
Demo: A Deep learning based SLA management for
NFV-based services

Jaafar Bendriss,
Imen Grida Ben Yahia

Orange Labs
Chatillion, France

Roberto Riggio
CreateNet
Pisa, Italy

Djamal Zeghlache
Telecom SudParis

Every, France

ABSTRACT
Network function Virtualization (NFV) is expected to ac-
celerate service deployment and enable service agility for
Telco operators. NFV builds on virtualization technology
and off-the-shelf general purpose hardware, shifting previ-
ously dedicated Telco appliances towards the cloud ecosystem.
This paradigm shift brings new concepts such as dynamic
service chaining that necessitates to rethinking the Network
Management approach. In this paper we present CogSLA,
a data-driven solution for SLA enforcement in an NFV de-
ployment. CogSLA uses Deep Feedforward Neural Network
or Multi-Layer perceptron (MLP) for achieving proactive
identification of SLA violations. The key contribution of this
work is to proactively change the network state, anticipating
and avoiding foreseeable SLA violation.

Categories and Subject Descriptors
H.5.m. [Network Management]: NFV; H.5.m. [AI]: Ar-
tificial Neural Networks

Keywords
NFV,ANN, Network Function Virtualization

1. INTRODUCTION
Telecommunication operators are highly concerned by the

carrier-grade specifications, i.e. high availability 99.999% and
high performance delivery. Migrating the network functions
to low-cost, non-highly reliable servers while maintaining
carrier-grade service quality is considered as the biggest chal-
lenge facing the NFV adoption. Two approaches emerged
for tackling this challenge, (1) overprovisioning the network
to reduce the risk of service degradation while bounding to
the predefined SLA, (2) cognitive management - as shown in
Figure1 - that monitors in near real-time the network and
anticipates service degradation based on the SLAs. We adopt
the latter approach.

The limitation of current monitoring tools and approaches

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

c© 2017 ACM. ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

Figure 1: CogSLA NFV Management Framework

is that they are passive; they rely on thresholds, waits for
alerts and notification to identify service degradation. How-
ever, this approach is not fully scalable because one cannot
induce easily from a flood of notifications and alerts the
source of the errors or the necessary corrective actions. More-
over, VNFs can enter in abnormal states even though all
the underlying resources are behaving normally which con-
stitute a hard problem that require more new data sources (
at the application/service level) and/or effective extrapola-
tion from system-level metrics. Likewise, NFV management
should consider the service logic defining the ordering of
VNFs interconnections that delivers network services.

In this demo, we present a deep learning-based SLA man-
agement platform for NFV-based services. Therefore, we will
show, (Figure 1) the data acquisition (data collection and
monitoring), preprocessing (data cleansing and transforma-
tion), analysis (forecasting and identification) and execution
(decision making). More specifically, we will demonstrate the
identification of SLA violation of VOIP service on top vIMS
(virtual IP Multimedia Subsystem) platform. The violation
forecasting is made with an ANN and the identification with
Decision Tree techniques, all in proactive manner.

2. THE DEMO
Our Demo can be divided into two parts (see Figure 1),

the test bed and the analytic layer. The test bed is The
Clearwater VNF set up using Openstack as an infrastructure
manager, this is shown as a webpage with all the instances.



The VNF configuration is based on six Clearwater’s VM
(VNF Component), a DNS bind VM for load balancing and
namespace management, an central monitoring VM and a
stress VM responsible for the service degradation. To demon-
strate how the traditional approach is made by showing
the Openstack monitoring service, Monasca (Monitoring-
at-scale), how alerts and notifications are configured, and
the visualization dashboard, Graphana. Next, we show on
Tableau Software a guided step-by-step process of data anal-
ysis. These steps are developed in the subsequent paragraphs
from a data-centric perspective1.

2.1 Data generation: Monitoring the test bed
The use case studied for NFV management is an open

source vIMS (virtual IP Multimedia Subsystem) Clearwater
that uses SIP as a call control for voice and video com-
munications [cle ]. Clearwater is compliant with the basic
IMS architectural principles and interfaces well-known in
the telecommunication world while implementing a cloud-
oriented design that is used by elastic cloud architectures.
Clearwater is a VNF based on 6 Virtual Machines (VM)
each of which implements a component of the vIMS, also
termed by the ETSI as VNF Component (VNFC). The VNF
is monitored by installing in each VM a monitoring agent
that collects the data locally and push it back to a central
monitoring server. The monitoring frequency is set at 30
seconds and the for each VM, we collect 30 system-level
variables. The Service degradation problem is generated by
SIPp tools, generating 30.000 new clients to stress testing
the VNF.

2.2 Data acquisition: Data collection through
REST API

We used Monasca REST API to access the data in batches.
The input is a JSON string containing all the database data.
We process these data by filtering irrelevant information.
Then, we transformed the relevant data into multiple ta-
bles containing key-value pairs corresponding to timestamp-
metric. Next, we regroup all the tables into a general matrix
with key-values tuples as timestamp interval to metrics. From
now on we consider the metrics as naive (i.e. unprocessed)
features. In the demo, we show how the inputted JSON
string is transformed to an exploitable table.

2.3 Data preprocessing: From naive to fea-
ture engineering

From the outputted table in the data acquisition module,
we construct a second table based on combination of features
as shown in Table 1. The data preprocessing phase aims at
improving the data quality in terms of structure, noise and
consistency. Moreover, this phase acts as a requirement check-
list between the data sources and the analytical framework.

Data cleansing and transformation. We remove cor-
rupted values, redundant entries and null or undefined met-
rics. This dramatically improves the data quality and is a
necessary step that takes multiple iterations and analysis
before complete automation. Afterwards, the time series are
transformed into a stationary state with a mean of 0 and
a standard variation of 1, to avoid gradient explosion while
training the ANN. The data cleansing and transformation is

1The source code and the video are available in GitHub at
https://github.com/heekof/CogSLA.

Features Rule

Feature 1 cpu.user_perc2 / mem.usable_perc

Feature 2 mem.usable_perc

Feature 3 net.out_packets_sec / mem.usable_perc

Feature 4 net.out_packets_sec / disk.sp_used_perc

Table 1: Feature Engineering Rules

performed by a Python script.
Data visualization. The visualization is a method that

allows drawing insight from the data. For more in-depth
analysis techniques, we programmed in Python Seaborn li-
brary, we used autocorrelation as a pre-test on the data for
determining whether they are forecastable or not. If yes for
how many steps. Pearson correlations of all monitored vari-
ables to allow us to track most correlated pairs, thus reducing
the dimensionality of the variables and detecting anomalies
when the correlations are broken. Finally, we demonstrate
the use of PCA to reduce effectively the dimensionality. We
will present in the demo using Tableau Software and Jupyter
notebook.

2.4 Data analytics: Forecasting and identifi-
cation

We trained our Feedforward Neural Network with 1500
epochs. However, in this demo, we will show the training
process for a limited sample size with 500 epochs. An epoch
corresponds to the FFNN runs through all the training data
set. We used Google’s TensorFlow library for the ANN design
and training.

Training. In offline mode, we prepare the data for the
supervised learning. Prior to fitting the model we create
two series lagged by 1-step. The observation of the previous
time step corresponds to the current time step. The ANN
training uses backpropagation algorithm to optimize the neu-
ral weights finding the coefficients that captures the best
relationship between the past and the future. The learned
model is stored as a 2D-matrix for the online phase.

Forecasting. Loading the learned ANN model and exe-
cuting on the four features in Table 1, will result in forecasted
values for these inputs. For sake of simplicity, we will show in
the demo in a graph how the monitored net.in_packets_sec

evolves and its predicted values in another graph
Detection. We used Decision Tree algorithm IR3, that

takes as inputs the 4 ANN outputs (forecasts) and to clas-
sify them it into SLA classes (i.e. SLA violation, non-SLA
violation)

2.5 Decision making: Execution
In this example, we set the network management action as a

corrective Openstack action that shuts down the VM respon-
sible for the overload. The corrective action uses Openstack
Nova API. Nova API service allows the programmability of
the Cloud compute service. As an example, we demonstrate
during the demo how our system reacts to drop on the service
quality by predicting the evolution of network input metric
net.in_packets_sec.

3. REFERENCES
[cle ] Welcome to Clearwater - Project Clearwater 1.0

documentation. (????).
https://clearwater.readthedocs.io/en/stable/



Demo requirements.
Equipment to be used for the demo : 2 screens

Space needed: 4 m2
Setup time required: 10min
Additional facilities: Wifi access, water


