
VeRTIGO: Network Virtualization and Beyond

Roberto Doriguzzi Corin, Matteo Gerola, Roberto Riggio, Francesco De Pellegrini, Elio Salvadori

CREATE-NET

via Alla Cascata 56/D, 38123 Povo - Trento - ITALY

Email: {name.surname}@create-net.org

Abstract—In this paper we present VeRTIGO (ViRtual Topolo-
gIes Generalization in OpenFlow networks), a Software–defined
networking platform designed for network virtualization. Based
on the OpenFlow original network slicing system FlowVisor,
the VeRTIGO platform aims at covering all flavors of network
virtualization: in particular, it is able to expose a simple abstract
node on one extreme, and to deliver a logically fully connected
network at the very opposite end.

In this work, we first introduce the VeRTIGO system archi-
tecture and its design choices, then we report on a prototypical
implementation deployed over an OpenFlow–enabled testbed.
Experimental results show that VeRTIGO can deliver flexible
and reliable network virtualization services to a wide range of
use cases in spite of failure and/or congestion at the underlying
physical network.

I. INTRODUCTION

The recent interest on Network Virtualization (NV) is moti-

vated by two main reasons: first, NV enables the deployment

of different architectures and protocols over a shared physical

infrastructure, and for such a reason it is considered the most

concrete tool to validate novel approaches coping with the

current Internet “ossification”. Second, NV aims at letting

different virtual network instances to coexist and a clean

separation between services and infrastructures, so that NV can

enable new business models beyond basic connectivity, thus

offering infrastructure providers new potential income sources.

As highlighted in [1], [2], most works on NV pivoted

around the idea of slicing existing network resources (at link

and node level) to instantiate several logical instances of

networks composed of virtual nodes. This approach is based

on the infrastructure as a Service (IaaS) model, where physical

resources are shared among different users. In this model,

those who operate virtual networks face all the customary

operational complexity of managing a network: this includes

dealing with network congestion, node/link failures, limited

automation in the configuration of the devices, etc. This option,

worth indeed for users who want direct control of the network

they run, sounds costly to those focused on providing added-

value services on top. To these users, eventually, the most

interesting option is to be given access to the network as

if it was an “abstract node”, thus hiding all details of the

underlying physical or virtual topology. In this way, specific

services can be simply offered by properly configuring such

an abstract node.

In this paper we introduce a novel architecture leveraging

the Software defined networking (SDN) paradigm: the aim

is precisely to broaden the “virtualization offering” that an

infrastructure provider can expose to its customers. Hence,

depending on customers’ needs, the proposed architecture

can enable the instantiation of either (i) a virtual network

composed of virtual links and virtual nodes or (ii) an abstract

node collapsing the whole network into a single router or

switch instance. In fact, in our view, the customer can choose

among these two extreme options:

1) full virtual network: the customer has full control of

the network (e.g. traffic engineering techniques, failure

handling policy, etc). The topology should be fully

customisable according to the needs of the customer,

which sometimes may look for network configurations

that depart from the physical one;

2) single (abstract) node: the customer concentrates on

routing policies, while leaving the management of the

underlying geographically distributed network layer to

the infrastructure provider. The infrastructure provider

can differentiate its offering according to the service

level required by its customers (e.g. maximum latency

or packet loss between two node ports).

In either case, the core requirement for the infrastructure

provider is to ensure that the service level is acceptable to its

customers, even in case of network congestion and/or failures.

At present, FlowVisor [3] is the most popular SDN based

implementation to instantiate virtual networks. FlowVisor

leverages on the capability of OpenFlow [4] of abstracting

the underlying hardware and can operate logically between

control and forwarding paths on a network device effectivelly

exposing different view (slices) of a physical infrastructure to

different controllers.

In a recent work [5] the authors have proposed a mechanism

to overcome one of the main limitations of FlowVisor, i.e.,

the fact that virtual topologies in FlowVisor are restricted

to subsets of the physical topology. However, the solution

proposed in [5] leverages on the VLAN tag to differentiate

between virtual links and virtual network. The price to pay is

an hard limitation on the usage of VLAN headers.

Authors in [1], [2] have described in detail the advantages

of exposing a single abstract node. However, little details

have been provided about the corresponding architecture and

related performance figures. In [6] the author explicitly refers

to Keller’s work; the paper focuses on algorithms to optimally

embed “virtual router services” on top of a physical network.

Authors of [7] elaborated on their previous work (RouteFlow)

to generalize the instantiation of purely IP-based virtual routers

towards more flexible resource mapping (e.g., by multiplexing



B D

A

App 1 ... App 2 App N

Network Operating System

(a)

B D

A

Virtualization or "Slicing" Layer 

In
frastru

ctu
re

 P
ro

vid
e
r

Customer 1 

... 

... Network
OS 1

App App 

Network
OS 2

App App 

Network
OS N

App App 

Customer 2 Customer N 

(b)

Fig. 1. (a) A Software-defined network architecture; (b) an SDN network
where a virtualization layer allows to share the physical infrastructure among
several customers

1:N or aggregating M:1/M:N routers) running over detached

VMs, thus not really exploiting the full potential of virtualizing

network resources. Most of these proposals generally restrict

to pure L3 routing services, and lack implementation details

or performance results.

In this paper we present VeRTIGO, a NV architecture

that extends FlowVisor to deal with virtualization scenarios

described before. The basic idea is to extend FlowVisor with

additional intelligence able to expose different views of the

network to different controllers, depending on customer’s

specific needs. Compared to previous contributions on this

topic, this paper includes a set of preliminary results obtained

on a real network in production within the OFELIA facility [8].

Results show that our solution supports failover capabilities in

case of network congestion or link failures; we could also

identify relevant research directions to improve robustness.

The structure of the paper is as follows. Sect. II discusses

motivations for the proposed architecture; it also clarifies the

need for a new NV solution truly able to fit all the potential re-

quirements from the customers. The architecture of VeRTIGO

is then presented in Sect. III and some preliminary results

discussed in Sect. IV. Finally, Sect. V draws conclusions and

indicates directions to upgrade VeRTIGO.

II. MOTIVATION

Software defined networking (SDN) is a recent architec-

tural networking framework aimed at decoupling the network

control plane from the physical topology. Eventually, the

data plane is to be controlled through a uniform vendor-

agnostic interface. One of the most important features of

such a framework is a network-level operating system able

to expose a logical map of the entire network to services

or control applications implemented on top of a logically

centralized control plane. This network architecture lets a

network administrator (or a researcher) to easily introduce

new network functionalities by writing a software program

that handles the network; as seen in Figure 1(a) this resembles

closely what happens on a single computer scenario. One of

the most known implementations of SDN is OpenFlow [4];

we observe that, however, there is no requirement for the use

of OpenFlow within a software-defined network.

An interesting feature of SDN is the possibility to slice

available network resources; within the set of available Open-

Flow based tools, FlowVisor is the one acting as Network

Virtualization layer. Leveraging on the hardware abstraction

provided by OpenFlow, FlowVisor sits between the physical

hardware (network element) and the software that controls

it (controller). FlowVisor uses OpenFlow protocol to slice

the underlying physical network. FlowVisor generally hosts

multiple guest controllers, one controller per slice: it ensures

that a controller can observe and control its own slice only,

while isolating one slice from another (see Figure 1(b)).

While the advantages for an infrastructure provider to adopt

or to leverage on NV techniques are pretty clear (see [9]

for an interesting summary), some potential drawbacks exist

[1]; this holds especially for customers whose focus is on

providing added-value services to the end users. In fact, a

customer renting a virtual network still has to manage a

network; in order to have their services delivered, they have

to deal with critical scenarios like network congestion or

failure conditions. Moreover, NV may introduce additional

complexity to the infrastructure provider as well: in order to

deliver to the customer the service level he/she is paying for,

the infrastructure provider must allocate enough resources to

provide such guarantee; in turn, this limits dramatically the op-

portunity for optimizing its infrastructure usage. Furthermore,

the business model behind this service is based (again) on

“connectivity” thus limiting the chance to differentiate from

other infrastructure providers.

Customers willing to focus on their service portfolio of-

fering would greatly benefit from a virtualization architecture

that expose the network as if it was a single node, strongly

decoupling the two worlds and letting the customer to focus

on its services only while leaving the infrastructure provider

to manage the complexity of a physical network. At the same

time, there could be customers willing to extend their market

geographically (e.g. infrastructure owners) that would instead

prefer to rent a “full-fledged” virtual network in order to keep

a direct control on its operations.

We argue that most probably there is no solution that fits

all the potential requirements from the customer but instead

it is more promising to let the customer choose among the

two extremes according to its needs. By leveraging on SDN

capability to abstract network resources and control them

through primitives, VeRTIGO can enable such a vision. As

shown in Figure 2, through VeRTIGO it is possible to instan-

tiate either a single node interconnecting the edge locations

or a virtual network with a fully customisable topology to

guarantee maximum flexibility to the customer who rents it.

Further details are provided in the following section.

III. ARCHITECTURE

The main building blocks of the VeRTIGO architecture are

shown in Figure 3. As seen there, VeRTIGO interacts with the

underlying network and the controllers via the control channel,



D

E

G

F

B C

P
h
y
s
ic

a
l 
to

p
o
lo

g
y

N
e

tw
o
rk

 i
n

s
ta

n
c
e

s

A

Virtual link

Physical link

Node/Link outside 

the Virtual Topology

FlowVisor VeRTIGON
e

tw
o
rk

 V
ir

tu
a
liz

a
ti
o
n

 L
a
y
e

r

D

E

G

B C

G

B C

Fig. 2. Network virtualizing through SDN: FlowVisor Vs. VeRTIGO.

based on OpenFlow protocol. In particular, it can be noticed

that VeRTIGO is implemented around the latest release of

FlowVisor: it adds a set of key additional modules that we

describe in this Section.

VeRTIGO’s capability to provide abstract instances of the

physical network (namely, either virtual networks or abstract

nodes) is grounded on two basic virtual elements: Virtual

Links and Virtual Ports. These two elements are used both

to instantiate arbitrary network topologies including virtual

links between not adjacent switches, as well as to interconnect

remote access ports of an abstract node. In the first scenario

virtual links and ports are exposed to the OpenFlow controller

as part of the network. In the latter, the controller only sees

an abstract OpenFlow switch.

As in [5], virtual links aggregate logically sets of physical links

and OpenFlow nodes while virtual ports are simply physical

ports with virtual port numbers. A single physical port can be

mapped onto multiple virtual ports, depending on the number

of virtual links instantiated on the physical link connected to

that physical port. However compared to that work, VeRTIGO

does not tamper with the flow headers to implement virtual

links but, instead, makes use of a database to store the header

sequence of each flow crossing a specific virtual link.

Classifier: the Classifier module classifies OpenFlow mes-

sages received from a switch leveraging on the information

contained in the configuration files. In the abstract node

scenario, only messages related to access ports are forwarded

to the OpenFlow controller while the other messages are

handled by VeRTIGO’s internal controller. In the virtual net-

work scenario, only end points of a virtual link are enabled

to communicate with the controller. All the other nodes are

hidden by VeRTIGO which directly controls their flow tables.

VT Planner

Storage

VeRTIGO

C
la

s
s
if

ie
r

OpenFlow Controller

Internal 

Controller

Node Virtualizer

OpenFlow Switch

(VT configuraons, 

flow stascs, databases)

Port Mapper

Control Framework

Web UI

Fig. 3. The main building blocks of VeRTIGO.

Node virtualizer: the OpenFlow control channel is the

interface that connects each OpenFlow switch to an OpenFlow

controller. The controller identifies the switches and their

features through this interface and builds a switch/topology

map. When VeRTIGO instantiates an abstract node, it also

needs to implement a single control channel between the nodes

and the controller. The purpose of the Node Virtualizer is to

multiplex multiple channels between the physical network and

VeRTIGO into a single virtual channel between VeRTIGO

and the controller. This multiplexing process is performed

along with the process of remapping the datapath identifiers

of network nodes.

Port Mapper: port mapper operations are needed in the

virtual network scenario where a single physical port can

be the termination of multiple virtual links. In this situation,

each OpenFlow message related to this physical port must

be modified with virtual port numbers consistent with the

virtual links before being forwarded to the controller. The port

mapping process is also necessary in the abstract node scenario

to remap the access port numbers.

Internal controller: this module controls those switches

that are hidden to the controller. This is the case for all

switches composing an abstract node and for switches that are

not end points of virtual links in the virtual network scenario.

These nodes never communicate with the remote controller as

their flow tables are managed by the Internal Controller.

Storage: the storage module provides a set of operations

and functions to store configurations for abstract nodes and

virtual networks and to handle databases of flow headers and

flow statistics.

VT Planner: this component implements a path selection

algorithm to efficiently aggregate physical nodes and links into

virtual links. The task of the VT planner is to associate net-

work instances (as per customer request) to physical resources:

it receives as input traffic load statistics and provides, as

output, the description of virtual links that implement either an



abstract node or a virtual network. Heuristics for the allocation

of virtual links rely on the characterization of physical links

based on a set of metrics such as throughput and latency.

A dedicated monitoring module, not shown in Figure 3, is

in charge of collecting flows statistics to be input to the VT

Planner. Information gathered from network devices by the

monitoring module includes: (i) nominal capacity of physical

ports and (ii) statistics on received and transmitted bytes and

packets on each physical port.

UI and Control Framework: in order to be effectively

used by an infrastructure provider, the proposed architecture

needs an external Control Framework1; the aim is to simplify

the configuration of virtual networks or abstract nodes by

specifying requirements in terms of, e.g., flowspaces, nodes,

virtual links etc. The configuration is passed to the VT Planner.

IV. EVALUATION RESULTS

The experimental evaluation described in this Section has

two main purposes: to evaluate the overhead introduced by

our initial prototype and to show how VeRTIGO transparently

handles changes in the physical network substrate. In partic-

ular, we use two reference events: link failure and network

congestion. The focus of all the tests is on the “abstract node”

virtualization scenario, this choice has two main reasons: (i)

being based on experiments performed on a real network, it

provides concrete evidence on the capability of VeRTIGO to

support practical and relevant use cases; and (ii) the prelim-

inary results obtained provide hints on where architectural

enhancements could significantly improve performance.

A. Evaluation setup

The experiments described in this section were conducted

on the OpenFlow 1.0 devices located in our premises and that

are part of the CREATE-NET island in production within the

OFELIA facility [8]. The island currently consists of:

• 9 OpenFlow switches: 3 NEC IP8800, 2 HP ProCurve

3500 and 4 commodity PCs hosting NetFPGA 1 Gbit

modules

• 6 server-class PCs: Intel Xeon 4 core processors

The tests in Sect. IV-C have been performed using 3 NEC

switches, all 4 NetFPGA hosting PCs and 3 servers, connected

as shown in Figure 6. The tests in Sect. IV-B have been

performed using one of the NEC switches and a commodity

PC equipped with a quad-core 2.7 GHz processor.

B. Latency overhead

VeRTIGO’s operations have a cost in terms of additional

latency on the control channel. In this experiment we measured

the overhead introduced by VeRTIGO on the control channel

for common OpenFlow messages such as: packet in (new

flow) and port statistics requests/replies.

New flow. In this experiment we connected two Ethernet

interfaces of the commodity PC to the switch. One interface

1Within the OFELIA project, we are planning to leverage on an extended
version of the GENI–based FOAM (FlowVisor OpenFlow Aggregate Man-
ager) [10].

was used to force the switch to generate new flow messages for

the controller by generating 50 flows per second.The second

one connected a modified version of the NOX controller [11]

to the switch through the OpenFlow control channel.

In OpenFlow, for each incoming flow which does not have a

flow entry in the switch flow table, a packet in message is sent

to the controller through the control channel. We measured

the “new flow time”, i.e., the latency between sending a new

flow through one interface and receiving the corresponding

packet in message from the second interface. We analyzed

three different scenarios: i) direct connection between switch

and controller, ii) FlowVisor v0.8.1 logically placed between

switch and controller, iii) VeRTIGO logically placed between

switch and controller.

Figure 4 shows that VeRTIGO’s operations increase the new

flow time from switch to controller by 1.065 ms on average.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100

C
u
m
u
la
ti
v
e
P
ro
b
a
b
ili
ty

New flow latency (ms)

direct connection
with FlowVisor
with VeRTIGO

FlowVisor avg. overhead: 0.736ms

VeRTIGO avg. overhead: 1.065ms 

Fig. 4. Cumulative probability of the latency for new flow messages.

Port statistics request/reply. In this experiment we con-

nected only one interface of the PC to the switch. On the

PC we run an instance of the NOX controller configured to

send approximately 200 port statistics requests per second and

to record the round-trip delay between the request and the

statistic reply sent by the switch.

Results of the experiment are reported in Figure 5.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100

C
u
m
u
la
ti
v
e
P
ro
b
a
b
ili
ty

Port stats request/reply latency (ms)

direct connection
with FlowVisor
with VeRTIGO

FlowVisor avg. overhead: 0.422ms

VeRTIGO avg. overhead: 0.700ms  

Fig. 5. Cumulative probability of the latency for port stats requests.

Although these are only preliminary results, they clearly

show that VeRTIGO operations do not significantly degrade

the performance of the control channel. However, as a fu-

ture work, we plan to perform additional tests using more

powerful controllers like Beacon [12], FloodLight [13] and

Maestro [14]. Furthermore, we will also evaluate the scaling

limits of VeRTIGO with respect of the rate of generated

messages and the number of physical nodes.



Host A

Host B

A

Host C

Abstract Node

B

I

E

F G
H

D

VLink A

VLink B

VLink C

Physical Ethernet Link

Virtual Link

Fig. 6. Representation of the abstract node instantiated for the traffic
congestion/link failure tests.

C. Network congestion/Link failure tests

The objective of this test is to prove the ability of VeRTIGO

to react to events such as network congestion and link failures.

In such cases, VeRTIGO should be able to automatically re-

configure virtual links while, at the same time, minimizing the

connectivity downtime caused by the reconfiguration process.

In order to do so, the current implementation of the VT

Planner is based on a series of pre–defined cached virtual

topologies for which it enforces the corresponding embedding

into the physical topology. We remark that the general problem

of virtual topology embeddings has received some attention

in literature [15], [16]. We are planning to implement more

complex virtual topology embedding algorithms (with no need

for pre-caching) in future releases of this component. Finally, it

is worth noticing that, the dynamic virtual link reconfiguration

feature can be disabled in order to support use cases where

experiment reproducibility is a requirement.

In our test, we instantiated an abstract node as represented

in Figure 6. The underlying virtual topology to interconnect

its three access ports has been computed by the VT Planner

by instantiating virtual links VLink A, B and C.2 Each of the

three access ports was also connected to one of the server-

class PCs configured for the experimentation as Host A, Host

B and Host C.

All internal links were limited to 100Mbps, while links con-

necting the hosts were left to the nominal speed of 1Gbps.

VeRTIGO detects link failure events by using port-status

messages from switches. Also, it detects network congestion

events by polling and querying switches for the tx/rx statistics

every 5 seconds: congestion is detected on a virtual link when

the throughput on any of its physical links exceeded 80% of

the nominal capacity 3 times in a row. On either congestion or

2Of course, richer meshed topologies can be used to interconnect access
ports, provided that one configures the Control Framework parameters ac-
cordingly; we preferred to confine to the simple one reported for the sake of
clarity.

 0

 20

 40

 60

 80

 100

 120

T
h

ro
u

g
h

p
u

t 
(M

b
p

s
)

 0

 20

 40

 60

 80

 100

 0  10  20  30  40  50  60  70  80

P
a

c
k
e

t 
L

o
s
s
 (

%
)

Time (seconds)

Experiment A
Experiment B

Fig. 7. Throughput and packet loss measured during the traffic conges-
tion/link failure test.

link failure, the VT Planner recomputes the best path algorithm

for the involved virtual links.

The test started at time 0 (see plots in Figure 7) when

Experiment A generated a 30 Mbits/sec flow from Host A to

Host C through the VLink A. After 10 secs, a second flow at

100 Mbits/sec was generated by Experiment B from Host B to

Host C through the VLink B. At time 30 secs, we simulated

a link failure by disconnecting physical link E. As a result,

the throughput of Experiment B decreased to 0 while the loss

rate increased to 100%. As reported by plots in Figure 7, after

about 2 secs, VLink B was restored with a new sequence of

physical links, i.e., D-F-I.

Starting at second 33, virtual links VLink A and VLink B were

sharing the physical link I (see plots in Figure 7): hence, both

experiments started experiencing a reduction of the throughput

and higher packet loss rate.

About 11 secs later, the VT Planner detected congestion on the

link and computed again the best path algorithm: virtual link

reconfiguration took about 1 second (see the spike in the loss

rate plot at time 44 sec) and produced a new configuration for

VLink A with the following aggregation of physical links:

A-G-H. As shown in Figure 7, after re-computation, both

experiments were running at full rate again.

This experimentation demonstrates how critical the virtual

link reconfiguration process is, due to the long connectivity

interruptions it can introduce. In our implementation the pro-

cess consists of the following operations: (i) recomputation of

the best path excluding any possible failed link and using rx/tx

statistics as a metric, (ii) deletion of all flow entries previously

installed to set up the virtual link to be restored/re-configured

and (iii) set up of a new virtual link by installing new flow

entries on all switches on the path. Our experimentation also

proved that connectivity issues are less impacting when re-

configuring congested links. In this case, in fact, recomputing

an alternate best path for a congested virtual link leaves the

virtual link operational until the new path is determined. Of

course, latency can dramatically improve by either instantiat-

ing more meshed underlying topologies or by leveraging on



MPLS fast restoration mechanisms as soon as OpenFlow 1.2

compliant devices will be available on the market. It is worth

noticing that even though node failures scenarios have not been

considered, they could potentially leverage on the same re-

configuration process: actually, a node failure corresponds to

a multiple links failure.

V. CONCLUSIONS AND NEXT STEPS

This paper presents VeRTIGO, a novel architecture based

on the SDN paradigm. VeRTIGO generalizes the “virtualiza-

tion offering” that an infrastructure provider can deliver to

customers. It supports the instantiation of either (i) a virtual

network composed of virtual links and nodes with arbitrary

topology or (ii) an abstract node collapsing the whole virtual

network into a single router or switch instance.

VeRTIGO extends FlowVisor by additional intelligence:

it can expose different views of the network to different

controllers in order to meet customer’s specific needs. In

particular, in the “abstract node” scenario, previous contribu-

tions [1], [2] have not fully elaborated on the corresponding

architecture and evidence of the related performance was still

pending; this paper includes a set of results obtained on a real

network in production within the OFELIA facility [8]. We

have shown not only the feasibility of the proposed approach,

but outlined also its performance when dealing with events

like network congestion or link failures. Our ultimate goal

indeed is to deliver a NV protocol suite reliable enough to

let infrastructure providers offer NV-based services on top

of their asset. To this respect, these preliminary outcomes

provide valuable insight to identify the critical aspects to be

strengthened in order to make such systems competitive.

As part of future work, we intend to improve the VT Planner

by implementing a virtual topology embedding algorithm.

This is meant to provide VeRTIGO with higher flexibility

when allocating physical resources to virtual networks and

abstract nodes instances. Also, another key element to improve

system performance would be the availability of OpenFlow

v.1.2 enabled network devices, including support for MPLS

and QnQ techniques.

REFERENCES

[1] E. Keller and J. Rexford, “The ”Platform as a Service” model for
networking,” in Proc. of USENIX INM/WREN, San Jose, California, 27
Apr. 2010.

[2] M. Casado, T. Koponen, R. Ramanathan, and S. Shenker, “Virtualizing
the network forwarding plane,” in Proc. of ACM PRESTO, Philadelphia,
USA, 30 Nov. 2010.

[3] R. Sherwood, G. Gibb, K. Yap, G. Appenzeller, M. Casado, N. McKe-
own, and G. Parulkar, “Can the production network be the testbed?” in
Proc. of USENIX OSDI, Vancouver, Canada, 4-6 Oct. 2010.

[4] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 32, no. 2, pp. 69–74, April 2008.

[5] E. Salvadori, R. Doriguzzi Corin, A. Broglio, and M. Gerola, “General-
izing virtual network topologies in OpenFlow-based networks,” in Proc.

of IEEE GLOBECOM, Houston, TX, USA, 5-9 Dec. 2011.
[6] Z. Bozakov, “Architecture and algorithms for virtual routers as a

service,” in Proc. of IEEE IWQoS, San Jose, California, 6-7 June 2011,
pp. 1–3.

[7] M. Nascimento and C. R. et al., “Virtual routers as a service: the
routeflow approach leveraging software-defined networks,” in Proc. of

ACM CFI, Seoul, Korea, 13-15 June 2011, pp. 34–37.
[8] OFELIA project. Online: http://www. fp7-ofelia.eu.
[9] J. Carapinha and J. Jiménez, “Network virtualization: a view from the

bottom,” in Proc. of ACM VISA, Barcelona, Spain, 17 Aug. 2009, pp.
73–80.

[10] GENI Flowvisor OpenFlow Aggregate Manager (FOAM). Online:
https://openflow.stanford.edu/ display/FOAM/Home.

[11] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and
S. Shenker, “NOX: Towards and operating system for networks,” ACM

SIGCOMM Computer Communication Review, July 2008.
[12] Beacon. Online: https://openflow.stanford.edu/display/Beacon/Home.
[13] Floodlight. Online: http://floodlight.openflowhub.org/.
[14] Z. Cai, A. Cox, and T. Ng, “Maestro: A System for Scalable Open-

Flow Control,” Tech. Rep. TR10-11, Rice University - Department of

Computer Science, December 2010.
[15] M. Chowdhury, M. R. Rahman, and R. Boutaba, “ViNEYard: Virtual

network embedding algorithms with coordinated node and link map-
ping,” IEEE/ACM Trans. on Networking, vol. 20, no. 1, pp. 206 –219,
Feb. 2012.

[16] J. Lischka and H. Karl, “A virtual network mapping algorithm based
on subgraph isomorphism detection,” in Proc. of ACM VISA, Barcelona,
Spain, 17 Aug. 2009, pp. 81–88.


