21:09:f9:96 on the 802.11a chan-
nel 36. The report includes, besides the previously de-
scribed averages, also the total number of frames received
since the query was created (hist_packets) together
with the average (last_rssi_avg), the standard deviation
(last_rssi_std), and the size (last_packets) of the
RSSI samples received during the last observation window.

{
” a0 : d3 : c1 : a8 : e4 : c3 ” : {

” ewma rss i ” : −82,
” h i s t p a c k e t s ” : 15810 ,
” l a s t p a c k e t s ” : 10 ,
” l a s t r s s i a v g ” : −79,
” l a s t r s s i s t d ” : 7
” s m a r s s i ” : −82,

}
}

Listing 2: UCQM query output.

It is worth noticing that, the Channel Quality Map tracks
the RSSI level of any active WiFi device including the ones
belonging to networks that are not under the administrative
domain of the WLAN controller. This includes wireless clients
that are not associated to any network but have their wireless
interface active. This is due to the fact that such clients
periodically broadcast Probe Requests messages in order to
discover available APs. Finally, sensitive information (such as
MAC addresses) are not disclosed to the Network App unless
the particular client has opted–in the Network App’s slice. If
this is not the case MAC addresses are randomized.

1Specifying every = −1 will result in a single query being issued.

IV. DEMO

Modern location–based applications and services rely on the
possibility to know in real–time the geographical position of
customers. While GPS–based localization can provide precise
and real–time geo–localization, its reliability drops dramati-
cally in indoor settings. Several indoor localization solutions
leveraging various technologies (WiFi, Bluetooth, acoustic,
etc.) are currently commercially available. While some of
them are characterized by sub–m precision, their cost could
be prohibitive for many deployments. Moreover, for several
use cases proximity based localization is sufficient instead of
precise indoor geo–localization. By proximity detection, we
refer to the capability of knowing if a certain wireless client
is within a few meters from an anchor point (a WTP in this
case). Notice that the assumption here is that anchor points are
deployed in close proximity of points of interests in a certain
venue, such as check–in desks or shops in an airport.

The RSSI tracking capabilities allowed by the Channel
Quality Map can be effectively leveraged to implement such a
proximity detection system. A simple RSSI tracking Network
App has been implemented as proof–of–concept. The Network
App tracks in real–time the RSSI of wireless clients at different
WTPs in the network. The Network App then uses the follow-
ing metrics in order to compute the proximity information:

• Strength, the average RSSI level observed in the last ob-
servation window: WTPs that measure high RSSI values
are considered to be closer to the wireless client.

• Stability, the standard deviation of the RSSI in the last
observation windows: WTPs that experience less stable
signals provide a less accurate proximity information.

• Consistency: WTPs that consistently reported RSSI mea-
surements from a given client are consider to provide a
more accurate proximity information.

• Visibility, the number of WTPs reporting RSSI measure-
ments: receiving RSSI measurements from several WTPs
is consider to reduce the accuracy.

The Network App exploits these metrics to build a list
of WTPs ordered in decreasing level of proximity (from the
closest to the furthest). For each WTP a proximity radius (in
m) is also reported: very close (< 6m) and close (< 10m).
Starting from this information, the Network App computes a
set of aggregated statistics, namely, the average time spent by
visitor in proximity of each WTP, the number of returning
visitors, and the most visited areas. During the demo we
will show real–time statistics from a 20 nodes deployment at
CREATE-NET premises (a 5–stories office building). A single
WTP setup will be staged during the demo showing real–time
statistics gathered from the demo floor.

REFERENCES

[1] R. Riggio, K. M. Gomez, T. Rasheed, J. Schulz-Zander, S. Kuklinski, and
M. K. Marina, “Programming Software–Defined Wireless Networks,” in
Proc. of IEEE CNSM, Rio de Janeiro, Brasil, 2014.

[2] R. Riggio, T. Rasheed, and M. K. Marina, “Interference Management
in Software–Defined Wireless Networks,” in Proc. of IEEE IM, Ottawa,
Canada, 2015.

[3] “EmPOWER.” [Online]. Available: http://empower.create-net.org/

