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Abstract—The externalization of network control and mainte-
nance tasks, enabled by the emerging Networking as a Service
(NaaS) paradigm, is an appealing opportunity for large Telcos
to expand their network management offering to SMEs. In this
paper we propose an architecture for network control and man-
agement capable of efficiently supporting the NaaS paradigm.
Our methodology is based on a set of orthogonal requirements
that forms the platform to assess the admissibility of differ-
ent network management functions in the remote management
plane. Such assessments are realized based on the taxonomical
evaluation of the management functions classified according
to the requirements they impose on the remote management
plane in terms of security and robustness. Experimental results
obtained from a proof-of-concept implementation deployed over
a large scale testbed composed of about 500 WiFi Access Points
shows that the signaling traffic for a practical implementation
supporting not trivial autonomic control loops is lower that
20 bytes/s for each node. Moreover, the latency to execute
administrative actions is in most cases in the order of 70 ms.

Index Terms—network management, monitoring, networking
as a service, mesh networks, proof-of-concept, prototyping

I. INTRODUCTION

Managing internal network infrastructures can be a com-
plex, labor–intensive and expensive task, especially for enter-
prises whose main business lies outside, or is only marginally
related with, the ICT domain. Such pitfall led all but a few
very large Telcos/Enterprises to move away from sophisticated
and/or automated network management tools in favor of
simpler solutions requiring frequent manual intervention, often
using custom tools developed in–house. Similar considerations
prompted SMEs to move storage, email, and in some case
even computing infrastructure to the “cloud” following the
Infrastructure/Platform/Software as a Service model.

The externalization of the network deployment and main-
tenance tasks, that is enabled by the emerging Networking
as a Service (NaaS) paradigm, is an extremely appealing
opportunity for large Telcos to expand their network manage-
ment offering to mid/small enterprises [1]. In such a context,
a cloud-centric approach can lower the entrance barrier to
a Telco’s network management portfolio by both allowing
management software to be developed and maintained in a
centralized fashion and by enabling effective and efficient
infrastructure sharing among multiple customers.

In this scenario, the Telcos benefits from the amortization
of hardware, software and human costs across their entire
customer base while customers have the flexibility of paying
only for what they effectively use. Such consolidation of func-
tionalities has also technical advantages in terms of advanced
adaptation and learning algorithms that can take advantage
of a knowledge base collected from a multitude of nodes. In
particular, the NaaS paradigm will:

• enable use of thin–data plane devices running a bare
minimum hardware and requiring a separate control and
management plane to operate. This reduces the energy
footprint of the devices as well as their cost;

• reduce the cost to deploy the network (CAPEX), in that
the cloud will be used for its initial configuration, and
the cost to keep it operational (OPEX), in that it will be
continuously monitored optimized from the cloud.

• pave way to innovative applications of cloud–computing
in the management of Future Internet infrastructures.

However, in order to turn NaaS into a commodity, two sets
of challenges need to be addressed. The former is related with
the intrinsic nature of the cloud–based model that requires the
management plane to run remotely raising several questions
in terms of responsiveness, robustness, availability, security
and privacy. The latter is instead posed by limitation current
commercial solutions that only partially address the aforemen-
tioned problems by providing the customer with an hosted
network controller. Such an approach suffers a few drawbacks:

• It requires a persistent connection to the datacenter.
• It does not scale well with the number nodes.
• It poorly integrates with legacy solutions.
The contribution of this paper are threefold: we introduce a

taxonomy of network control and management tasks classified
according to their requirement in terms of responsiveness,
robustness, availability and security; we propose a novel NaaS
architecture; and we report on a proof–of–concept NaaS imple-
mentation, deployed and tested over a large scale metropolitan
WiFi network. It is worth stressing that such nodes are heavily
resource constrained in that they completely lack persistent
storage and have very limited processing capabilities.

The rest of the paper is structured as follows. Section II



discusses the challenges associated with a remote manage-
ment plane. A taxonomy of network control and management
functionalities closely related with a typical metropolitan WiFi
deployment is the subject of Sec. III. Section IV describes our
NaaS concept. Implementation details and experimental results
are reported in, respectively, Sec. V and Sec. VI. Section VIII
draw the conclusions and summaries current and future work.

II. CHALLENGES AND REQUIREMENTS

Where are control and management tasks typically placed
in network deployments today? Some functionalities, like
routing, are effectively distributed across the network, while
others, like configuration management are centralized. More
in general, such tasks are centralized for what concerns the
management aspects (e.g. security policies) while mechanisms,
such as encryption or tunneling, are embedded in the devices.

In order to address such misalignment, a re–factoring of
functionalities has been suggested several times, the most
recent example is the 4D networking architecture [2] which
involves a radical design where network functionalities are
organized in such a way to simplify the data plane while
moving all the complexity to a centralized controller. However,
it is worth noticing that centralized approaches raise the usual
concerns in terms of scalability, security, and single point
of failure, instead, the authors argue for an hybrid approach
designed around the following requirements:

• It shall make no assumption on the reliability of the link
to the remote management plane allowing the network
to function properly in the last known state even if the
connection to the controller is lost.

• It shall support aggregation and processing of monitoring
information in order to improve scalability paving the
way to innovative in–network management approaches;

• It shall support both cloud–aware and, using suitable
proxies, legacy deployments.

Notice that, with 4D–like approaches we do have a logically
centralized management plane, however such a plane typically
lies within the domain of the network it is managing. Con-
versely, a remote management plane, such as the one that is
required in order to enable effective NaaS, imposes different
requirements on the features which can be moved to the cloud
controller and features instead must be embedded within the
managed network. To this purpose, we introduce the following
four orthogonal requirements — on the management plane
— that we use to assess if a particular network control and
management functionality can actually be moved to the cloud
controller, and, if so, under which constraints:

• Time–sensitiveness (RA), a remote management plane
implies larger (compared to in–house solutions) commu-
nication latency in both directions, i.e. to send monitoring
information and to execute administrative actions, which
in time implies that time–sensitive features must remain
within the network domain while non time–sensitive
functions can be offloaded to the remote management
plane. As for example, forwarding and encryption are

time–sensitive functionalities and thus cannot be moved
to a remote network controller, on the other hand traffic
engineering and routing (i.e. computing the best path
between two endpoints) are characterized by soft require-
ments in terms of latency and are thus good candidates
to be relocated to the cloud controller.

• Robustness (RB), a remote management plane may be
unavailable due to failures at the management plane
and due to outages at the communication level. As a
result, additional constraints must be put on the managed
devices that must support a soft–state operation model,
i.e. the device must be able work in a stand alone mode
after an initial configuration has been fetched. As for
example, routing imposes strict requirements in terms of
robustness, as a result typical routing algorithms, such as
OSPF, are implemented in a distributed manner in order
to keep the network connected even in case of severe
failures. Moving route computation to a remote control
and management plane (see OpenFlow [3]) impose new
constraints on the signaling channel that must support
self–healing and self–configuration features.

• Frequentness (RC), some services, such as Authenti-
cation, Authorization, and Accounting (AAA) typically
involve sporadic network operations in order to access
a database or a web service. As a result, even if the
remote network controller is unavailable, the data plane
functionalities may still be unaffected if suitable caching
techniques are implemented on the managed network
side. Thus, such requirement dictates the presence of
suitable proxy mechanisms capable of decoupling the
managed network from transient failures that may happen
at the remote management plane level.

• Security (RD), a remote management plane implies that
an entity other than the network owner has access to
potentially sensible information. Such situation, in time,
raises security and privacy concerns dictating which func-
tionality that can be hosted outside the domain of the
managed network and which shall instead be internalized
using, for example, private clouds solutions. The use of
homomorphic encryption schemes could also allow to
export part of the data to the remote cloud in an encrypted
form while preserving the capability to run queries and
gather statistical data.

We assume that, for each dimension, the functional re-
quirements RA,B,C,D imposed by a particular management
functionality F can be either Strict or Loose, i.e.:

Rx(F ) ∈ {Strict, Loose}, x ∈ {A,B,C,D}

Then, the outcome of the assessment is the tuple
〈RA(F ), RB(F ), RC(F ), RD(F )〉. We identify the following
categories into which a certain management functionality F
can be classified according to its functional requirements:

• Remote. Management functionalities belonging to this
group do not impose any Strict requirements along any of



TABLE I: Requirements and the management categories.

Responsiveness Robustness Availability Security Category
RA RB RC RD

Strict Any Any Any Embedded
Loose Strict Loose Loose Embedded
Loose Loose Strict Strict Hybrid
Loose Loose Loose Loose Remote

the four dimensions and can thus seamlessly be offloaded
to a remote management plane. Examples are traffic
engineering, or routing.

• Hybrid. Management functionalities belonging to this
group impose Strict requirements in terms of availability
and/or security. As a result, the use of proxy mechanism
is envisioned in order to shield the managed network from
transient connectivity outages to the remote management
plane and/or to avoid exposing sensible data to third
parties. Examples are device self–configuration services,
such as DHCP, or policy authentication checks.

• Embedded. Management functionalities belonging to this
group impose Strict requirements in terms of respon-
siveness and thus must be embedded into each device.
Examples include data forwarding, and encryption.

In Table I, we report the mapping between most relevant
tuple permutations and the corresponding management cate-
gories. Such mapping allow us to distinguish which function-
alities must be entirely embedded in the managed network,
which can be offloaded to the remote management plane, and,
finally, which requires an hybrid approach involving possibly
some proxy mechanism within the managed network.

III. A TAXONOMY OF NETWORK MANAGEMENT
FUNCTIONALITIES

In this section we shall provide taxonomy of network
management functionalities classified according to the require-
ments they impose on the remote management plane in terms
of security and robustness. We also classify time–critical Vs.
non time–critical operations and sporadic Vs. frequent opera-
tions. We focus our attention on a particular usage scenario,
namely provision of city–wide broadband Internet access using
light infrastructure networks such as WiFi Hotspots and Mesh
Networks. Such kind of deployments are typically unplanned
and can grow or shrink over a short period of time according
to the user demands. As a result, a truly comprehensive NaaS
solution shall be able to support the network during its entire
life–cycle from planning, through deployment and operation
and shall support an incremental deployment model allowing
connectivity to be provided only where and when needed.

The first stage of the network deployment is planning. Due
to cost and complexity reasons, the usage of advanced network
planning tools is typically limited to enterprise deployments
where the initial cost can be spread among a large user base.
In such a scenario, a NaaS offering can effectively lower the
entrance barrier to such planning tools by effectively spreading
the development cost among thousand of small networks.
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Fig. 1: A typical NaaS deployment where multiple networks
are centrally managed by a single network controller.

The deployment and operation phase includes all well
known FCAPS functionalities (fault, configuration, account-
ing, performance and security management):

• The fault management is based on alerts. This family of
functionalities includes tasks related to prompt notifica-
tion of network errors to the remote management plane
as well as root cause analysis algorithms and heuristics.
The former, requires a certain amount of intelligence to
be put in the managed device that must be able to exploit
a variety of media to notify the remote management
plane of potential faults (e.g. SMS, email). The latter
are typically executed within the cloud controller where
suitable learning techniques can be exploited.

• The configuration management deals with proper con-
figuration of the network (e.g. routing profiles, operators
policies). It is strongly linked with the performance man-
agement and it is used during node/network initialization
and during normal operations in order to improve network
performance or to handle faults.

• The performance management functionalities involve
passive sensing (packet capture/trace) as well as active
tools to performs measurement campaigns aimed at pin-
pointing failures or performing profiling activities. Fi-
nally, periodic maintenance tasks such as remote firmware
update, reboot, and remote diagnostics (e.g. ping) also
belong to this family of functionalities typically imple-
mented within the remote management plane.

• Accounting is a management feature naturally fitting
within the remote management plane. This family of
functionalities is, in traditional deployment, heavily cus-
tomized in order to fit the customer’s need. In a NaaS
scenario, a trade–off is to be found between a tailored
management dashboard and a standard minimal interface
to be re-used across a wider customer base.

• Security–related features typically involve an initializa-
tion phase when an access to the actual remote manage-
ment plane is required and a cruising phase when either
the previously acquired credentials are directly exploited
by the user or an intermediate proxy that can satisfy
further authorization requests. On the other hand, features
which involve tracking the user’s behavior are bound



TABLE II: Functional requirements of typical network control
and management tasks.

Functionality Category
Planning:

• Radio coverage simulator
• Map management
• Clients simulator

Remote

Faults:
• Event log
• Alarm summary
• Root cause analysis
• Standard reports
• Customize reports

Remote

Configuration:
• Install and Configure APs
• Traffic shaping
• Routing/Forwarding
• Channel assignment
• Deep Packet Inspection

Embedded/Remote

Accounting:
• RADIUS
• Captive portal
• Billing

Hybrid

Performance:
• Packet capture/trace
• Remote firmware update
• Diagnostics
• Statistics

Remote

Security:
• WPA/WPA2 (Personal/Per-device)
• 802.1x (Enterprise)
• MAC filtering
• Rogue AP detection and mitigation
• NAT/Firewall
• VPN

Hybrid

to raise security and privacy concerns in that, unlike
traditional deployments where the management plane
resides within the enterprise administrative boundaries, in
a NaaS scenario such information are exposed to entities
other than the network owner.

Table II reports the mapping between the discussed man-
agement functionalities and their functional requirements.

IV. OUR CONCEPT

In this section we introduce the blueprints for a remote
network control and management plane capable of effectively
supporting a NaaS architecture. Figure 1 depicts the system
architecture backing up the envisioned remote network control
and management plane. Central to this architecture is the
shared knowledge base, built collecting network monitoring
information from multiple managed networks, and exploitable
by suitable autonomic decision policies.

Monitoring information are either collected directly from a
cloud–aware network device, i.e. a device that implements the
interface I1, or trough a suitable Aggregator device which,
on one hand, implements the I1 interface, and, on the other
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Fig. 2: A more advanced deployment exploiting distributed
monitoring within the managed network.

hand, implements a set of legacy interfaces L1 aggregating
information coming from different sources (e.g. SNMP, IPMI,
log files, etc). FCAPS functionalities as well as network–
wide optimization algorithms are consolidated at the remote
cloud controller where the use of a web–based management
dashboard is envisioned for performing administrative actions.

The use of distributed monitoring functionalities within
the managed network is also envisioned. Figure 2 sketches
the system architecture for this scenario. Such a distributed
monitoring approach is in charge of bringing network–wide
information to the relevant decision points in an effective and
robust manner effectively implementing a signaling layer on
top of which autonomic/in–network management techniques
can be effectively implemented. A hierarchical architecture is
envisioned where Cluster Heads are in charge of gathering the
local network state from their cluster and for propagating such
information to the other Cluster Heads. A similar architecture
has already been proposed by the authors and its viability has
been proved over a small scale testbed [4].

It is worth noticing that a logically centralized decision
point does not imply a centralized implementation. As a matter
of fact, additional level of resiliency can be introduced into
the system by using redundant and geographically distributed
network controllers (see Fig 3). In such a scenario, man-
aged networks can either exploit the closest controller as
their management plane falling back on other controllers in
case of outages or, they can use consensus protocols, such
as Paxos [5], in order to take administrative actions in a
distributed fashion. The use of private clouds in envisioned
as a way to address privacy/security concerns.

V. THE PROTOTYPE

In this section, we shall describe the software prototype
developed to validate the viability of a NaaS architecture in a
realistic scenario as well as to collect the empirical data needed
to characterize the cloud controller performance in terms of
latency and scalability. The software prototype consists of
a set of cloud–aware access points centrally managed by a
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Fig. 3: A redundant network controller deployment.

cloud controller implementing basic monitoring functionalities
together with two autonomic control loops which are in charge
of optimizing the frequency allocation plans of the network
and implementing rogue AP detection and mitigation.

These features have been selected by the network operator
taking into account the amount of human resources currently
spent to manually troubleshoot correlated issues, e.g. through-
put degradation due an inefficient frequency allocation plan
and Denial–of–Service (DoS) attacks performed by rogue APs.

The prototype has been tested over the LUNA (Large Un-
wired Network Applications) wireless mesh network deployed
in the Trentino area in northern Italy. The network is composed
of about 500 nodes implementing a two–tier architecture
where connectivity is distributed using an hybrid 2.4/5 GHz
wireless mesh backhaul while access to end–users is provided
in the form of standard 2.4 GHz hotspots. Both distribution
and access links uses standard WiFi technology.

The prototype implements a classical client/server architec-
ture, however unlike traditional SNMP deployments, where a
centralized Network Management System (NMS) periodically
polls the managed devices, in our case, network state updates
are sent by the managed device only when needed, i.e. when
a change in a managed object has been observed or when an
alarm condition has been verified. The building blocks of our
prototype are sketched in Fig. 4, its features include:

• Real–time monitoring of the nodes in the network.
• Raising accurate events in case of failures (e.g. a node

leaves the network) and gathering notifications (e.g. high
link utilization or low memory).

• Optimizing the frequency allocation plan across the dis-
tribution and the access networks.

• Minimizing the overhead any access point incurs when
in case of DoS attacks performed by rogue APs.

The information collected by the agents falls into the
following categories: link quality (signal/noise level, retrans-
missions), traffic analysis (packets/bytes transmitted/received
over each interface), and node-wide parameters (processor
load, system uptime, available memory).

Each cloud–aware managed device runs a software agent
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Fig. 4: The prototype architecture.

which implements the management interface I1 used to com-
municate with the cloud controller. The agent periodically
polls the local node for changes in the state of the managed
objects and, if necessary, sends the updated values to the cloud
controller. The I1 interface is implemented according to the
RESTful architectural guidelines [6] using the HTTP protocol.

Administrative actions are always performed by the con-
troller as a result of either human intervention or autonomic
decisions. Each action may result in a set of commands to be
scheduled for execution at different nodes. Each command can
modify one or more managed objects (i.e. a wireless interface
operating channel) belonging to a single node. Administrative
actions involving more than one node requires the execution
of multiple commands. Each command is atomic, i.e. all
changes at a given node must be successful otherwise the
entire transaction is aborted. All signaling traffic is carried
over a secure SSL–enabled channel. Commands scheduled for
execution are dispatched within the acknowledgment to the
first update message coming from the node that is meant to
run the command. The controller can force an agent to send
an update message by connecting to a known port and passing
a security challenge.

It is worth noticing that, the system has been designed
in such a way to minimize both the amount of traffic and
the number of active connections. The former goal has been
achieved by sending updates only for managed objects that
have changed since the previous update. The second goal has
been achieved by using a stateless communication protocol
that do not require persistent TCP connections, freeing pre-
cious entries in the NAT table at the aggregation gateways.
Finally, minimizing the management traffic flowing across the
network is of capital importance given the fact that, in the
LUNA network, the control and management plane shares the
same medium used by the data plane.

The cloud controller is implemented in the form of a
Java EE Servlet ran by a Tomcat 6.0 web server. The cloud
controller implements a multi–threaded model allowing it
to gather updates coming from the managed devices while
executing the autonomic control loops. It is worth noticing
that, no self–interference mechanism between control loops is
currently supported by the system, as a result the autonomic
task developer is in charge of avoiding situations where
concurrent optimization loops may take conflicting actions.

VI. EVALUATION

In this section, we aim at assessing the scalability of our
prototype by studying the relationship between an increasing
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Fig. 5: Network state updates received by the controller over
a 8–days period.

number of managed devices and the controller performance
in terms of latency in reacting to changes in the network.
The network over which our prototype is being tested is com-
posed of about 500 nodes deployed over a metropolitan area,
however, due to both engineering and logistics challenges,
the results reported in this paper refers to a preliminary pilot
consisting of only 10 nodes. In particular developing an agent
capable of satisfying production–level quality constrains in
terms of memory and CPU footprint proved to be particularity
challenging. On the up side, we do believe that running a
practical system over a production network composed of 500
nodes without affecting the operation of the network itself is
a result that can speak in favor of an incremental deployment
of a cloud-based network controller.

Figure 5 reports the load at the cloud controller over a
period of 8–days. Updates are sent by each node every 300
seconds. As it can be seen from the figure, the amount of traffic
exchanged is constant over time and the signalling bandwidth
for each AP is roughly 20 bytes/s. Notice that additional traffic
may be generated if an alarm is triggered.

Another important parameter to be considered is the transac-
tion latency i.e., the time interval between the instant at which
a command (e.g. changing a wireless interface’s operating
channel) is scheduled by the controller and the instant at which
the corresponding acknowledgment is received.

It is worth noticing that, after receiving a command, the
agent executes the operations specified in it, and then generates
a new update message containing the values of the managed
objects affected by the command. This latter update message
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Fig. 6: Empirical cumulative distribution function of all trans-
action latencies over a period of 8–days.

plays the role of acknowledgment to the original command.
During our measurement campaign, all commands have been
issued as urgent, thus the latency includes the propagation
delay, the signaling overhead, and the time spent by the device
actually executing the command.

Figure 6 reports the empirical cumulative distribution func-
tion of all transaction latencies over a period of 8–days. As
it can be seen from the figure, half of the transactions are
completed within less than 80 ms, while 700 ms is the time
required to complete 90% of the transactions.

VII. RELATED WORK AND RESEARCH CHALLENGES

In this section we first review the related works in both
commercial and academic domains, highlighting open issues
and research challenges, and later we will discuss the impact
of the NaaS concept on tussle spaces.

A. Commercial Solutions

Similar solutions are already commercially available from
vendors such as Meraki Networks in the form of a vertical
offering which include both hardware and the network man-
agement services delivered through a web–based dashboard.
Likewise, it is already possible to exploit proprietary and open-
source software in order to implement an effective hosted
NaaS solution. As for example, the open source software
Zabbix allows to monitor distributed IT infrastructures by im-
plementing an hierarchical architecture where each managed
node reports its state to a master node where the global view
of the network is reconstructed. In both cases however several
drawbacks remain unaddressed.

In particular, the Meraki approach introduces a single point
of failure in the system, namely the cloud controller by making
the network vulnerable to failures at the cloud controller site
as well as to outages at the communication layer. Moreover,
being a vertical solution, the Meraki offering does not address
the legacy network deployments.

Likewise, custom hosted network control and management
solutions based on opensource tools suffer on one hand of the
lack of sophisticated monitoring and optimization tools (due
to cost/complexity considerations); and on the other hand of
severe scalability issues as the number of nodes increases (due
to the polling–based nature of typical software solutions).



The software prototype discussed in this paper demonstrates
the viability of the remote management plane in a realistic
scenario composed of more than 500 nodes serving more than
18000 unique clients. The prototype easily be extended to
support additional monitoring information from both cloud–
aware and legacy devices as well as to implement advanced
control loops for both optimization and troubleshooting.

B. Academic Efforts

The authors in [7] envision a scenario where route com-
putation is offered “as a service” by a centralized controller
which in time dispatches the forwarding rules to the routers.
Such kind of approach is generalized in the 4D networking
architecture [2] where the operation of thin data plane devices
is coordinated by a centralized decision plane. Is it worth
noticing that, albeit the decision is centralized, the underlying
logic can be distributed across several machines. As for
example in [8] a Paxos distributed state machine [5] is used
in order to allow control and management processes running
on network endpoints to act as they were logically centralized.
Ethane [1], SANE [9], and OpenFlow [3] are further focusing
on refactoring management functionalities in order to make
the centralized controller a viable alternative. Tesseract [10] is
a prototypical implementation of the 4D concept.

Parallel efforts in the WLAN domain envision a variable
degree of cooperation coming from client nodes in the network
management tasks. Dyson [11] is a novel WLAN architec-
ture built on top of standard WiFi devices and designed
to enable extensive customization and control over several
aspect of network operation and performance, such as how
a client associates with an access point or how radio channels
are allocated. Conversely other centralized systems such as
DenseAP [12] and DIRAC [13] take a similar approach but
assume that no change can be done on the client’s software
stacks. Centaur [14] foresee some modifications on the end–
users’ clients in order to tackle the hidden and exposed
terminal issue in IEEE 802.11–based wireless LAN. Client
cooperation using custom beacon probes is used in [15] in
order to drive the association phase or in [16] in order to
build a conflict graph for the network.

Particularly important are the efforts devoted to devise novel
automatic diagnosis of network configuration errors both at
run time [17], [18] and off–line [19]. Along the same line, the
authors of ConMan [20] argue that a centralized solution is
instrumental in keeping the management plane in sync with
the rapidly evolving data–plane and thus to prevent ossification
at the control and management level.

In [21], a conceptual architecture for autonomic computing
is sketched. The authors analyze the motivation behind the
quest for autonomic computing and focus their attention on
the control loops introduced by the self-management routines.
In their work, the authors envision a common knowledge of the
system on top of which control algorithms are implemented.

More in general it is worth noticing that, when our cloud
controller is put in a wider perspective, it becomes compulsory
to embed autonomic and distributed monitoring functionalities

within the network itself as well as to support an additional
level of redundancy at the cloud controller level. Similar efforts
are carried on by the CASCADAS project [22]. More recently,
many hierarchical and federated structures have been proposed
such as [23], [24].

C. Impact on tussle spaces

Particular consideration must be given to the new tussle
spaces [25] introduced by a NaaS architecture. A tussle space
is a portion of the network where adverse or at least different
stakeholders play in order to achieve their respective interests.

In the envisioned NaaS offering, at least four adverse
stakeholders are interacting on the playing field, namely: end–
users, i.e. SMEs, public administration, individual businesses,
and residential home networks, NaaS providers, and cloud
computing infrastructure, and central government policies
providers. In such a scenario it is of capital importance to both
modularize the system design around tussle boundaries so that
unrelated issues and conflicts remains isolated. Moreover it is
important to design the system for choice in order to allow
different players to pursue their interests.

The following types of tussle spaces can be foreseen:
• end–users are sceptical about outsourcing their entire

networking infrastructure to a third party due to both the
feeling that their control over the network will be reduced
and the fear that sensitive information will be revealed
to the NaaS provider. On the other hand, NaaS providers
want to enlarge their customer base to both improve their
economies of scale as well as to feed optimization and
planning algorithms with a wider knowledge base.

• NaaS providers want to exploit flexible and scalable cloud
computing infrastructures without risking of being locked
with a single provider. On the other hand cloud com-
puting providers already divide customers into different
classes according to their subscription and willingness to
pay; NaaS providers will probably be recognized as a
high value tier due to the nature of the service offered
(control and management plane can hardly be considered
a commodity) and charged accordingly.

• Central government, but also end–users, can require spe-
cial privacy constraints on how and where data coming
from a network is stored. As a matter of fact, it is not
uncommon for a government to mandate that some data,
even when it belongs to private citizens, to be stored
within the country’s borders and be made accessible for
monitoring in the name of national security.

The architecture devised in this paper does involve a mod-
ular design allowing tussle in each of these spaces to be
logically separated from the others. In particular, the use of
the platform agnostic interfaces I1 to retrieve network status
updates as well as to perform administrative actions, allow the
customers to incrementally deploy a NaaS solution across their
network and, through the aggregation point, to control which
information are exposed to the NaaS provider. Likewise, the
in–network interface I2 allows critical or privacy–constrained
functions to be embedded within the network itself without



having to rely on neither the availability nor the trustwor-
thiness of the cloud controller. Finally, the inter–controller
interface I3 enables scenarios where multiple redundant cloud
controllers are first class citizens. It is worth noticing that, as
suggested in [25], the choices that led to our proposed NaaS
architecture took into consideration that tussle spaces evolve
over time, thus the playing field, i.e. interface, algorithms,
and protocols, must be designed in such a way to leverage
variations instead of mandating for a rigid model that will
inevitably break under pressure.

VIII. CONCLUSIONS

In this paper we argued for a split–network architecture
where computationally intensive tasks as well as tasks that
require an advanced domain knowledge (i.e. root cause anal-
ysis) are taken out from the network, moved to the cloud,
and offered as a service by the NaaS provider. It is worth
noticing that, management functionalities are decoupled from
both devices and network management tools. It is the authors’
standpoint that, with the exception of a few cases where a
certain amount of refactoring is required, a significant part of
the network control and management plane can be moved to
the remote centralized controller with no significant changes.

Our proof of concept focuses substantially on the com-
munication channel between the managed network and the
cloud controller and aims at supporting the claim that non–
trivial functions such as dynamic channel assignment and DoS
mitigation can be effectively offloaded to a remote controller.
In this work we also aimed at providing a methodology that
can be used to assess which tasks can be offloaded to a remote
management plane. Future work shall investigate the other two
aspects that, in our opinion, characterize and NaaS offering,
namely elasticity and manged virtualization.

In order to prove the feasibility of the proposed approach,
a software prototype consisting of a cloud–aware agent and a
cloud controller has been implemented. Experimental results,
gathered over a production wireless network consisting of
about 500 WiFi Access Points deployed in a metropolitan
area, demonstrate the viability of our architecture in a practical
scenario paving the way to innovative NaaS offerings.

Albeit the preliminary results are promising, several ques-
tions remains unanswered. In particular, it is not clear how
the cloud controller will scale with the number of nodes nor
if it is robust to outages at the signaling channel level. The
authors are currently tackling this challenges by progressively
enlarging the pilot presented in this work to a wider portion
of the network. Moreover, while the current cloud controller
was running a few hops away from the managed network, a
more advanced version is currently being developed and will
be deployed on commercial cloud computing platforms (i.e.
Microsoft Azure, Google App Engine, and Amazon EC2). This
version will allow us to validate the redundant cloud controller
concept discussed in this paper. Integration with distributed
monitoring solutions is also being considered.
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