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Abstract—5G mobile network technology promises to deliver
unprecedented ultra-low latency and high data rate, paving
the way for many novel applications and services. Network
Function Virtualization (NFV) and Multi-access Edge Computing
(MEC) are two of the technologies that are expected to play
a pivotal role in 5G to achieve ambitious Quality of Service
requirements of such applications. While NFV provides flexibility
by enabling network functions to be dynamically deployed and
inter-connected to realize Service Function Chains (SFC), MEC
brings the computing capability to the edges of the mobile
network thus reducing latency and alleviating the transport
network load. However, adequate mechanisms are needed to meet
the dynamically changing network service demands, to optimally
utilize the network resources while, at the same time, making sure
that E2E latency requirement of services is always satisfied.

In this work, we first propose a neural-network machine
learning model that can perform auto-scaling by predicting the
required number of virtual network function instances based
on the traffic demand, using the traffic traces collected over
a real-operator experimental network. We then employ Integer
Linear Programming techniques to formulate and solve a joint
user association and SFC placement problem, where each SFC
represents a service requested by a user with E2E latency and
data rate requirements. Finally, we propose a heuristic to address
the scalability concern of the ILP model.

Index Terms—Auto-scaling, Service Function Chain Placement,
Machine learning, Multi-access Edge Computing

I. INTRODUCTION

The 5th generation of mobile networks is expected to
support high data rates, extremely low-latency, high reliability,
the capability to extend access to distributed computation and
storage facilities in addition to connectivity and bandwidth [1].
These characteristics of the 5G networks open the door for
many novel Ultra-reliable low-latency (URLLC) applications
such as augmented/virtual reality and autonomous driving,
whose ambitious QoS requirements cannot be satisfied by
the preprocessors of the 5G networks. Therefore, the 5G
architecture needs to incorporate new technologies such
as Multi-access Edge Computing (MEC) [2] and Network
Function Virtualization (NFV) [3], to meet the insatiable
data rate and low-latency requirements of the applications
mentioned above [4].

The basic idea of MEC is to bring computing capabilities
and applications closer to the end-users, from cloud data
centers to the edges of the cellular network, therefore, reducing
the delay experienced by the users and alleviating the transport
network load. Consequently, the ETSI ISG MEC group
proposes three possible MEC deployment options, collocated
with the gNodeB (gnb.mec) or collocated with an aggregation

point (ap.mec) or collocated with the 5GC (5gc.mec) [5]. It
is essential to mention that the integration of MEC into the
5G network requires a User Plane Function (UPF), which is
a core network component in the 5G technology responsible
for decapsulating the GTP header from user-plane traffic,
routing plain IP packets to/from the MEC applications and
re-encapsulating the GTP header back, to be collocated with
all the MEC nodes in order to reap the benefits of the
MEC system [5]. The closer the MEC nodes are towards the
end-users, the scarcer their computational resources become.

NFV, on the other hand, decouples network functions (e.g.,
UPF) or MEC applications from their dedicated proprietary
hardware and deploys them as virtualized software entities
on commodity servers [6]. In our work, we use the generic
term VxFs to refer to a collection of UPF virtualized
network functions (VNFs) and virtualized MEC application
functions (VMAFs). VxFs require a specific computational
capacity (e.g., CPU) to be spawned/instantiated and can be
chained together forming a Service Function Chain (SFC)
that represents a specific service, with a guaranteed latency
and data rate requirements, that can be requested by User
Equipments (UEs). As shown in Fig.1, there are multiple
locations (e.g., gnb.mec, ap.mec, 5gc.mec ) for instantiating
VxFs, which can be shared by many UEs. In the described
network scenario, given the UEs with their SFC demands, the
natural question that arises is how to associate UEs, place
their SFCs, allocate sufficient VxF instances and resources
to make sure that the UEs SFC requirements are satisfied
while the network resources are used efficiently? Moreover,
the mobility patterns of UEs result in non-uniform traffic
distribution within the mobile network [7]. Consequently, the
number of VxF instances required to manage load variations
and to meet performance guarantees is expected to fluctuate
frequently. Towards this end, auto-scaling of VxFs in addition
to distributed SFC placement is thought to be an essential
requirement for successful orchestration.

Most of the existing literature address either the problem
of VxF autoscaling [8] or the placement of SFC in distributed
MEC nodes [9]. In this paper, we first advocate that distributed
VxFs of SFC has to be proactively scaled in synergy with
varying network traffic dynamics to avoid service disruption.
Based on those scaling decisions, the VxFs need to be
dynamically placed in distributed MEC nodes, to minimize
end-to-end latency and to reduce latency violations. To the
best of our knowledge, we are the first to address the
combined challenges in VxF auto-scaling and placement of
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Fig. 1: An example of a distributed MEC-NFV System Architecture.

SFCs within a distributed MEC-NFV environment, based on
the real-operator mobile network traces. This work has three
main contributions (as depicted in Fig. 1):

(i) Leveraging a real-operator experimental 5G network
dataset, we model and implement a neural-network-based
Multi-layer Perceptron (MLP) classifier, which ’estimates the
required number of UPF’ instances as a function of the
base station network traffic they should process. Furthermore,
we compare the performance of MLP classifier with other
classification algorithms in Machine Learning (ML). The
output from step 1 is fed as an input to the Integer Linear
Programming (ILP) problem in step 2.

(ii) Employing ILP technique to formulate and solve a ’joint
UE association and SFC placement problem’, where each SFC
is composed of a number of VxFs, with specific latency and
data rate demands as requested by UEs positioned in diverse
areas of the 5G mobile network. We also develop a complete
end-to-end latency model for 5G mobile networks.

(iii) Proposing a heuristic algorithm with the same objective
as that of ILP to address the scalability problem of ILP.

Out of the above three contributions, the first one is from our
previous work [10], while the second and third contributions
are entirely new that proposes an ILP and heuristic models for
the joint UE association and SFC placement problem rather
than just VxF placement problem like in our previous work.
Moreover, we consider 5G mobile networks, user associations
to gNodeBs and their SFC requests, and comprehensive
end-to-end latency calculations in our models.

The rest of this paper is organized as follows. Section II
describes the related work. Section III describes the proposed
MLP classifier model and evaluates its performance. In Section
IV, we model our latency-optimal SFC placement problem
while Section V formulates the problem using ILP and also
proposes a heuristic algorithm. In Section VI, we perform
several experiments to evaluate our proposed SFC placement
solutions. Finally, we conclude the paper in Section VII.

II. STATE OF THE ART

ETSI NFV Industry Specification Group defines network
service as a composition of one or more VNFs that are
chained together. Each VNF requires a specific amount of

resource to process the traffic flowing through it. To deploy a
network service, the operator needs to find the right placement
of VNFs complying with various resource constraints and
service latency agreements. Once the hosts are selected and
the VNFs deployed, resource requirements for the VNFs may
vary due to traffic fluctuations. To meet these demands, a
resource allocation algorithm is needed that can automatically
allocate/release resources to a VNF (vertical scaling) or
add/remove one or more VNF instances (horizontal scaling).

A. Virtual Network Function auto-scaling.
Previous works on VNF auto-scaling can be divided into

two categories: reactive mode and proactive mode.
In reactive mode, threshold levels can be either statically

pre-defined or dynamically updated. In [11], [12], and [13],
the authors propose scalability mechanisms based on static
thresholds. They define two threshold levels (scaleinthr and
scaleoutthr) to determine if the load reduces below or
exceeds above the respective limits and accordingly trigger
the scaling process. However, such techniques may result in an
oscillating behaviour affecting the overall system performance.
On the other hand, [14] and [15] propose mechanisms such as
queuing theory and reinforcement learning, which allows the
scaling policy to be improved based on dynamic or adaptive
thresholds. Although it performs better than static approaches,
it remains a reactive solution with similar weaknesses.

In proactive mode, forecasting techniques (e.g., machine
learning) are applied to allow the systems to automatically
learn and to anticipate future needs, based on which scalability
decisions are taken. For example, the authors in [16] propose
a solution to forecast CPU usage based on a historical dataset
using time series model. Other authors such as Mijumbi et
al. [17] and Mestres et al. [18] addresses the problem of
managing VNF resource fluctuations by predicting resource
requirements using ML techniques and thereby enhancing the
performance of the resource allocation algorithm.

In contrast to these works which targets data centers, our
approach investigates the problem of proactive auto-scaling
in a distributed MEC-NFV deployment. Moreover, we use
real-operator traffic traces to generate training sets required
for predicting auto-scaling decisions, unlike other works that
are based on simulated datasets.

B. Service Function Chain placement.
There already exists some literature on the SFC placement

problem with certain end-to-end latency needs that need to
be satisfied [9], [19], and [20]. In [9], the authors present a
delay-aware SFC placement problem such that VxFs forming
SFCs are placed so as to satisfy end-to-end latency demands
while utilizing network resources in an effective manner.
A joint VxF placement and CPU allocation problem is
studied in [19] and an optimization problem is formulated
by employing a queuing-based model to minimize the ratio
between the actual and the maximum allowed latency, for
all SFC requests. The authors in [20] study the problem of
VxF instantiation and migration with a goal of minimizing
SFC delays. However, all these studies do not consider UE
processing time, gNodeB processing time, and propagation
or transmission time over the air interface. Besides, none of



the above studies consider heterogeneous MEC nodes, which
increases the search space causing the SFC placement problem
to grow cumbersome.

In contrast to the above SFC placement solutions, we
consider the joint problem of user association and SFC
placement which allows the optimization of end-to-end
latency according to user locations, SFC latency and
data rate requirements, and computing/networking resource
availabilities. Furthermore, our proposed latency model stands
out from the existing delay models within the context of 5G
mobile network.

III. MACHINE LEARNING-DRIVEN PROACTIVE ’UPF’
AUTO-SCALING

In this section, we create an ML classifier model that can
identify and exploit hidden patterns in network traffic load
instances to predict UPF scaling decisions ahead of time.
In particular, we illustrate on the different steps involved in
creating our model and eventually evaluate it based on several
performance metrics [21].

A. Problem Description

We investigate how to map traffic load statistics X to VNF
scaling decisions Y using supervised learning, which involves
learning from a training set of data. The traffic load statistics
X include measurements from a real-operator experimental
5G mobile network. The VNF scaling decisions Y refer to
the required number of UPFs to process incoming traffic
without violating UEs QoS Service Level Agreement (SLA).
The details on the composition of X and Y are discussed in
Section IV-D.

The X and Y metrics evolve over time, influenced mainly
by the mobile network traffic dynamics and the actual number
of mobile users. Consequently, the combined evolution of X
and Y metrics is modeled as a time series {(xt, yt)}. Our goal
is to determine the distribution of scaling decision metric Y
constrained on knowing the traffic load metric x ∈ X .

Employing the statistical learning framework, X and Y
are modeled as random variables. We assume that each
sample (xt, yt) in the training set is obtained from the joint
probability distribution of (X,Y ). Further, we assume that xt
is multi-dimensional and yt is one-dimensional (univariate).
In this formalism, the inference problem consists of finding a
model F : x ->P (Y |x) for x ∈ X , so as to maximize the
likelihood function L({P (yt|xt)}), which can be attained by
minimizing the loss function E = −log(L) [22].

In this work, a neural-network called Multilayer Perceptron
(MLP) is used to estimate the parameters of the model
to predict the probability distribution P (Y |x). We select
neural-network in our approach for two reasons:

(i) it has proven its potential in identifying traffic patterns
due to its effectiveness in predicting time-series problems,
whether periodic or not [23].

(ii) it can build new customized features through hidden
layers and fit nonlinear activation functions when a specific
mathematical definition is not available.

Input layer Hidden layer Output layer

Activation function  
Rectified Linear 

Unit
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Softmax

X Y

Fig. 2: Structure of the proposed MLP Classifier.

B. Multilayer Perceptron (MLP)

An MLP is a class of feed-forward artificial neural network,
consisting of at least three layers of nodes (neurons): an input
layer, one or more hidden layers, and an output layer, as
shown in Fig. ??. These nodes are fully interconnected in
the form of a directed graph, starting from the input to the
output. All nodes except the input nodes have an associated
activation function, which is used to compute the node output
based on the weighted inputs from other nodes. Usually, the
relu activation function is used for the hidden layer nodes,
and softmax activation function is used for the output layer
nodes [24]. The output is a vector containing the probabilities
that sample x ∈ X belongs to each class, which is equivalent
to a categorical probability distribution. The final result is the
class with the highest probability.

With a categorical cross-entropy loss function, the network
parameters are chosen to minimize the following:

E = −
C∑
l=1

bx,llog(px,l) (1)

Where C is the number of classes, b is the binary indicator
(0 or 1) whether class label l is the correct classification for
input x, and p is the predicted probability that input x belongs
to class l. Here, a separate loss is calculated for each class label
per input, and the result is the sum of all those losses.

An MLP model is trained through a backpropagation
mechanism using gradient-descent as an optimization
algorithm, where the weights between the nodes are adjusted
iteratively for minimizing the error function.

C. Modeling MLP in Keras

Keras is an open-source neural-network Python library
capable of running on top of Theano [25] or TensorFlow [26].
It is characterized by a clean, uniform, and streamlined
high-level API, allowing users to rapidly define, train, and
evaluate neural network models [27].

In Keras, the structure of the neural network model can
be defined in a modular way, as a sequence of standalone
and fully configurable modules, which can be readily plugged
together. Keras offers several predefined neural layers such as
a dense layer, a recurrent layer, and a convolutional layer. A
wide range of activation functions is also available including
relu, sigmoid, softmax, tanh, to name a few. Similarly,
many predefined loss functions (e.g., mean squared error,



cross entropy) and regularization schemes (e.g., dropout)
are supported. Also, since Keras performs backpropagation
automatically, users do not need to implement it. Moreover,
numerous approaches are available to partition the dataset into
training, validation, and test sets.

To implement an MLP in Keras, we construct a sequential
model with a number of predefined dense layers and their
corresponding activation functions. We then configure the
learning process of the model by choosing an optimizer, a
loss function (equation 1), and a list of metrics to be reported.
Lastly, the model is trained with an objective to minimize the
loss function and then evaluated.

D. Collecting Data and Feature Engineering

The different steps that we followed in creating our MLP
model are as follows:

1) Data Collection: The dataset utilized in this work is
generated from a real-operator by monitoring the mobile
network traffic load on 6 base stations, with each base
station having 10 cells, for a period of 8 consecutive days.
The traces in the dataset are in the form of a time series
{(xt, yt)} and we interpret this time series as a set of samples
{(x1, y1), (x2, y2), ..., (xn, yn)}. The traces are collected on
an hourly timescale.

2) Feature Extraction and Class definition: We now
describe the input feature sets Xdefault and Xconstructed,
which when combined is referred as X , as well as the output
classes/predictions Y .

The Xdefault feature set includes 8 numeric features that
are already available in the dataset as described in Table I.
In addition to these default features, we construct 9 numeric
features (Xconstructed) from the basic dataset, as shown in
Table II, using a process called feature transformation. These
constructed features contain information or patterns on how the
traffic load evolves over time, therefore assisting in proactive
VNF scaling decisions.

Furthermore, it is necessary to define the desired output
classes of the proposed MLP classifier model. Here, class
refers to the number of UPF instances required per cell at
time t, such that the auto-scaling decision allocates enough
resources to meet the traffic demand until next auto-scaling
decision at time t+ 1, which is defined in equation ??,

No. of V NFs (Y ) = min(vnfmax,max(
λ(t)

γ
,
λ(t+ 1)

γ
))

(2)
Where λ(t) and λ(t + 1) are the traffic load in a cell at

time t and t+ 1, respectively, γ is the maximum traffic load a
single UPF can handle, and vnfmax is the maximum number
of UPFs per cell that can be hosted at the adjacent MEC node.
Since there is a maximum limit on the hosting of VNFs, we
model this as a classification problem rather than a regression
problem. Note, we perform auto-scaling decisions once every
hour, since our traffic traces are collected on hourly time
intervals. However, our model is generic enough to handle
lower interval granularities.

Default features (Xdefault)
1. gNodeB ID.
2. Date.
3. Time-stamp t.
4. Average number of users between t and t− 1 in each cell.
5. Maximum number of users between t and t− 1 in each cell.
6. Average downlink user throughput in each cell.
7. Average uplink user throughput in each cell.
8. Traffic load measured in each cell at time t, given by λ(t).

TABLE I: Default set of features available in the dataset.

Constructed features (Xconstructed)
9. Traffic load measured in each cell at time t−2, given by λ(t−2).
10. Traffic load measured in each cell at time t−1, given by λ(t−1).
11. Traffic load measured in each cell at time t+1, given by λ(t+1).
12. Traffic load measured in each cell at time t+2, given by λ(t+2).
13. Change in traffic load in each cell from time t− 2 to t− 1.
14. Change in traffic load in each cell from time t− 1 to t.
15. Change in traffic load in each cell from time t to t+ 1.
16. Change in traffic load in each cell from time t+ 1 to t+ 2.
17. Weekday or weekend.

TABLE II: Constructed set of features from the dataset.

3) Feature Subset Selection: This process eliminates the
redundant features from Xdefault and Xconstructed feature
sets to reduce the dimensionality of the data and also to
reduce computational overhead. Therefore, to understand the
impact of different features on our ML classifier model, we use
Principal Component Analysis (PCA) and Recursive Feature
Elimination estimator. Based on the ranking of these features,
we use only 12 features (eliminating 2, 4, 5, 6 and 7 from
Table I) that provides the best accuracy for our model.

4) Dataset Decomposition: Once data is collected and
features extracted, the dataset is decomposed into training
and test datasets. We use a rule-of-thumb decomposition
conforming to 75%/25% between the training and test
datasets, respectively. During the training phase, the MLP
classifier model learns the relationship between the features
and the classes.

E. Classification using neual networks
Finding the parameters of a neural-network model means

searching for the best hyper-parameters of the MLP that can
make the best predictions on the input. We applied grid
search and baby-sitting as search strategies to perform an
extensive search on the space of hyper-parameters to find the
most accurate neural-network classifier. This process included
finding the number of hidden layers and nodes, the batch
size, the regularization parameter, the learning rate of the
optimizer, and the number of epochs. We encountered the
process of finding hyper-parameters time-consuming and hard,
which assures that this topic still requires significant research.

We eventually found the architecture of the neural network
that performs best on our traffic load traces and is described as
follows. The structure includes one input layer with 12 nodes,
three hidden layers with 12, 24 and 12 nodes, respectively, and
an output layer with 10 nodes. The regularization parameter
used is 0.01, the optimizer is based on stochastic gradient
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Fig. 3: Performance comparision of different classification algorithms for VNF auto-scaling.

approach with a constant learning rate of 0.001, the batch size
is fixed to 100, and the number of epochs equals 300.

F. MLP model evaluation
We consider that MEC nodes in proximity to the gNodeBs

are capable of hosting UPFs on their NFV infrastructure. We
assume the link bandwidth capacity to be 20 Gbps and each
VNF can process a maximum of 200 Mbps traffic without QoS
degradation. We consider horizontal VNF auto-scaling with
each MEC node capable of hosting 100 (20Gbps/200Mbps)
VNFs and vnfmax = 10, i.e., a maximum of 10 VNFs can
be hosted per cell. These assumptions are derived based on
the evaluations performed by authors in [28]. If traffic load
increases, additional VNF instances are deployed to meet QoS
requirements, whereas if traffic load decreases, VNF instances
are removed to save operational expenses.

Once the MLP model is created as discussed before, a
test dataset is used to assess the performance of the model
in predicting outcomes. The test outcomes can be classified
into four groups: True Positive (TP) and True Negative
(TN) are when the model correctly predicts actual positive
and negative instances, respectively. Whereas, False Positive
(FP) and False Negative (FN) are when the model makes
incorrect predictions for negative and positive actual instances,
respectively. Therefore, we consider four performance metrics
to evaluate our MLP model: accuracy, precision, recall, and
f-measure, as given by equations 5, 6, 7 and 8, respectively.

Accuracy =
1

|C|

|C|∑
i=1

TPi + TNi
TPi + TNi + FPi + FNi

(3)

Precision =
1

|C|

|C|∑
i=1

TPi
TPi + FPi

(4)

Recall =
1

|C|

|C|∑
i=1

TPi
TPi + FNi

(5)

Fmeasure = 2 ∗ Precision ∗Recall
Precision+Recall

(6)

where C is the number of classes in the MLP model.
Accuracy is the most intuitive performance measure that

gives the proportion of true predictions among the total

Class 1 2 3 4 5 6 7 8 9 10
1 1014 1 0 0 0 0 0 0 0 0
2 7 505 8 0 0 0 0 0 0 0
3 0 2 499 0 0 0 0 0 0 0
4 0 0 5 295 2 0 0 0 0 0
5 0 0 0 2 220 8 0 0 0 0
6 0 0 0 0 2 118 5 0 0 0
7 0 0 0 0 0 0 79 0 0 0
8 0 0 0 0 0 0 5 51 1 0
9 0 0 0 0 0 0 0 1 35 0

10 0 0 0 0 0 0 0 0 0 15

TABLE III: Confusion matrix for the proposed MLP classifier model.

number of predictions observed. However, accuracy is an
excellent measure only if the datasets are entirely symmetric,
i.e., false positives and false negatives are almost the same.
Therefore, other performance metrics need to be considered
when evaluating a model. Precision is a measure of correctly
predicted positive observations to the total predicted positive
observations. It is a good measure to determine when the cost
of FP is high. In the case of VNF auto-scaling, a high number
of FPs results in over-provisioning of resources leading to
increased operational costs. On the other hand, Recall is a
measure that calculates how many of the actual positives are
captured in our model by labeling it as positive. It is a good
measure to determine when the cost of FN is high. In the
case of VNF auto-scaling, a high number of FNs results in
under-provisioning of resources leading to QoS degradation.
Finally, F-measure is the weighted average of precision and
recall, and it is used when there is an uneven class distribution.

Fig. 5 compares the performance of the proposed MLP
classifier model implemented in Keras with other classification
algorithms implemented in Scikit-learn [29] (because Keras
supports only neural-networks), such as Decision Tree (DT),
K-Nearest Neighbour (KNN), Linear Discriminant Analysis
(LDA), Naive Bayes (NB), and Support Vector Machine
(SVM). We use 6 days of data (i.e., 6 days * 6 gNodeBs
* 10 cells * 24 hours = 8640 samples) for training and
two days of data (i.e., 2880 samples) for testing. The MLP
model outperforms other models in all measures, with 97%
accuracy, 96% precision, 97% recall, and 97% f-measure. The
closest to MLPs performance was DT with 96% accuracy, 95%
precision, 96% recall, and 96% f-measure.

Table III reports the confusion matrix for the proposed
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(b) MEC node 2 (gNodeB 2)
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(c) MEC node 3 (gNodeB 3)
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(d) MEC node 4 (gNodeB 4)
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(e) MEC node 5 (gNodeB 5)
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(f) MEC node 6 (gNodeB 6)

Fig. 4: Prediction results on the number of UPFs required at each MEC node based on the proposed MLP model.

Time MAE (CI, 95%)
00:00 0.5 (-0.16 to 1.16)
01:00 0.5 (-0.16 to 1.16)
02:00 3.5 (-1.87 to 8.87)
03:00 2.5 (-2.4 to 7.4)
04:00 3.16 (-0.95 to 7.29)
05:00 2.66 (-1.49 to 6.82)
06:00 2.16 (-2.08 to 6.41)
07:00 1.16 (-0.75 to 3.08)

Time MAE (CI, 95%)
08:00 0.33 (-0.07 to 0.74)
09:00 0 (0)
10:00 0.16 (-0.16 to 0.49)
11:00 0.16 (-0.16 to 0.49)
12:00 0 (0)
13:00 0.33 (-0.07 to 0.74)
14:00 0.16 (-0.16 to 0.49)
15:00 0.66 (0.01 to 1.32)

Time MAE (CI, 95%)
16:00 0.16 (-0.16 to 0.49)
17:00 0 (0)
18:00 0.16 (-0.16 to 0.49)
19:00 1 (-0.6 to 2.6)
20:00 1.16 (-1.12 to 3.45)
21:00 1.5 (-0.69 to 3.69)
22:00 1.33 (-0.91 to 3.57)
23:00 1 (0.28 to 1.71)

TABLE IV: Mean Absolute Error with 95% Confidence Interval for the proposed MLP model.

MLP classifier model concerning the test data samples. For
example, if we observe the 2nd row, on 7 instances, class
2 is misclassified as class 1, and on 8 instances, class 2 is
misclassified as class 3.

Fig. 6 shows the prediction results of VNF auto-scaling (for
1 a full day) using MLP classifier model, where we display
the prediction performance on all six MEC nodes, aggregated
over all 10 cells for each gNodeB. In the figure, the blue line
represents the actual output generated from the dataset, and
the red line means the predicted VNF scaling decisions. As
we can observe, the MLP classifier model introduced in this
study can accurately follow the pattern of actual data, which
point out the strong predicting capability of the model.

Table ?? presents the mean absolute error (MAE) between
the actual and predicted values of VNF scaling decisions,
calculated over all six MEC nodes for every hour during the
entire day. We also calculate the confidence interval (CI) that
determines the 95% likelihood on the range of classification
errors that is expected from our model. As shown in the table,
the model can have an upper limit of 8.87 MAE (at time

02:00) and a lower limit of -2.08 MAE (at time 06:00) in
predicting VNF auto-scaling decisions. It is worth mentioning
that the predicted UPF auto-scaling decisions in our MLP
model are used as an input to evaluate the SFC placement
model presented in Section IV. However, in doing so, we
assume that UEs can be associated and served by any of the
cells of a candidate gNodeB, to simplify the problem.

IV. LATENCY-OPTIMAL SFC PLACEMENT PROBLEM
DESCRIPTION AND NETWORK MODEL

In this section, we first define the latency-optimal SFC
placement problem and then describe the 5G mobile network
model, SFC request model, and UE association, scheduling
and delay model employed in formulating the ILP problem.

A. Problem Statement
Consider a 5G mobile network, composed of six gNBs

(a non-split option of gNB is chosen where RRU, DU and
CU are integrated together [30]), two aggregation points, and
one 5GC, as depicted in Fig. 8. A set of three gNBs are
interconnected to each other through Xn-interfaces. Using
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NG-interfaces, the six gNBs are served by two aggregation
points, and the 5GC serves both of these aggregation points.
For simplicity, in the rest of this paper, we consider gNB1,
gNB2, gNB3, and AP1 belong to cluster 1 while gNB4,
gNB5, gNB6, and AP2 belong to cluster 2, as represented
in Fig 8. Each element in our network topology is equipped
with a resource-constrained (e.g., CPU) MEC node that is
capable of hosting SFCs composed of one or several VxFs
(e.g., VMs, containers). We consider three feasible options
for physically deploying MEC nodes in 5G networks, as
defined by ETSI [5], i.e., MEC collocated with gNB, MEC
collocated with aggregation point, and MEC collocated with
5GC. Furthermore, in the considered hierarchical network
topology, we assume that the closer is the MEC node to UE,
the less is its computational capacity (e.g., MEC1, MEC2, and
MEC3 are identical nodes with least capacity, MEC7 has the
medium capacity, and MEC9 has the highest capacity).

Suppose the UE (e.g., autonomous car) is associated with
gNB2 and requests for an SFC with an end-to-end latency
(i.e., real-time, near real-time or non-real-time) and data rate
requirements. The SFC requests considered in our work can be
either of the three types as depicted in Fig. 8. Depending on the
selected cost function to be minimized, the network provider
can choose to place the VxFs of the SFC requested by the
UE on either the host node (i.e., MEC2) or any neighboring
nodes (i.e., MEC1, MEC3) or distant nodes (MEC7, MEC9)
or cluster 2 nodes (i.e., MEC4, MEC5, MEC6, MEC8) by
allocating sufficient network resources (e.g., CPU, backhaul
bandwidth), efficiently, while also making sure that the
end-to-end latency and data rate requirements of the requested
SFC is always satisfied. In the first case, no additional delay
is introduced in the backhaul since the MEC node collocated
with the host gNB is the one hosting the VxFs. Conversely, in
the other three cases, backhaul delay is introduced to map the
virtual link onto a backhaul path, connecting the host gNB
with a neighboring MEC node or a distant MEC node or
a MEC node from a different cluster that is hosting VxFs.
Formally, the problem of latency-optimal SFC placement is
stated as follows:

Given: a small 5G mobile network with gNBs, aggregation

points, 5GC, MEC nodes, the scheduling capabilities of
gNBs (e.g., PRBs, TTI duration, subcarrier spacing), the
computational capacity of each MEC node, the transport
network topology with the capacity of each backhaul link, the
number of UEs and their requested SFCs with an end-to-end
latency and data rate requirements.

Find: ’where’ to allocate resources to VxFs and ’which’
network paths to use.

Objective: minimize average end-to-end latency for UEs to
access their SFCs in the mobile network.

B. 5G Mobile Network Model

The mobile network infrastructure is modeled as an
undirected graph Gnet = (Nnet, Enet), where Nnet =
Ngnb.mec ∪ Nap.mec ∪ N5gc.mec is the union of the set of
|Ngnb.mec| gNBs collocated with the MEC node, |Nap.mec|
aggregation points collocated with the MEC node, and
|N5gc.mec| 5GCs collocated with the MEC node and Enet
is the set of backhaul links such that an edge emn ∈ Enet
only if a connection exists between m, n ∈ Nnet. Each
network node m ∈ Nnet is attributed with a weight wnetcpu(m),
representing its CPU capacity, under the assumption that one
VxF requires one CPU unit to be instantiated. Additionally,
each network node m ∈ Ngnb.mec is also associated with
a weight wgnb.mecprb (m) representing the number of Physical
Resource Blocks (PRBs) available at each timeslot that can
be scheduled to UEs for trasmitting data packets. Furthermore,
each edge emn ∈ Enet is associated with a weight wnetbw (emn)
representing its bandwidth capacity (in Gbps). Finally, each
network node m ∈ Nnet is associated with a geographical
location loc(m) (in terms of (x, y) coordinates) and each
network node m ∈ Ngnb.mec is associated with a coverage
area cov(m). Table VII summarizes all the parameters used in
the mobile network model.

Notation Definition
Gnet Graph of the mobile network.
Nnet Set of all network nodes in Gnet.

Ngnb.mec Set of gNBs collocated with the MEC node in Gnet.
Nap.mec Set of aggregation points collocated with the MEC node

in Gnet.
N5gc.mec Set of 5GCs collocated with the MEC node in Gnet.
Enet Set of all backhaul links in Gnet.

wnet
cpu(m) Computing capacity of the network node m ∈ Nnet.

wgnb.mec
prb (m) PRBs available for each timeslot at gNBm ∈ Ngnb.mec.

wnet
bw (emn) Bandwidth capacity of the backhaul link emn ∈ Enet.
loc(m) Geographical location of the network node m ∈ Nnet.
cov(m) Coverage area of the gNodeB m ∈ Ngnb.mec.

TABLE V: Parameters in the mobile network model.

C. Service Function Chain Request Model

Let Greq = (Nreq, Ereq) be a directed graph modeling the
SFC requests, where Nreq = Nue ∪ Nsfc is the union of
the set of |Nue| UEs and |Nsfc| the set of SFCs requested
from the UEs and Ereq is the set of virtual links between
the UEs and their requested SFCs. Each SFC s ∈ Nsfc is
composed of a UPF (i.e., for encapsulation and decapsulation



of GPRS Tunnelling Protocol for the user plane (GTP-U) of
an UE requesting MEC services [5]) and one or more VMAFs
from a set of Nvnfs. Each SFC s ∈ Nsfc is characterized by a
maximum acceptable end-to-end latency (e.g., real-time, near
real-time, non real-time) represented by DE2E,max(u, s) and
a minimum guaranteed data rate denoted by Thrreq(u, s) that
needs to be satisfied. Each UE u ∈ Nue is associated with
a location loc(u) (in terms of (x, y) coordinates). Table VIII
summarizes the parameters used in the SFC request model.

Notation Definition
Greq Graph of the SFC association request.
Nreq Set of all UEs and their SFC requests in Greq .
Nue Set of UEs in Greq.
Nsfc Set of all the SFCs in Greq .
Nvnfs Set of all the VxFs available to compose an SFC.
Ereq Set of all virtual links in Greq .

DE2E,max(u, s) Maximum acceptable end-to-end latency for a UE u ∈
Nue on its requested service s ∈ Nsfc.

Thrreq(u, s) Requested data rate for a UE u ∈ Nue on the
requested service s ∈ Nsfc.

loc(u) Geographical location of the UE u ∈ Nue.

TABLE VI: Parameters in the SFC request model.

D. UE Association, Scheduling and Delay Model

In contrast to 4G technology where the goal is only
to enhance the throughput of Mobile Broadband (MBB)
services, 5G is expected to support low-latency applications
with end-to-end latency constraints of 1 − 10ms and
error rates of 10−3 to 10−5 (e.g., connected cars). For
cellular communicatons, two types of latencies are defined in
3GPP: control-plane latency (C-plane) and user-plane latency
(U-plane). The C-plane latency is the transistion time for the
UE to switch from idle mode to connected mode including the
establishment of the user plane while U-plane latency is the
one-way delay required to transmit a data packet from the UE
to the mobile network (uplink) or vice-versa (downlink) [31].

In this work, we consider only the U-plane latency
for computing end-to-end delay (DE2E), since it is the
major contributor that is hindering the support of URLLC
applications. DE2E is computed from the time UEs start
transmitting packets in uplink untill the time they start being
processed in MEC nodes. For a scheduled UE, we assume we
have 3 different communication delays contributing to DE2E :

(i) Radio delay (Due,gnb
radio ) is the sum of UE processing

delay (tprocue ), over-the-air transmission delay (tTTI ), gNodeB
processing delay (tprocgnb ), scheduler queuing delay (tq), and
HARQ retransmission delay, which is given by equation 13,

Due,air,gnb
radio = tprocue + tTTI + tprocgnb + tq

+2.nharq(t
proc
ue + tTTI + tprocgnb + tq)

(7)

where nharq is the number of HARQ retransmissions
required to achieve a BLER target of 10−3 to 10−5. Similar to
3GPP, we adopt Orthogonal Frequency Division Multiplexing
(OFDM) scheme. To satisfy the latency requirements of
URLLC, 3GPP also proposes new frame structures with

shorter TTI durations and multiple subcarrier spacings. Scaling
up the base subcarrier spacing of 15kHz by 2µ (e.g.,
30kHz, 60kHz, and 120kHz), the TTI duration of 1ms
is scaled down by 2µ (e.g., 0.5ms, 0.25ms, and 0.125ms),
where µ = {1, 2, .., n}, enabling faster transmission and lower
processing time [32]. In our model, we adopt a TTI duration
of 0.25ms resulting in a subcarrier spacing of 60kHz for all
URLLC UEs. The resulting tprocue and tprocgnb processing delays
are 3 OFDM symbols and 1 TTI, respectively, as measured
in [33]. The scheduler queuing delay (tq), as represented in
equation 14, is the sum of offset time (toffset) i.e., the waiting
time (∼ 0 to 1 TTI) once the packet is ready for transmission
until the beginning of the next TTI and the packet congestion
time (tpktcon) i.e., if the scheduler does not have enough PRBs
to schedule a requested SFC packet in one TTI, the SFC
packets may remain in the gNodeB buffer for longer duration.

tq = toffset + tpktcon (8)

To determine tpktcon, we first need to determine the number
of PRBs (Nprb(u, s,m)) required for the SFC s ∈ Nsfc of
an UE u ∈ Nue to be assigned by its associated gNodeB
m ∈ Ngnb.mec. Given the data rate demand of the SFC s,
the number of PRBs (Nprb(u, s,m)) is computed according
to equation 15 as given in 3GPP [34]:

Nprb(u, s,m) =
Thrreq(u,s)∗Tµs

12∗10−6∗Ncc∗Nmimo∗Nmod∗sf∗R∗(1−oh) (9)

where, Ncc is the number of aggregated component carriers,
Nmimo is the number of MIMO layers, Nmod is the
modulation order (e.g., 2 for QPSK, 4 for 16QAM, 6 for
64QAM, 8 for 256QAM), sf is the scaling factor, R is
the code rate, oh is the overhead for control channels, and
Tµs = 10−3/(14 ∗ 2µ) is the average OFDM symbol duration
in a subframe for numerology µ (µ = 2 in our case) assuming
normal cyclic prefix. Except for Nmod and R, which are
determined as per the below three steps, all other parameters
are predefined according to the radio access capabilities:

SINR measurement: The UE u ∈ Nue measures the
SINR value for a reference signal coming from its associated
gNodeB m ∈ Ngnb.mec using equation 16,

sinr(u,m) =

Fm
|loc(u)−loc(m)|α∑

m′ 6=m
Fm′

|loc(u)−loc(m′)|α +N
(10)

where |loc(u)− loc(m)| is the distance between the UE u
and its associated gNodeB m, |loc(u)−loc(m′)| is the distance
between the UE u and the neighbouring gNodeBs of m (m′),
α is a path loss exponent between 2 and 6, Fm and Fm′
are fading random variables of some distribution, and N is a
constant noise term [35].

CQI report: The UE u ∈ Nue maps the SINR value
measured in step 1 to a CQI index from the mapping table
in [36], which is expected to be reported to the scheduler of its
associated gNodeB m ∈ Ngnb.mec. It is to be noted that these
mappings are not defined in 3GPP but are vendor specific.

CQI to MCS mapping: The scheduler is now expected to
map the reported CQI index to an MCS index and determine



the best combination of modulation order (Nmod) and code
rate (R) to be used from the mapping table in [37], resulting
in a BLER target of 10−5.

Therefore, we have all the necessary parameters in
equation 15 to determine the number of PRBs that must be
assigned for an SFC s ∈ Nsfc requested by the UE u ∈ Nue
to meet its data rate requirements. If the number of PRBs that
needs to be assigned are not available in a particular TTI, they
will be assigned during the next TTI and so forth, adding up
to the total tq latency (i.e., tpktcon = no. of TTIs to schedule
SFC packets * TTI duration).

(ii) Backhaul delay (DXn,NG
bh ) is the sum of Xn propagation

delay (tpropXn ), Xn transmission delay (ttxXn), NG propagation
delay (tpropNG ), and NG transmission delay (ttxNG), given by
equation 17,

DXn,NG
bh = tpropXn + ttxXn + tpropNG + ttxNG (11)

where for a link emn ∈ Enet, tpropXn refers to the propagation
time required to transmit SFC packets from node m ∈
Ngnb.mec to node n ∈ Ngnb.mec while tpropNG refers to the
propagation time required to transmit SFC packets from node
m ∈ Ngnb.mec to node n ∈ Nap.mec|N5gc.mec. Similarly,
ttxXn and ttxNG refers to the transmission time required to
transfer SFC packets from node m ∈ Ngnb.mec and node
m ∈ Nap.mec|N5gc.mec, to the outgoing link emn, respectively.

(iii) SFC processing delay (Dsfc
mec) is the time required for

all VxFs in an SFC s ∈ Nsfc to apply a specific network
operation on the arriving packets.

Therefore, DE2E is computed according to equation 18.

DE2E = Due,air,gnb
radio +DXn,NG

bh +Dsfc
mec (12)

It is to be noted that the same delay model can be used for
both downlink and uplink direction.

V. PROBLEM FORMULATION

Once, a batch of UE associations and its SFC requests arrive
at the substrate network, it is either approved and embedded
onto the network or it is denied. The embedding process
includes both node and link mapping and is generally referred
to as virtual network embedding problem which is proven to
be NP-hard [38]. In the node mapping stage, each virtual node
(i.e., UEs, VxFs in the SFCs requested by UEs) is mapped to a
substrate node (i.e., gNodeBs, MEC nodes) while in the link
mapping stage, each virtual link (i.e., the link between the
UE and its requested SFC) is mapped to a single substrate
path (i.e. the path between the gNodeB hosting the UE and
MEC nodes hosting the VxFs in the SFC). In both stages,
the constraints imposed on substrate nodes and substrate links
must be satisfied.

A. Integer Linear Programming
The proposed joint UE association and SFC placement

problem is formulated employing ILP techniques. Before
starting the actual problem formulation, for each UE u ∈
Nue, we first determine the set of candidate gNodeBs
(Ngnb.mec(u)) using equation 19,

Ngnb.mec(u) = {m ∈ Ngnb.mec|(|loc(u)− loc(m)|)
≤ cov(m)}

(13)

Then, we find neighboring gNodeBs for each gNodeB m ∈
Ngnb.mec and neighboring MEC nodes for each MEC node
m ∈ Nnet using equations 20 and 21, respectively.

nbr gnbs(m) = {m′ ∈ Ngnb.mec|em,m
′
∈ Enet} (14)

nbr nodes(m) = {m′ ∈ Ngnb.mec,m′′ ∈ Nap.mec,
m′′′ ∈ N5gc.mec|em,m

′
, em,m

′′
, em

′′,m′′′ ∈ Enet}
(15)

Next, we find the candidate MEC nodes that can host VxFs
of SFC requested by UEs. For each VxF v of SFC s from the
UE u, the set of candidate MEC Nodes (Nnet(u, v, s)) can be
defined according to equation 22.

Nnet(u, v, s) = {m ∈ Ngnb.mec(u),m′ ∈ nbr gnbs(m),

m′′ ∈ Nap.mec,m′′′ ∈ N5gc.mec|em,m
′
, em,m

′′
, em

′′,m′′′ ∈ Enet}
(16)

Thus, in our ILP model, either the UEs candidate gNodeB
MEC node, or the gNodeB MEC node connected to the
candidate gNodeB MEC node, or the aggregation point MEC
node connected to the candidate gNodeB MEC node, or the
5GC MEC node connected to the aggregation point MEC node
serving the candidate gNodeB MEC node can host UEs SFC.

Now, we formulate the SFC placement problem with
three binary decision variables, χum, Υu,v,s

m , and Ψu,s
m,n, as

represented in Table IX.

Notation Definition
χu
m To show if u ∈ Nue is associated to gNodeB m ∈

Ngnb.mec.
Υu,v,s

m To show if v ∈ Nvnfs of s ∈ Nsfc from u ∈ Nue

is assigned to m ∈ Nnet.
Ψu,s

m,n To show if virtual link between u ∈ Nue and s ∈
Nsfc is assigned to substrate link between m ∈ Nnet

and n ∈ nbr nodes(m).

TABLE VII: Binary decision varibles.

The objective function of the ILP, given in equation 23, is
to minimize the overall end-to-end latency from all users to
their respective SFCs.

ILP : min[
∑
u∈Nue

∑
m∈Ngnb.mec

χum ∗D
ue,air,gnb
radio (u,m)

+
∑
u∈Nue

∑
v∈Nvnfs

∑
s∈Nsfc

∑
m∈Nnet

Υu,v,s
m ∗Dsfc

mec(u, v, s,m)+

∑
u∈Nue

∑
s∈Nsfc

∑
m∈Nnet

∑
n∈nbr nodes(m)

Ψu,s
m,n∗DXn,NG

bh (u, s,m, n)]

(17)

In equation 23, Due,air,gnb
radio (u,m) depends on the number

of UEs that need to be scheduled in a given time slot by



gNodeB m. For each UE u, we first find the sinr(u,m) from
equation 16 and then calculate the needed Nprb(u, s,m) from
equation 15 to transmit packets of SFC s with a particular
size at a requested data rate (Thrreq(s)). If the total required
PRBs exceed the maximum available PRBs in the gNodeB,
some UEs are scheduled in the next time slot, thus increasing
the Radio delay for those UEs. Since the backhaul links, Xn
and NG, in the mobile network, DXn,NG

bh (u, s,m, n) depends
on the the number of UEs sharing the same backhaul link.

We will now describe all node and link constraints imposed
in our problem formulation. Constraint (24) ensures that each
UE is associated to only one gNodeB from its candidate set.∑

m∈Ngnb.mec(u)

χum = 1,∀u ∈ Nue (18)

Constraint (25) guarantees that each VxF of SFC requested
from each UE is hosted by only one substrate MEC node from
its candidate set.

∑
m∈Nnet(u,s)

Υu,v,s
m = 1,∀u ∈ Nue∀s ∈ Nu

sfc∀v ∈ Ns
vnfs

(19)
Constraint (26) guarantees that each VxF is at most shared

by vnfsharedmax number of UEs.

∑
v∈Nvnfs

Υu,v,s
m ≤ vnfsharedmax ,∀u ∈ Nue∀s ∈ Nu

sfc

∀m ∈ Nnet(u, s) (20)

Constraint (27) ensures that the amount of CPU resources
allocated to VxFs of SFCs adheres to the available CPU
capabilities on the substrate node.

∑
u∈Nue

∑
s∈Nusfc

∑
v∈Nsvnfs

Υu,v,s
m ≤ wnetcpu(m),∀m ∈ Nnet (21)

Constraint (28) makes sure that in each time slot gNodeBs
can associate UEs only if they have enough PRBs to meet the
data rate demand of the requested SFC by the UE.

∑
u∈Nue

∑
s∈Nsfc

Nprb(u, s,m) ∗ χum ≤ w
gnb.mec
prb (m),

∀m ∈ Ngnb.mec
(22)

Flow constraint (29) enforces for each virtual link between
UE u ∈ Nue and its SFC s ∈ Nsfc there exists a continuous
path established between the gNodeB to which the UE is
associated and the MEC node hosting the VxFs of SFC s.

∑
n∈nbr nodes(m)

(Ψu,s
n,m −Ψu,s

m,n) = Υu,s
m − χum,

∀m ∈ Nnet,∀eu,s ∈ Ereq (23)

Constraint (30) makes sure that virtual links are mapped
onto the backhaul substrate links in the mobile network, if

and only if it has enough bandwidth capacity to meet the link
demand of virtual links.

∑
u∈Nue

∑
s∈Nsfc

Thrreq(u, s)(Ψ
u,s
n,m + Ψu,s

m,n) ≤ wnetbw (enm),

∀m ∈ Nnet,∀n ∈ nbr nodes(m), n < m (24)

Constraint (31) ensures that the end-to-end latency from
the UEs to its associated SFCs does not exceed the maximum
acceptable latency as requested by the UEs.∑

m∈Ngnb.mec

χum ∗D
ue,air,gnb
radio (u,m)

+
∑

m∈Nnet

∑
v∈Nsvnfs

Υu,v,s
m ∗Dsfc

mec(u, v, s,m)

+
∑

m∈Nnet

∑
n∈nbr nodes(m)

Ψu,s
m,n ∗DXn,NG

bh (u, s,m, n)

≤ DE2E,max(u, s),∀u ∈ Nue,∀s ∈ Nu
sfc (25)

B. Heuristic
The above ILP formulation took 44 hours to associate 300

UEs including their latency-sensitive SFC requests composed
of a number of VxFs on a mobile network comprised of six
gNodeBs, two aggregation points, and one 5G core. The ILP
was solved using ILOG CPLEX solver on an Intel Core i7
laptop with 3GHz CPU and 16 GB RAM. To address the issue
of scalability in ILP, we propose a heuristic algorithm, as seen
in Algorithm 1, that can solve the above association/mapping
problem in a couple of seconds. Similar to the ILP-based
algorithm, the objective of our heuristic algorithm is to
minimize the overall end-to-end latency from all UEs to their
requested SFCs.

In the first step (lines 1−10), the algorithm loops through all
the UEs to determine a set of candidate gNodeBs considering
the location of the UE, location of the gNodeB, and the
coverage area of the gNodeB, and then creates a list of
cand gnb(u) for each UE. Next, each UE is mapped to the
gNodeB, among the cand gnb(u), that measures the best
signal quality (i.e., SINR) and also has sufficient PRBs to
host the UE.

In the second step ( lines 11− 20), the algorithm finds the
candidate MEC nodes for each VxF of SFC requests received
from all UEs, which is nothing but the union of the MEC node
collocated with the host gNodeB of UE (determined from step
1) and all other MEC nodes connected directly or indirectly
to the host gNodeB of UE through backhaul links. Another
list of cand mec(u, s, v) is created for each VxF of the SFC
received from all UEs.

In the third step (lines 21 − 38), the algorithm begins
mapping all VxFs of SFC requests with real-time latency
requirements considering cand mec(u, s) for each SFC,
starting from gnb.mec nodes. Once they run out of computing
resources, the algorithm moves on to ap.mec nodes, and
finally on to 5gc.mec nodes, if and only if the computed
end-to-end latency (DE2E(u, s,m) is less than the maximum
acceptable end-to-end latency for that SFC (DE2E,max).
Moreover, if an instance of VxF is already mapped to the



Algorithm 1 Heuristic
Require: Gnet, Greq , and SFC latency budget [Nsfc(rt),

Nsfc(near rt), Nsfc(non rt)].
Ensure: User association and latency-optimal SFC placement.

Step 1. Find candidate gNodeBs for each UE and perform
UE association.

1: for u in Nue do
2: cand gnb(u)← 0
3: map gnb(u)← 0
4: for m in Ngnb.mec do
5: if |loc(u)− loc(m)| <= cov(m) then
6: cand gnb(u)← m
7: end if
8: end for
9: map gnb(u) ← m from the list of cand gnb(u) with

max(sinr(u,m)) and enough PRBs available.
10: end for

Step 2. Find candidate MEC nodes for VxFs of each SFC
from each UE.

11: for u in Nue do
12: for s in Nsfc do
13: for v in Nsfc(u) do
14: cand mec(u, s, v)← 0
15: for m in neighbours(map gnb(u)) do
16: cand mec(u, s, v)← m
17: end for
18: end for
19: end for
20: end for

Step 3. Perform SFC placement for each UE.
21: for u in Nue do
22: for s in Nsfc(rt) do /* real-time SFCs. */
23: for v in Nsfc(u) do
24: map mec(u, s, v)← 0
25: for m in cand mec(u, s, v) do
26: compute(DE2E(u, s,m))
27: if DE2E(u, s,m) <= DE2E,max then
28: if inst(v) not in m or neighbours(m) then
29: map mec(u, s, v)← m
30: end if
31: end if
32: alocate continuous path(u, s,m)
33: update node and link resources()
34: end for
35: end for
36: end for
37: end for
38: Repeat Step 3 for s in Nsfc(near rt) and Nsfc(non rt).

candidate MEC Node the UE shares this VxF to realize its
SFC instead of instantiating a new VxF. The heuristic then
uses the shortest path algorithm to map the virtual link between
the UE and its requested SFC onto the substrate link between
the gNodeB that the UE is associated to and the MEC node
that the SFC is being hosted on. The VxFs of a single SFC
might be mapped on different MEC nodes, and therefore
further caution is exercised during link mapping. The node and
link computational resources are updated after each mapping.
The same process is repeated for other SFC requests with
near-real-time and non-real-time latency requirements until all
SFC requests are mapped.

VI. ILP AND HEURISTIC EVALUATION

The performance of the latency-optimal SFC placement ILP
model is evaluated based on the simulations implemented in

Python. We then compare it to the implemented heuristic
algorithms performance. Real-operator network topology and
realistic latency values are used when modeling the simulation
environment to produce realistic simulation results, which can
better illustrate the benefits of placing SFCs composed of VxFs
at the network edges closer to the end-user.

A. Simulation Environment

A small experimental 5G network composed of 9 network
nodes is considered in our simulation, as depicted in Fig. 8.
A set of 3 gNodeBs are connected to each other through 20
Gbps Xn backhaul links, while each of the three gNodeBs
is connected to the aggregation point using 20 Gbps NG
backhaul links which in turn is connected to the 5G core
network using 50 Gbps backhaul links. The number of
aggregated component carriers is set to 4, and each carrier has
a bandwidth capacity of 20 MHz. We assume that the gNodeBs
support 4x4 MIMO configuration. We then introduce MEC
nodes at each of these 9 network nodes capable of hosting
a limited number of VxFs. The MEC nodes collocated with
gNodeBs each have 50 CPUs, the MEC nodes collocated with
aggregation points each have 100 CPUs, and the MEC node
collocated with 5GC has 500 CPUs.

Our simulations are carried out for two scenarios. In the first
scenario, we consider that SFC requests arrive in batches of
30 UEs (equally divided among real-time, near-real-time, and
non-real-time) with each batch corresponding to 1 timeslot. In
every timeslot, the ILP considers the SFC requests received in
previous batches and associates all the UEs and their SFC
requests onto the mobile network, considering the latency
and data rate requirements of each SFC. We consider 10
batches of SFC requests corresponding to 300 UEs. In
the second scenario, we consider that SFC requests arrive
according to the predicted number of UPF instances from our
MLP neural-network model, as illustrated in Section III. The
performance of ILP is compared with our heuristic algorithm
in both scenarios. Additionally, in both scenarios, we assume
that each UPF instance corresponds to one UE and each SFC
is composed of 2 or 3 VxFs (1 UPF and 1 or 2 VMAF as
depicted in Fig. 8) with 1 CPU required to instantiate every
VxF. Furthermore, each UPF is shared with 5 UEs while each
VMAF is shared among 2 UEs. Since the UEs considered in
our model are URLLC UEs, we assume three categories of
user-to-SFC one-way delay requirements, i.e., 1ms, 2ms, and
5ms. We assume that each UE is transmitting short packets
of size 15Kb every TTI and requests a minimum data rate of
200Mbps. In Section IV, we discussed on how we calculate
Due,air,gnb
Radio . We calculate DXn,NG

bh by dividing the total packet
size generated from all the UEs that are using the same
backhaul link with the bandwidth capacity of the link [39].
Finally, we calculate Dsfc

mec by dividing the packet size that
the VxFs of the SFC should process by the CPU speed. We
consider a CPU speed of 3GHz with 64 bit processor.

B. Simulation Results

CPU Utilization: The CPU utilization is computed by
dividing the number of CPUs utilized in gnb.mec nodes or
ap.mec nodes or 5gc.mec nodes once the VxFs are mapped



to the total number of CPUs available in all gnb.mec nodes
or all ap.mec nodes or all 5gc.mec nodes, respectively.

Fig. 9 illustrates the CPU utilization of MEC nodes with
respect to the number of UEs for simulations carried out in
scenario 1. We observe that up to ≈ 90 UEs, the ILP places
most of the VxFs on gnb.mec nodes because of its proximity
to UEs, irrespective of the SFC latency requirements, while
some non-real-time VxFs that are shared by UEs associated
with cluster 1 (gNB1, gNB2 or gNB3) and cluster 2 (gNB4,
gNB5 or gNB6) are placed on 5gc.mec nodes. Only after
gnb.mec nodes are depleted with their CPU resources (after
90 UEs), the ILP starts moving VxFs with near-real-time and
non-real-time latency requirements initially placed in gnb.mec
nodes to ap.mec nodes and starts placing new SFCs with
real-time latency requirements on gnb.mec nodes. Similarly,
when CPU resources of ap.mec nodes are depleted (≈ 180
UEs) the ILP starts moving VxFs with non-real-time latency
requirements initially placed in gnb.mec or ap.mec nodes
to 5gc.mec nodes. On the other hand, heuristic algorithm
follows a similar pattern to that of ILP, but instead of placing
non-real-time VxFs that are shared by UEs associated to
cluster 1 and cluster 2 on 5gc.mec nodes, those VxFs are
initially placed on gnb.mec nodes, then on ap.mec nodes and
finally on 5gc.mec nodes(in this order depending on the MEC
nodes resource availability). This is evident from Fig. 9, where
CPU utilization of gnb.mec nodes is always higher in heuristic
compared to that of ILP. However, this results in the increase
of overall latency for heuristic due to the users taking a long
path to access their SFC services (e.g., if a user is associated
to gNB2 and its VxFs are placed in gNB6.mec, the path
mapping could be gNB2 → AP1 → 5GC → AP2 → gNB6).
Consequently, up to 180 UEs, the CPU utilization of ap.mec
and 5gc.mec nodes are lower in heuristic compared to ILP.
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Fig. 6: CPU utilization of MEC nodes (Scenario 1).

Fig. 10 illustrates the CPU utilization of MEC nodes with
respect to time over one full day for the network considered
in the MLP neural-network model (scenario 2). We observe
that the CPU utilization of gnb.mec nodes are always full,
the ap.mec nodes are most of the time full except from 2:00
to 8:00 and 5gc.mec nodes have low utilization during early
morning (2:00 to 8:00) due to the low number of UEs being
active and the utilization gradually increases during the day
peaking late in the night (≈ 22:00). The heuristic follows a
similar pattern to that of ILP, but as discussed earlier VxFs

shared by UEs belonging to different clusters are initially
placed on gnb.mec nodes rather than on 5gc.mec nodes like in
ILP. Therefore, CPU utilization for gnb.mec nodes are always
higher in heuristic compared to that of ILP, with a tradeoff
being the increase in overall latency.
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Fig. 7: CPU utilization of MEC nodes (Scenario 2).

Link utilization: Link utilization is calculated by dividing
the usage of either Xn or NG backhaul links by UEs for
utilizing SFCs in the MEC nodes to the total available capacity
of the respective links.

Fig. 11 and Fig. 12 illustrates, respectively, the Xn link
utilization and the NG link utilization as a function of the
number of UEs for experiments carried out in scenario 1. In
Fig. 11, we observe that in ILP, irrespective of the number
of UEs, the Xn link utilization remains almost the same
(< 3%), which is attributed to the fact that ILP principally
places the VxFs of UEs on the gnb.mec that is currently
serving the corresponding UE over the air interface in order
to minimize the end-to-end latency. However, we observe that
heuristic algorithm places VxFs of some UEs on gnb.mec
nodes that are currently not serving the corresponding UE
over the air interface, which leads to the usage of Xn links.
After a certain point (≈ 90 UEs in Fig. 11), the Xn link
utilization remains almost the same for heuristic since the
capacity of all gnb.mec nodes are depleted, and VxFs are
placed on ap.mec or 5gc.mec nodes there on. In Fig. 12, we
can observe that both in ILP and heuristic NG links are least
utilized up to ≈ 90 UEs since most VxFs of SFCs, irrespective
of their latency demands, are always placed on gnode.mec
nodes until then. Once gnode.mec nodes are out of CPU
resources, the VxFs of SFCs are moved to ap.mec nodes and
later to 5gc.mec nodes considering the latency requirements
of SFCs, resulting in the significant usage of NG backhaul
links. However, the reason for higher NG link utilization in
heuristic is attributed to the fact that some UEs take longer
routes, from cluster 1 to cluster 2 or viceversa, in order to
access their SFC which is not the case in ILP.

Fig. 13 and Fig. 14 illustrates, respectively, the Xn link
utilization and the NG link utilization with respect to time
over one full day based on the network considered in the MLP
neural-network model (Scenario 2). Since the number of UEs
is always more than 90, we observe that both ILP and heuristic
algorithm places VxFs of some UEs on gnb.mec nodes that



30 60 90
120 150

180
210 240

270 300
0

10

20

30

40

50

Number of Users

X
n

lin
k

ut
ili

za
tio

n
(%

)

ILP Heuristic

Fig. 8: Xn-link (gNB-to-gNB) utilization (Scenario 1).
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Fig. 9: NG-link (gNB-to-AP-to-5GC) utilization (Scenario 1).

are currently not serving the corresponding UE over the air
interface which leads to the usage of Xn links as already
explained in Scenario 1. Likewise, NG link utilization for both
ILP and heuristic is lowest during early morning (2:00 to 8:00)
due to the low number of UEs being active and the utilization
gradually increases during the day peaking late in the night
(≈ 22:00). However, both Xn and NG link utilizations in
heuristic are higher compared to ILP because of the long path
the UEs take to access SFC like we discussed before.

12
:00

14
:00

16
:00

18
:00

20
:00

22
:00

00
:00

02
:00

04
:00

06
:00

08
:00

10
:00

10

20

30

40

50

Time (HH:MM)

X
n

lin
k

ut
ili

za
tio

n
(%

)

ILP Heuristic

Fig. 10: Xn-link (gNB-to-gNB) utilization (Scenario 2).

Average end-to-end latency: Fig. 15 compares the average
user-to-sfc end-to-end delay for ILP and heuristic for Scenario
2 experiments. Like we already discussed, UEs belonging
to different clusters share some VxFs. The ILP produces an
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Fig. 11: NG-link (gNB-to-AP-to-5GC) utilization (Scenario 2).

optimal solution by placing such VxFs at 5gc.mec nodes
to minimize the overall user-to-sfc delay, but the heuristic
initially places such VxFs on gnb.mec nodes, and therefore
some UEs take the longer path (e.g., from cluster 1 to
cluster 2) to access their SFC resulting in increased latency.
Therefore, ILP performs better than heuristic in terms of
average end-to-end delay between, as seen in Fig 15.

00
:00

02
:00

04
:00

06
:00

08
:00

10
:00

12
:00

14
:00

16
:00

18
:00

20
:00

22
:00

0.6

0.8

1

1.2

1.4

Time (HH:MM)

A
ve

ra
ge

en
d-

to
-e

nd
la

te
nc

y
(m

s)

ILP Heuristic

Fig. 12: Average DE2E based on the predicted number of UPFs from
the MLP classifier model (Scenario 2).

Execution time: The above ILP formulation took 44 hours
to associate 300 UEs including their latency-sensitive SFC
requests composed of a number of VxFs on a mobile network
comprised of six gNodeBs, two aggregation points, and one
5G core. Therefore, we proposed a heuristic algorithm that
performs a comparable association and mapping in a couple
of seconds except with sub-optimal outcomes. Both ILP and
heuristic were solved using CLOG IPLEX solver on an Intel
Core i7 laptop with 3GHz CPU and 16 GB RAM.

VII. CONCLUSIONS

The first part of the paper aims at applying machine learning
techniques to optimize network management operations.
Towards this end, we proposed a neural-network model to
facilitate proactive auto-scaling of VNFs, based on the traffic
traces obtained from the commercial MNO. We evaluated the
proposed model for its effectiveness in accurately predicting
the amount of UPF instances required as a function of the
network traffic it should process. Moreover, we compared
the performance of the neural-network model with five other



classification learning methods, and the performance metrics
show that the neural-network model can achieve higher
prediction accuracy (97%) compared to other methods.

In the second part of the paper, we solve a joint UE
association and SFC placement problem aiming to minimize
the overall user-to-sfc end-to-end latency. We have seen that
the ILP improves QoS of all UEs by initially placing their
SFCs in MEC nodes closer to gNodeBs (gnb.mec) and thereby
reducing NG backhaul link usage. Once the gnb.mec node
CPU resources are depleted, near-real-time and non-real-time
SFCs are moved/placed in MEC nodes closer to aggregation
points and 5GC which results in increased usage of Xn
and NG backhaul links. We evaluated the proposed model
using simulations based on real-operator network topology and
real-world latency values. Our results show that the average
end-to-end latency reduces significantly when SFCs are placed
at the MEC nodes according to their latency and data rate
demands. Furthermore, we propose an heuristic algorithm to
address the issue of scalability in ILP, that can solve the above
association/mapping problem in seconds rather than hours.
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