
AiroLAB: A Framework Toward Effective

Virtualization of Multi-hop Wireless Networks

Roberto Doriguzzi Corin, Roberto Riggio, Daniele Miorandi, and Elio Salvadori

CREATE-NET, via alla Cascata 56/D, IT - 38123, Povo, Trento, Italy

Abstract. In this work we introduce AiroLAB, a novel network virtu-
alization framework specifically tailored to multi-hop wireless networks.
AiroLAB departs from conventional network virtualization approaches
by focusing on embedded, resource–constrained devices and by aiming
at providing Wireless Internet Service Providers with an effective virtual-
ization mechanism where network resources are shared between produc-
tion traffic and a variable number of experimental slices allowing novel
solutions and services to be tested in a controlled yet realistic environ-
ment. In the paper, the design choices at the hearth of AiroLAB are
presented, together with an early–stage prototype implementation and
experimental results obtained in a small–scale wireless network testbed.

Key words: network virtualization, multi–hop wireless networks, com-
munications networks, embedded devices, resource constrained environ-
ments

1 Introduction

Network Virtualization (NV) is currently regarded as one of the most promising
approaches to unlock and enable innovation in today’s network [1, 2]. Generally
speaking, NV can be seen as a tool for:

– Evaluating new, not necessarily backward compliant Internet architectures
(“clean–slate approaches”) in large–scale realistic environments, thereby help-
ing to overcome the current Internet ossification;

– Changing the functional role and business model of Internet Service Providers
(ISPs) by decoupling the provisioning of physical infrastructure from the pro-
visioning of communication/computing resources. In such a way, the role cur-
rently covered, in most countries, by ISPs would be taken over by differ-
ent entities: Infrastructure Providers, Virtual Network Providers and Service
Providers. This could provide the basis for the introduction of new stakehold-
ers in the Internet ecosystems improving the competition in this sector;

– Enabling the smooth and controlled introduction of novel services in an op-
erational network by providing means to isolate them from already deployed
applications, thereby promoting innovation in telecommunication networks;

– Moving logical instances of nodes and services across an infrastructure in order
to optimize network performance and minimize operational expenditures. As

2 R. Doriguzzi et al.

an example, moving services close to the users may lead to a decrease in
the power consumption of a physical network, therefore contributing to a
limitation of the network’s carbon footprint.

Challenges in NV research include the definition of appropriate and efficient
algorithms, architectures and protocols to effectively share a common physical
network infrastructure, splitting it into several logical instances (generally re-
ferred to as “slices”) composed of virtual links and virtual network nodes [3, 4].
Network nodes should be fully programmable to allow the instantiation of several
network instances, each one potentially based on a different architecture. Several
projects worldwide are working on the various aspects underpinning NV: GENI
in USA [5], 4WARD [6], FEDERICA [7] in Europe and AKARI in Japan [8].

NV solutions depend heavily on the network substrate on which they need to
operate. In particular, one challenging environment for NV solutions is that of
wireless multi–hop networks [9, 10]. Wireless multi–hop networks are emerging as
a cost–effective paradigm for enabling communications in those scenarios where
the deployment of a fixed wireline infrastructure is either non feasible (e.g., in
the case of mobile nodes such as vehicular ad hoc networks) or non economically
attractive (e.g., access to Internet in developing countries). The complexity of
introducing NV capabilities in such networks is exacerbated not only by the
fragile stability of the wireless links, but also by the limited processing power and
storage capabilities typically available on the devices employed in such systems.

While several NV architectures and solutions have been proposed in recent
years, most (if not all) of them were developed for wired networks, characterized
by virtually unlimited processing/storage power and link bandwidth (Planet-
Lab [11], VINI [12], G-Lab [13], etc). On the other hand, very few studies have
been performed on resource–constrained environments in general, and multi–hop
wireless networks in particular. Further, they have mainly focused on how dif-
ferent wireless medium virtualization techniques affect the overall network slices
performance in term of isolation and stability [14, 15].

In this paper we introduce AiroLAB, a novel virtualization framework specif-
ically tailored to multi–hop wireless networks. AiroLAB aims at providing Wire-
less Internet Service Providers (WISP) with an effective virtualization solution,
allowing production traffic to share part of the available network resources with
a variable number of network slices where novel solutions, such as new routing
protocols, services or network operation tools, can be experimentally tested in a
severely controlled yet realistic environment. In the rest of the paper, the build-
ing blocks that are at the base of the AiroLAB’s architecture and the protocols
devised in order to support its operations are presented, discussed and compared
with existing solutions. A first prototypical implementation of AiroLAB includ-
ing link channel capacity estimation is described, together with experimental
measurements obtained in a small–scale wireless network testbed.

The remainder of the paper is organized as follows. Sec. 2 surveys the main
challenges in the design and development of network virtualization solutions for
multi–hop wireless networks. Section 3 describes the AiroLAB architecture and
protocols. Section 4 reports and discusses the outcomes of experimental tests

AiroLAB 3

carried out with a first prototype implementation of the proposed framework.
Comparison with existing relevant solutions is carried out in Sec. 5. Finally,
Sec. 6 concludes the paper with a discussion of open issues and relevant research
directions for improving the AiroLAB framework.

2 Challenges

In this section we first provide a list of requirements any network virtualization
environment shall satisfy regardless the technological domain it is applied to.
Then, we analyze how such requirements need to be tailored to account for the
peculiar features of wireless multi–hop networks.

2.1 Requirements for a Virtualization Environment

An effective network virtualization shall satisfy the following general require-
ments [3]:

– Scalability: depending on the network segment and technological domain under
consideration, the performance offered shall not depend on the number of slices
active in the system.

– Isolation: a full isolation among slices should be guaranteed in order to improve
tolerance to faults, security and privacy in the virtualized infrastructure. In
particular, potential misconfiguration in one network slice should not affect or
destabilize the other ones.

– Legacy support : backward compatibility should be guaranteed in network vir-
tualization environments by –at least– hosting a legacy implementation of a
network instance (e.g. production network) in a slice.

– Flexibility: full programmability of the network elements must be ensured
especially in environments where clean–slate approaches are to be investigated.

– Manageability: network management tasks on a single network slice should be
performed without the need for coordination across administrative boundaries.

– Heterogeneity: heterogeneity should be supported at different levels: underly-
ing networking technologies; end–to–end virtual networks spanning heteroge-
neous combinations of (sub)networks; end-user devices.

– Efficiency: the additional overhead introduced by the virtualization framework
shall be minimal.

Two further requirements should be added to this list in the case network vir-
tualization techniques are used for running concurrent research experiments [11]:

– Inter–experiments interference: network virtualization introduces some form
of compromised performance for co–existing experiments. Any performance
degradation associated with experiments should be carefully quantified when
mapping virtualization to scientific experiments.

4 R. Doriguzzi et al.

– Experiments repeatability: repeatability of results must be assured through
proper resource sharing techniques to avoid unpredictable performance across
multiple experiment runs.

Compared to existing approaches, these last two requirements are less rele-
vant for our framework. Our aim is in fact to provide an environment for produc-
tion networks, where operational traffic is fully guaranteed, while experimental
services and protocols run on lower–priority slices. This scenario is a sort of
intermediate one between (i) a purely research approach, i.e. ORBIT [16] or
GENI [5], where novel services or protocols are executed on shared but dedi-
cated testbed infrastructures, and (ii) a conservative approach (pursued so far
by most of the operators) where novel services or recent protocols are tested on
a small-scale testbed separated from the main production network.

In this scenario, AiroLAB is a NV framework whose objectives are some-
how similar to the ones pursued by solutions such as Cabernet [17, 18] and
generalized in [19]; however, given the specific technological domain under con-
sideration, we are providing an emphasis toward the possibility for a WISP to
perform experimental activities in a controlled fashion directly on its produc-
tion network, fostering the deployment of novel solutions and services. In such
a scenario, experimental traffic is expected to be given a best effort treatment,
thus delivering the guaranteed service to the WISP customers. As a result, the
share of bandwidth made available for experimental services might change dy-
namically and thus negatively affect the repeatability of experiments. It is the
authors’ standpoint that, in a production environment, repeatability shall be
traded for performance isolation and scalability in order to give paying services
preemptive access to the network resources.

2.2 Problem Definition and Challenges

Network virtualization in wireless networks needs to address two additional ma-
jor issues: (i) how to isolate wireless resources belonging to network slices coex-
isting at the same time to ensure minimal interference among them, and (ii) how
to control wireless resource utilization to ensure that a slice does not infringe the
resources of another slice. Several techniques have been proposed to guarantee
the isolation of wireless resources among concurrent slices[14]:

– SDM (Space Division Multiplexing), where physical wireless nodes are parti-
tioned in space, forming separate sub–networks, thereby minimizing the inter-
ference among different slices.

– FDM (Frequency Division Multiplexing), where different slices are partitioned
in the frequency domain by leveraging on the availability of multiple wireless
interfaces on each network node.

– CDM (Code Division Multiplexing), similar to FDM, but assigning different
codes to each slice.

– TDM (Time Division Multiplexing), whereby slices are partitioned in the time
domain by assigning them a specific timeslot for their communication needs.

AiroLAB 5

While studies regarding the feasibility of each of these approaches (or com-
binations thereof), with their pros and cons have been already provided in liter-
ature [14, 20, 15], we are interested here in investigating techniques and archi-
tectures to allow an effective isolation between concurrent slices on a multi–hop
wireless network through a finer control of wireless and node resources usage in
the network.

In particular, AiroLAB aims at achieving a level of flexibility which none
of the aforementioned techniques, used in a stand–alone fashion, could provide.
Further, we target the provisioning of methods for ensuring that a privileged slice
(typically the one carrying the production traffic) can have guaranteed resources
while the ones devoted to experimental activities may share the remaining (pos-
sibly time–varying) network resources.

3 AiroLAB Architecture and Design

In this section, we introduce the design of AiroLAB, a novel virtualization frame-
work specifically tailored to multi–hop wireless networks. Such networks are usu-
ally built using commodity components and are characterized by rather limited
computing capabilities, in comparison to the traditional carrier–class networking
equipment exploited in projects such as FEDERICA [7], AKARI [8] or GENI [5].
As a matter of fact, we argue that a virtualization environment suitable for
production–level wireless networks must satisfy the following requirements (in
decreasing order of importance): efficiency, flexibility, and isolation, while con-
straints on heterogeneity and scalability can be relaxed.

In this section we will first illustrate the objectives and constraints that have
driven the AiroLAB’s design and then we will describe in details its architecture.
Integration with currently available frameworks for automatic NV resources allo-
cations, such as OMF [21], will be considered for future evolution of the AiroLAB
framework.

3.1 Baseline scenario

Most of the network virtualization architectures devised so far [7, 8, 5] aim
at providing multiple isolated environments where experiments can be run in
parallel over real–world networks. AiroLAB, on the other hand, aims at providing
wireless networks operators with a comprehensive virtualization solution where
production traffic (i.e. the traffic generated by the end–users), shares part of the
available network resources with a variable number of experimental slices where
novel solutions, e.g. routing protocols, are being tested.

Fig. 1 sketches a simplified setup where a network, composed of three nodes
organized in a string topology, is running three distinct slices : one production
slice (A), and two experimental slices (B and C). In this scenario, links are
symmetric and their capacity is assumed to be time–invariant. Moreover, mesh
routers are equipped with a single radio interface. In the next sections we will

6 R. Doriguzzi et al.

Fig. 1: Simplified deployment scenario.

generalize AiroLAB’s design to asymmetric links with fluctuating capacity in
multi–radio/multi–channel setups.

In this simplified scenario, the production slice A is assigned 80% of the
resources in the network, while the two experimental slices equally share the
remaining 20% of resources. It is worth noticing that, with our architecture, we
do not aim at supporting hundreds or even tens of concurrent slices, instead we
foresee a scenario where 5 to 10 slices share the overall network resources. Such
limitation is mandated by the computing and storage constraints that charac-
terized currently used wireless multi–hop networking devices. As a matter of
fact, to the best of the authors knowledge, the most powerful embedded wire-
less router processing board currently available on the market, the Gateworks
Cambria GW2358-4, is equipped a 667MHz ARM CPU and 128MB of RAM.

Traffic shaping is performed at each node in order to limit the amount of
network resources used by each sliver. In this simplified setup the resources that
each sliver can exploit are upper bounded by a fixed threshold derived from
the relative performance goal given during the planning phase. As a result, slice
A “sees” an 800 Kb/s bidirectional link between node 1 and node 2, while the
available bandwidth between node 2 and node 3 is 1600 Kb/s. In this setup some
bandwidth is voluntary left unused. However scenarios where a sliver can have
full access to all the available bandwidth are also supported.

3.2 Link Capacity Estimation

Due to the use of a shared medium, estimating the capacity of a wireless link is
not trivial. Interference coming from external sources, changes in the propagation
characteristics or interference from the same signal traveling along different paths
make the link’s total capacity fluctuate over time. Even if we limit our attention
on communications realized using the IEEE 802.11 facility of standards, an ideal
estimator of the link capacity from an Access Point toward a generic Stations
should take into account both the the data frame SNR (measured at the receiving
station) and the ACK frame SNR (measured at the access point). Such a level of
precision is difficult to achieve without introducing additional signaling and/or
modifying the standard IEEE 802.11 MAC operations.

In this work we decided to use an indirect way of assessing a link’s total
capacity based on the rate adaption functionalities already available in current
IEEE 802.11 devices. Rate adaptation algorithm aims at dynamically selecting

AiroLAB 7

the transmission rate in order to achieve optimal performance under varying
operating conditions. Rate adaptation is left unspecified by the IEEE 802.11
standard, as a result of the years a considerable number of solutions have been
proposed by both the academic and the industrial worlds.

Our work builds on top of mac80211 [22] an implementation of the IEEE
802.11 stack for the GNU/Linux operating system. More specifically, mac80211
is a framework that GNU/Linux developers can use to write drivers for IEEE
802.11 wireless devices. At the time of this writing, the mac80211 framework
supports two different rate–control algorithms: PID and minstrel. In this work
we focus on the latter algorithm.

The minstrel rate–control algorithm aims at selecting the transmission rate
that maximizes the throughput. In order to so, the algorithm collects statis-
tics of all the packets that have been transmitted. This data is then exploited
to compute the probability of a successful transmission Pab between a pair of
nodes, a and b, for each available data-rate. In order to cope with environmen-
tal changes, minstrel uses an Exponential Weighted Moving Average (EWMA)
based approach. EWMA has a smoothing effect, so that new results have a larger
influence on the selected rate. Finally, the empirical throughput Tab, is computed
as follows:

Tab =
PabB

Dtx

, (1)

where Dtx is the time spent for a single transmission, and B is the packet
length. AiroLAB uses Tab as an estimation of the wireless link capacity.

3.3 Providing Soft–Performance Isolation

Soft–performance isolation between slivers is provided using the Hierarchical To-
ken Bucket (HTB) techniques supported by the Linux kernels 2.6.x. HTB allows
network administrators to implement precise traffic shaping policies. Before de-
scribing the AiroLAB approach for providing performance isolation, this section
briefly summarizes the main features of HTB. HTB organizes traffic classes in
a tree structure; each class is assigned an average rate (rate) and a maximum
rate (ceil). Three class types exist: root, inner and leaf. A root class corresponds
to a physical link; its bandwidth is the one currently available for transmission.
Leaf classes, placed at the bottom of the hierarchy, correspond to a given type
of traffic (e.g., TCP-controlled or VoIP etc.). Two internal token buckets are
maintained for each class. Classes which have not exceeded their rate can un-
conditionally transmit; classes which have exceeded their allowed rate but not
their upper limit (ceil) can transmit only borrowing unused bandwidth, if avail-
able, from other classes. In order to borrow bandwidth, a request is propagated
upwards in the tree. A request that would exceed the ceil limit is terminated.
A request that would satisfy the allowed rate is accepted. A request that would
not satisfy the allowed rate constraint but the ceil one is propagated upwards
until the procedure is completed.

8 R. Doriguzzi et al.

Fig. 2: AiroLAB wireless channel estimator architecture.

Due to the stochastic nature of the wireless links capacity, an HTB scheduler
alone is not able to deliver performance fairness among competing traffic flows in
wireless networks. In order to address such an issue we devised and implemented
a wireless channel monitor which exploits the channel statistics computed by the
wireless driver in order to properly distribute the available bandwidth among the
slivers running in a node. Figure 2, sketches the the architecture of the AiroLAB
wireless channel monitor. The overall link capacity Tab is assigned to the HTB’s
root class, while each sliver is associated to a leaf class in the HTB hierarchy.
Available bandwidth is distributed among the slivers according to some input
policies. Through such policies it is possible to assign each sliver with a minimum,
maximum and/or an average bandwidth. An additional relative priority can be
specified for slivers that share the same traffic class, if no relative priority is
specified the bandwidth available for that traffic class is equally shared between
the competing slivers. The wireless channel monitor is implemented in the form of
a software process running within each wireless router and periodically updates
the HTB’s configuration in order to reflect the actual channel capacity. HTB’s
configuration is also updated if either a new slice is deployed over the network
or if the policies have changed.

3.4 Node–Level Architecture

In this section we shall describe the AiroLAB node’s architecture (see Fig. 3)
in details. AiroLAB is built around OpenVZ [23], an open source virtualization
solution for the GNU/Linux operating system, and Click, an open source modu-
lar router currently available on GNU/Linux, all the children of BSD, and MAC
OSX.

AiroLAB 9

Fig. 3: AiroLAB node–level architecture.

OpenVZ consists of a modified Linux kernel tree that supports virtualiza-
tion, isolation and resource management and a set of user level tools that al-
lows the installation, configuration and maintenance of the virtual environments
(also known as containers). Container–based virtualization solutions are typi-
cally characterized by reduced overhead and thus better performance. They also
provide good performance isolation (in terms of CPU cycles, memory consump-
tion, and storage), because processes running within a container do not signifi-
cantly differ from processes running in the hosting system. Thus, it is possible to
apply existing resources sharing techniques, such as HTB for traffic scheduling.
The major drawback of container–based virtualization solutions is that, since a
single kernel is used for every sliver, kernel modifications are not allowed.

Within OpenVZ, each Virtual Environment (VE) performs and executes ex-
actly like a stand–alone host; a container can be rebooted independently and
can have root access, users, IP addresses, memory, processes, files, applications,
system libraries and configuration files. Moreover, OpenVZ provides a resource
management system that controls the amount of resources available for the en-
vironments. The controlled resources include parameters such as CPU power,
disk space, and set of memory-related parameters. Furthermore, unlike alterna-

10 R. Doriguzzi et al.

Table 1: Taxonomy of network virtualization techniques and relevant features [26].

Containers Containers
w/ Click

Hypervisors Hosted
VMM

Scalability Good Good n.a. n.a.

Fault/Security Isolation n.a. n.a. Good Good

Performance Isolation Good Good Good Good

Flexibility Poor Good Good Good

Code Re–Usability n.a. Poor Poor Good

Efficiency Good Good Good n.a.

tive container-based solutions such as Linux–VServer [24], OpenVZ provides full
virtualization of the networking subsystem allowing each virtual environment to
create its own internal routing or firewall setups.

Due to the limitations imposed by the use of OpenVZ, namely the impossibil-
ity to run customized kernel images in different slivers, we decided to implement
our own wireless network virtualization stack in user–space using the Click mod-
ular router [25]. It is worth noting that, our approach is not meant to replace
OpenVZ, but rather to extend it in order to support flexible virtualization of the
wireless resources. A Click router is built by assembling several packet processing
modules, called Elements, forming a directed graph. Each element is in charge
of a specific function such as packet classification, queuing, and interfacing with
networking devices. Click comes with an extensive library of elements supporting
various types of packet manipulations. Such a library enables easy router config-
uration by simply choosing the elements used and the connections among them.
Finally, a router configuration can be easily extended by writing new elements.
Albeit characterized by a higher overhead in comparison to pure kernel–level
implementation, Click–based solutions are highly customizable allowing us to
circumvent the flexibility limitations of typical container based solutions [26].

Table 1 summarizes the trade–offs involved in the most relevant virtualization
techniques currently available, namely containers, hypervisor, and hosted VMM.
AiroLAB belongs to the second columns (Containers w/ Click) in that on the
one hand container–based virtualization is used to achieve performances and
scalability, and, on the other hand, user–space wireless network virtualization
delivers high flexibility in terms of packet processing capabilities.

Click is used both within each sliver (guest click) and at the host operating
system level (host click). More specifically, the Click instance running within a
sliver provides the guest environment with a set of virtual interfaces (ath0, ath1,
. . . , athN) implemented as Linux TAP devices. A TAP device operates at layer
2 of the traditional ISO/OSI networking stack and simulates an Ethernet device.
User-space process, running within a sliver, can exploit the virtual interfaces to
implement their routing strategy. Communication over the virtual interfaces can
be done using three different frame formats:

– 802.3 headers (Ethernet). Used to expose a standard Ethernet interface.

AiroLAB 11

– 802.11 headers (WiFi). Used to expose a wireless interface complaint with the
IEEE 802.11 protocol. In this case the user–space applications must properly
encapsulate their traffic in 802.11 frames.

– Radiotap. Used to expose a raw wireless interface. In this case the user–space
applications must properly encapsulate their traffic using the radiotap [27]
header format. The radiotap header format is a mechanism to supply addi-
tional information about 802.11 frames, from the driver to user–space appli-
cations, and from a user–space application to the driver for transmission.

In either situation, outgoing traffic is encapsulated by the guest click process
and sent to the host click process through the virtual interface eth0 provided
by the OpenVZ Container. Please note that, if the user-space application is
already using the radiotap header, no additional encapsulation is performed by
the guest click process and the frame is delivered unchanged to the host operating
system. The host click process receives the incoming frame and dispatches it to
the suitable device according to a set of policies maintained by the Link Broker.

The Link Broker is a software module that can expose different connectivity
graphs to the various slivers without requiring that the nodes must be physi-
cally separated (i.e., out of radio range). Connectivity graphs are defined on a
per-slice basis allowing us to define a different topology for each slice. This is
particularly useful to test novel routing strategies on a subset of the nodes. More-
over, if wireless routers are equipped with multiple radio interfaces, it is possible
to create multiple slices (whose cardinality equals the number of radio interfaces)
operating on orthogonal frequency bands, implementing therefore an FDM wire-
less network virtualization solution. Hybrid solutions where only a subset of the
slivers operates on orthogonal frequencies are also supported. Albeit network
connectivity graphs are defined at deployment time, they can change during
the network operations in order to create connectivity scenarios that simulate
different operating conditions (i.e. link failures/outages).

3.5 Network–Level Configuration: an example

Figure 4 sketches a possible use case, where a production slice exploiting a stable
version of a routing protocol is running in parallel with an experimental slice
where novel routing strategies are being tested. In this scenario the Link Broker
is used to expose two different connectivity graphs to the the production and
the experimental slices. On the other hand, the Wireless Channel Monitor is
used to redistribute the available link bandwidth among the competing slices,
80% to the production slices and 20% to the experimental slices in this cases.
Please note that a minimum bandwidth, e.g. 1 Mb/s, can also be allocated to
the production slice.

4 Experimental set up and results

This section provides (i) an overview of the hardware and software setup used
in the experimental activities, (ii) a description of the experimental scenarios

12 R. Doriguzzi et al.

Fig. 4: Network–level configuration: an example with one production slice and one
experimental slice sharing a common physical substrate.

where the tests were conducted, and (iii) a report and discussion of the tests
outcomes.

4.1 Hardware/Software Platform Setup

The hardware used in our experimental activity consists of ALIX nodes provided
by PC Engines [28]. Wireless routers are built exploiting the PCEngines ALIX
2C2 (500MHz x86 CPU, 256MB of RAM) processor board. Operating system
and application are stored on a 1 GB Compact Flash. Connectivity is provided by
two Ethernet channels, two miniPCI slots and one serial port. PCEngines ALIX
boards are equipped with two Mikrotik R52 WiFi IEEE 802.11a/b/g cards based
on the Atheros AR2412 chipset.

OpenWRT [29] has been selected as operating system for our testbed. Open-
WRT is a minimalist BusyBox/Linux distribution released under a GPL license.
It provides an automated system for downloading the source code for both the
kernel and the userspace tools, and compiling it to work on any supported plat-
form. Moreover, it is characterized by a small memory and disk footprint making
it suitable for a wide rage of networking devices. Finally, it provides hardware
configuration and maintenance abstraction through a custom system and pack-
age configuration facility called UCI (Universal Configuration Interface) and
exploiting MIB-like structure in order to streamline device management using
SNMP [30]. Customizations to the standard OpenWRT distribution include sev-
eral scripts and tools necessary to manage the virtual environments. Moreover,
the original OpenWRT kernel has been with a kernel provided by OpenVZ which
was configured and recompiled to be installed on our nodes. The software con-
figuration of the wireless routers is summarized in Table 2.

AiroLAB 13

Table 2: AiroLAB Software Setup.

Operating system OpenWRT trunk (release 14748)

Linux kernel OpenVZ 2.6.18-028stab056

Wireless drivers MadWiFi trunk (release 2568)

Virtualization tools vzctl 3.0.23, vzquota 3.0.12

4.2 Experimental Settings

In order to assess the effectiveness of the AiroLAB framework in preventing traf-
fic on a privileged slice being affected by traffic from other (lower–priority) slices,
the scenario described in 3.1 has been set up. Evaluation of multi–radio/multi–
channel setting with asymmetric link is left as future work. Moreover, comparison
with a purely Space Division Multiplexing (SDM) approach is out of the scope
of this work in that (i), such a study has already been carried out in [15, 20], and
(ii) the particular deployment scenario envisioned for AiroLAB, namely virtu-
alization of production–quality networks, would require a experimental staging
network which would undermine the proposed system’s main goal of sharing a
single infrastructure for both paying services and experimentation activities.

The network deployment is sketched in Fig. 5 and consists of two wireless
nodes, each one running two or more slivers (or virtual nodes) sharing the same
wireless interface. The experimental setup includes a wireless node connected
to a PC lying on a desk in Office 1. Changes in link quality are emulated by
moving the second node from Office 1 to another room. A continuous UDP flow is
generated among the two nodes; its rate is such that the wireless link is always
saturated. Through such a test, we want to test the ability of the proposed
architecture to effectively preserve production traffic in challenging conditions.

As described in Sec. 3, we used the HTB packet queuing discipline to control
the outbound bandwidth of a given link. Our HTB configuration defines a traffic
class for each sliver currently active within a given node. For each class, the
minimum/guaranteed (rate) and the maximum (ceil) throughput are specified.
Afterward, the HTB configuration defines which packets belong to which class
depending on the source IP address. In this way, it is possible to limit the
outbound bandwidth on a per–slice basis. Figure 6 shows the node setup for the
case of two slivers: on node A, HTB ensures that the outbound bandwidth to
carry the UDP stream is divided between the two slivers as configured.

4.3 Experimental Outcomes and Analysis

As AiroLAB is concerned with the provisioning of isolation and guaranteed per-
formance to a privileged slice, tests were focused on the ability to ensure isolation
in terms of guaranteed throughput over the shared wireless medium. Results
have been obtained by averaging the samples obtained as nuttcp benchmarks
over 300 seconds with an averaging interval of 10 seconds. It is worth stressing
that, AiroLAB aims at providing a virtualization architecture where experimen-
tal services and protocols can be tested and evaluated over a production network

14 R. Doriguzzi et al.

Fig. 5: The testing setup involved 2 nodes deployed in a typical office environment.
One of the nodes is powered by means of a a rechargeable battery and is moved around
in order to assess the capability of the wireless channel monitor to adapt to changing
operating conditions.

Fig. 6: Representation of the packet scheduling process for the case with two slivers.

with minimal impact on the operational traffic. In such a scenario experimen-
tal repeatability is traded for performance isolation between a single privileged
production slice and several concurrent experimental and/or monitoring slices.

In the first scenario, three slices are running simultaneously. The privileged
slice (#1) has higher transmission priority and a minimum guaranteed outbound
bandwidth set to 5 Mb/s, while the remaining two slices (#2 and #3) have a
minimum guaranteed outbound bandwidth of 128 Kb/s. Moreover, slice #1 and
#2 have no upper bounds on the maximum throughput they can inject in the
wireless link, while slice #3 has a 5 Mb/s limit. The graph plotted in Fig. 7 shows
the throughput distribution per slice in different conditions of available wireless
link capacity. As expected, AiroLAB guarantees that, even when link conditions
are worsening, at least 5 Mb/s are allocated to slice #1 while the remaining link

AiroLAB 15

 0

 5

 10

 15

 20

 25

 30

 35

 0 50 100 150 200

T
h
ro

u
g
h
p
u
t
(M

b
/s

)

Time (seconds)

Channel capacity
Slice #1
Slice #2
Slice #3

Fig. 7: Average throughput for the three slices in the first scenario. The privileged
slice #1 has a minimum guaranteed bandwidth set to 5 Mb/s. Slices #2 and #3 have
a minimum guaranteed bandwidth of 128 Kb/s. Slice #3 has an upper bound to the
bandwidth set to 5 Mb/s.

 0

 5

 10

 15

 20

 25

 30

 35

 0 50 100 150 200

T
h
ro

u
g
h
p
u
t
(M

b
/s

)

Time (seconds)

Channel capacity
Slice #1
Slice #2
Slice #3

Fig. 8: Average throughput for the three slices in the second scenario. The privileged
slice #1 has a minimum guaranteed bandwidth set to 5 Mb/s. Slices #2 has an upper
bound to the bandwidth set to 5 Mb/s.

capacity is left available for use in a best effort fashion. It is worth noting that if
the link capacity is lower than 5 Mb/s only slice #1 will be allowed to transmit.

In the second scenario, the privileged slice has 5 Mb/s of guaranteed out-
bound bandwidth, while Slice #2 and #3’s outbound bandwidth is limited to 5
Mb/s. The results, reported in Fig. 8, show that the upper bound limit imposed
to both slice #2 and #3 lets the maximum throughput experienced by slice #1
be higher than in the previous scenario. It is worth noting that, the throughput
of slice #1 can go below 5 Mb/s if the radio conditions become bad, however this
is an expected behavior given the volatile nature of the communication medium.

The third scenario presents two slices only, where one slice requires a limited
but stable available bandwidth. The privileged slice (#1) has higher priority
and a minimum guaranteed outbound bandwidth set to 2 Mb/s and an upper
bound of 3 Mb/s, while slice #2 has a minimum guaranteed outbound bandwidth
set to 128 Kb/s. The results, reported in Fig. 9, show that also in the worse

16 R. Doriguzzi et al.

 0

 5

 10

 15

 20

 25

 30

 35

 0 50 100 150 200

T
h
ro

u
g
h
p
u
t
(M

b
/s

)

Time (seconds)

Channel capacity
Slice #1
Slice #2

Fig. 9: Average throughput for the two slices in the third scenario. The privileged slice
(#1) has a minimum guaranteed outbound bandwidth set to 2 Mb/s and an upper
bound of 3 Mb/s. #2 has a minimum guaranteed outbound bandwidth set to 128
Kb/s.

Table 3: Overhead introduced by the AiroLAB wireless channel monitor.

Scenario #1 Scenario #2 Scenario #3

Average 0,22 0,24 0,12

Minimum 0,11 0,12 0

Maximum 0,40 0,38 0,41

Std Deviation 0,09 0,07 0,08

Confidence interval (95%) ±0,01 ±0,01 ±0,01

working condition, AiroLAB guarantees the outbound throughput of slice #1
by adaptively tuning the bandwidth provided to slice #2.

We further evaluated the efficiency of the proposed framework, in terms of
overhead introduced by AiroLAB. We considered the following performance met-
ric, which represents the share of the channel capacity that remains unused:

η =

C −
∑

i

θi

C
, (2)

where C is the total capacity available and θi is the throughput of slice #i.
The results, averaged over each single test, are reported in Table 3.

5 Related Work

Other groups have proposed mechanisms to obtain virtualization in wireless
networks. All of them have been focusing mainly on using network virtualization
to run large–scale testbeds where several experiments could run concurrently
on the same physical infrastructure. Very few have been considering how to
leverage these techniques in real production networks. Due to their strong focus
on creating a stable testing environment where experiments should be repeatable

AiroLAB 17

and should not affect each other when running on concurrent slices, most of the
works have focused on evaluating wireless virtualization strategies. This has
been obtained by exploring both dimensions of (i) virtualization of the wireless
medium and (ii) virtualization of the network node.

In [14], the authors have presented their experiences in the design and imple-
mentation of a TDM-based wireless virtualization on a large-scale indoor 802.11
wireless testbed facility (ORBIT). Two major challenges have been identified:

– node synchronization, where NTP mechanisms do not provide an adequate
level of precision to allow all network nodes to perform tasks at specific times;

– device state, due to the limited access to the state stored on the wireless
devices.

Even though more expensive mechanisms to guarantee node synchronization
could be potentially used (based, e.g., on the use of GPS), the main outcome
of this paper is that TDM presents limits in the virtualization of the wireless
medium.

The work presented in [15] compares two wireless virtualization strategies:
SDM and Virtual Access Points. VAP is a logical abstraction running on a physi-
cal AP while emulating the behavior of a conventional AP to all network stations.
Compared to a TDM mechanism, VAP does not require strict synchronization
among different nodes. However, this scheme is limited to fixed star topologies
and it needs traffic shaping mechanism to ensure fair access to wireless resources
among experiments. The paper reveals benefits and weaknesses for both space
(SDM) and time separation (VAP) schemes. Furthermore, it provides a policy
manager for controlling inter-experiment interference by assigning and enforc-
ing bandwidth assigned to each slice in VAP-based testbeds. However, the main
limitation of the proposed approach is that incorporating arbitrary topologies in
a slice or across VAPs allocated to the experiment is not feasible.

A detailed analysis of the performance of an FDM based mechanism for
virtualizing wireless networks is presented in [20]. Virtualization is obtained
here by using multiple wireless interfaces per node and by assigning different
channel frequencies to each interface. Then, each interface is assigned to a virtual
device running inside the wireless node. A performance comparison between
a virtualized radio node and a non–virtualized one is presented in terms of
throughput, delay, and jitter. Cross–coupling effects between two experiments
have been investigated by studying the transient behavior associated with sudden
changes in traffic on one of the slices. While showing the advantage of FDM
as robust wireless virtualization strategy (and feasible, due to the widespread
availability of multi-radio devices), this paper highlights the limitations of a
User-Mode Linux (UML) approach to node virtualization, especially in specific
experimental conditions (e.g. UDP experiments using small packets or when
working in saturation conditions).

In [31] the authors compared the performance of two different node virtual-
ization approach: UML and OpenVZ, while considering FDM as the option for
the virtualization of the wireless medium. OpenVZ shows more stable behavior

18 R. Doriguzzi et al.

than UML with UDP experiments using small packets as well as when working
in link saturation; it also provides excellent isolation in terms of the observed
transient response of the experiments.

While OpenFlow has some similarities with AiroLAB’s objectives, especially
in term of sharing a production network with experimental traffic [32], this ini-
tiative does not focus on a virtualization mechanism, but instead leverages a
novel architecture to control the traffic passing through switches and APs by
identifying flows and policies for handling them.

6 Conclusions and Discussion

In this paper, we have presented AiroLAB, a wireless network virtualization solu-
tion aimed at providing suitable means to support experimental testing of novel
networking solutions on production networks, while preserving guarantees per-
formance for production traffic. The design choices at the basis of AiroLAB have
been presented and discussed. A prototype implementation has been presented,
and outcomes of experimental activities, performed on a small-scale testbed,
reported and discussed.

While the results presented appear encouraging, the framework needs to be
further developed before reaching the stability level needed to support its wide
deployment. One research direction that appear of interest for enhancing the cur-
rent architecture (mainly in terms of efficiency and scalability) is to use an FDM
approach, whereby different slices are associated with a dedicated wireless in-
terface in a multi–radio deployment. Finally, we intend to integrate AiroLAB’s
wireless networks virtualization capabilities within currently available frame-
works for automatic NV resources allocations, such as OMF [21].

References

1. A. Feldmann, M. Kind, O. Maennel, G. Schaffrath, and C. Werle, “Network Vir-
tualization: An Enabler for Overcoming Ossification,” ERCIM News, vol. 77, pp.
21–22, April 2009.

2. P. Papadimitriou, O. Maennel, A. Greenhalgh, A. Feldmann, and L. Mathy, “Im-
plementing Network Virtualization for a Future Internet,” in Proc. of 20th ITC

Specialist Seminar on Network Virtualization, Hoi An, Vietnam, 2009.
3. N. M. K. Chowdhury and R. Boutaba, “Network Virtualization: State of the Art

and Research Challenges,” IEEE Communications Magazine, July 2009.
4. “Technical Document on Overview Wireless, Mobile and Sensor Networks,” The

GENI Project Office, Tech. Rep. GDD-06-14, 2006.
5. GENI project, http://www.geni.net.
6. 4WARD project, http://www.4ward-project.eu.
7. FEDERICA project, http://www.fp7-federica.eu.
8. AKARI project, http://akari-project.nict.go.jp.
9. R. Bruno, M. Conti, and E. Gregori, “Mesh Networks: Commodity Multihop Ad

Hoc Networks,” IEEE Communications Magazine, vol. 43, no. 3, pp. 123 – 131,
Mar. 2005.

AiroLAB 19

10. I. Akyildiz, X. Wang, and W. Wang, “Wireless mesh networks: a survey,” Elsevier

Computer Networks, vol. 47, no. 4, pp. 445 – 487, Mar. 2005.
11. Planet Lab project, http://www.planet-lab.org.
12. VINI project, http://www.vini-veritas.net.
13. German-Lab project, http://www.german-lab.de/.
14. G. Smith, A. Chaturvedi, A. Mishra, and S. Banerjee, “Wireless Virtualization on

Commodity 802.11 Hardware,” in Proc. of ACM WinTECH, Montreal, Quebec,
Canada, 2007.

15. R. Mahindra, G. Bhanage, G. Hadjichristo, I. Seskar, D. Raychaudhuri, and
Y. Zhang, “Space Versus Time Separation for wireless virtualization On an In-
door Grid,” in Proc. of EURO NGI, Krakow, Poland, 2008.

16. Orbit Lab, http://www.orbit-lab.org/.
17. N. Feamster, L. Gao, and J. Rexford, “How to lease the Internet in your spare

time,” ACM SIGCOMM Computer Communications Review, pp. 61–64, January
2007.

18. Y. Zhu, R. Zhang-Shen, S. Rangarajan, and J. Rexford, “Cabernet: Connectivity
architecture for better network services,” in Proc. of Workshop on Rearchitecting

the Internet, 2008.
19. G. Schaffrath, C. Werle, P. Papadimitriou, A. Feldmann, R. Bless, A. Greenhalgh,

A. Wundsam, M. Kind, O. Maennel, and L. Mathy, “Network Virtualization Archi-
tecture: Proposal and Initial Prototype,” in Proc. of ACM SIGCOMM Workshop

on Virtualized Infastructure Systems and Architectures, Madrid, Spain, 2009.
20. S. Singhal, G. Hadjichristo, I. Seskar, and D. Raychaudhuri, “Evaluation of UML

based wireless network virtualization,” in Proc. of EURO NGI, Krakow, Poland,
2008.

21. OMF, cOntrol and Management Framework, http://omf.mytestbed.net.
22. Linux Wireless, http://linuxwireless.org/.
23. OpenVZ, http://openvz.org/.
24. Linux-VServer, http://Linux-VServer.org/.
25. E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The Click

modular router,” ACM Transaction on Computer System, vol. 18, no. 3, pp. 263
– 297, Aug. 2000.

26. A. Nakao, R. Ozaki, and Y. Nishida, “Corelab: An emerging network testbed em-
ploying hosted virtual machine monitor,” in Proc. of ACM ROADS, Madrid, Spain,
2008.

27. Linux Radiotap, http://www.radiotap.org/.
28. “PC Engines.” [Online]. Available: http://www.pcengines.ch/
29. “OpenWRT Linux Distribution.” [Online]. Available: http://openwrt.org/
30. J. Case, M. Fedor, M. Schoffstall, and J. Davin, “A simple network management

protocol,” IETF RFC 1157, May 1990, http://www.ietf.org/rfc/rfc1157.txt.
31. G. Bhanage, I. Seskar, Y. Zhang, and D. Raychaudhuri, “Evaluation of OpenVZ

for wireless testbed virtualization,” WINLAB Rutgers University, Tech. Rep. 331,
2008.

32. OpenFlow project, http://www.openflowswitch.org.

