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A B S T R A C T

Federated learning (FL), particularly when data is distributed across multiple clients, helps reducing the
learning time by avoiding training on a massive pile-up of data. Nonetheless, low computation capacities
or poor network conditions can worsen the convergence time, therefore decreasing accuracy and learning
performance. In this paper, we propose a framework to deploy FL clients in a network, while compensating
end-to-end time variation due to heterogeneous network setting. We present a new distributed learning
control scheme, named In-network Federated Learning Control (IFLC), to support the operations of distributed
federated learning functions in geographically distributed networks, and designed to mitigate the stragglers
with lower deployment costs. IFLC adapts the allocation of distributed hardware accelerators to modulate the
importance of local training latency in the end-to-end delay of federated learning applications, considering both
deterministic and stochastic delay scenarios. By extensive simulation on realistic instances of an in-network
anomaly detection application, we show that the absence of hardware accelerators can strongly impair the
learning efficiency. Additionally, we show that providing hardware accelerators at only 50% of the nodes, can
reduce the number of stragglers by at least 50% and up to 100% with respect to a baseline FIRST-FIT algorithm,
while also lowering the deployment cost by up to 30% with respect to the case without hardware accelerators.
Finally, we explore the effect of topology changes on IFLC across both hierarchical and flat topologies.
1. Introduction

Network automation is expected to be one of the applications
that could leverage on distributed AI modules for both learning and
inference tasks. New network functions related to analytic tasks have
already appeared in telecommunication standards, for instance the
NetWork Data Analytics Function (NWDAF): it has been included in
3GPP 5G system since Release 16 [1] as a function tailored to the
analysis of monitoring data from the 5G core network functions.

Indeed, the 5G core network system is being increasingly integrated
in core networks, with a rapidly increasing level of geographical distri-
bution, mostly led by the need to offer 1 ms access latency performance
to 5G services. Such performance targets are therefore pushing for
distribution of network functions and related monitoring, learning and
inference tasks. For this re-architecturing, 5G and beyond-5G solutions
are leveraging on Multi-access Edge Computing (MEC) technologies,
with so-called traffic local break-out gateway to steer some traffic
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requiring such performance to edge application servers co-located with
distributed 5G core functions [2]. On the other hand, MEC architecture
hosts could, besides serving end-application needs, also allow to deploy
computing functions for a set of infrastructure needs.

Few distributed learning frameworks have made their way into
commercial computing systems. Among them, Federated Learning (FL)
that introduces a hierarchical learning approach where edge nodes
perform learning based on local data, and send the result of their local
learning to a server. The server aggregates the learning parameters of
multiple edge nodes and then updates the edge nodes with its global
view parameters. Besides being already used for a number of mobile
device usages by companies as Google and Meta [3], FL is also being
considered for in-network AI functions as the NWDAF [1,4,5].

In particular, one of the challenges of FL is that the arrival of model
parameters from multiple edge Artificial Intelligence Functions (AIFs)
can suffer from a so strong desynchronization that these parameters
can get no longer valuable, hence they could be discarded by the FL
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 data mining, AI training, and similar technologies. 
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server. These nodes suffering from such desynchronization are called
stragglers. The main reason behind the appearance of stragglers is the
heterogeneity of systems and data [6,7]; system heterogeneity is related
to computing capacity (i.e., high computation delays) and network
conditions (i.e., high communication delays). On the other hand, data
heterogeneity refers to the case where data is not independent and
not identically distributed (non-iid) among FL participants. Stragglers
slow down the learning process as the aggregation task at the FL
server is only triggered once all the local parameters are received,
resulting in long convergence time: mitigating stragglers consists of
reducing the overall training time to achieve a desired accuracy in
a timely manner. To do so, different techniques can be adopted; for
example, [7] classified the works in the literature to minimize the
convergence time into three categories: (i) data distribution adjustment,
to mitigate the non-iid data, (ii) model compression, to reduce the local
training time and (iii) clients selection to determine the FL participant
with high computation and communication performance. Another way
to minimize the convergence time is by optimizing the local training
time using hardware acceleration. In fact, the integration of AI modules
in network components has been underway since less than a decade.
Modern network nodes nowadays integrate Neural Processing Units
(NPUs), ranging from mobile devices to core backbone equipment. The
community often speculated that in the beginning of this trend, vendors
did not know for which applications these units would be useful, but
gambled on their future usefulness.

In this work, we present the IFLC (In-network Federated Learning
Control) scheme, an adaptive scheme for the placement of anomaly
detection AIFs in softwarized 5G environments. We consider a set of
artificial intelligence functions at the edge of the network, deployed for
instance as MEC applications in a MEC system. IFLC makes use of Hard-
ware Accelerators (HWAs) in distributed in-network learning systems
to compensate for end-to-end network and learning delays variations
leading to stragglers. In a previous work, we defined a preliminary
FL-AIF placement framework [8], using a mathematical programming
approach. The proposed solution determines the optimal placement of
FL server and clients while minimizing the number of deployed AIFs.
Going beyond [8], in this paper we model the possibility of allocating
hardware accelerators to reduce the training time, showing related
different results and analysis. In this article, we go beyond the existing
work, reformulating the model to control stragglers, and defining a
refined end-to-end training latency model. Our contributions can be
summarized as follows:

• We propose an algorithmic scheme, called IFLC, where we for-
mulate a joint optimization problem for FL server and clients
placement, and straggler minimization as a MILP (Mixed-Integer
Linear Programming). The model aims to optimize the placement
of FL clients and server based w.r.t a target end-to-end time which
includes both the training and propagation time components. The
MILP is modeled as a multi-objective problem where the main
goal is to minimize the total cost expressed as the number of
allocated CPU cores as well as the number of FL-clients stragglers
resulting from high computational delays. The proposed model
is able to minimize straggler occurrence in a computationally
efficient way exploiting a proposed latency model;

• We present an original end-to-end learning latency model jointly
considering learning and communication delays. We explore a
deterministic scenario where the estimated end-to-end training
time of the selected clients is within the imposed time limit, and
stochastic scenarios where the selected FL clients may generate
additional delays resulting in stragglers;

• We show how we can with IFLC (i) increase the local training time
efficiency, (ii) minimize the occurrences of FL stragglers and (iii)
reach desirable trade-offs between the number of active FL clients
and the CPU utilization. An assessment of topology changes on the
proposed model is also presented;
2 
Fig. 1. AIF reference representation [8].

• Finally, we extend the proposed MILP formulation to accom-
modate more dynamic placements while covering single node
failures; the extended formulation is added to the appendix.

The article is structured as follows. Sections 2 and 3 completes the
background on AI integration in networks. Section 4 describes the IFLC
scheme. We present the mathematical model in Section 5. Section 6
presents a polynomial-time resolution of the IFLC. Section 7 defines
the numerical evaluation setting. The results analysis is in Section 8.
Section 9 concludes the article.

2. Background

In this paper, we rely on the concept of AI Functions from the
AI@EDGE H2020 European Project [9] to refer to end-to-end AI func-
tions sub-components. Let us describe the reference AIF functional
system, depicted in Fig. 1 where a set of interfaces are defined:

• if1: used by the orchestration platform for the communication
with the AIF, including its configuration (e.g. for dynamic update
of federated learning hyper-parameters) and the retrieval of in-
ference results (e.g., inference running at the AIF server and/or
edge AIFs);

• if2: control plane interface used for AI model parameter exchange
among AIFs, e.g., the communication between edge AIFs and
server AIF in federated learning;

• if3: data-plane interface used for data exchange among different
AIFs, which may be used for generic distributed learning, in the
case of an AIF forwarding graph;

• if4: hardWare acceleration interface used for I/O operations with
HWA (e.g. GPU) for training and/or inference tasks;

• if5: for data collection and streaming, to interface with a data-
pipe-lining system.

An AIF can run different types of AI applications with heteroge-
neous performance targets (e.g., latency requirements). Based on these
requirements, the application can be centralized where one single AIF
is responsible for training, or distributed where a set of AIFs collaborate
to train a model (e.g., federated learning). We rely on a distributed AIF
system making use of FL as depicted in Fig. 2: via if2, edge AIFs send
local training results and obtain global training parameters back from
the FL server AIF; if3 is unused in FL AIFs; if5 makes use of a data
pipe-lining system for getting data for AIFs. Finally, the allocation of
HWAs as NPU via if4 is meant to accelerate training and inference tasks,
where inference could possibly be taking place at the edge AIF level
besides the server one. Unlike conventional federated learning where
the learning task is carried out by end devices [10], in our system we
deploy the client AIFs at the edge servers (e.g., MEC hosts).

An example of in-network FL application is anomaly detection, used
within network automation algorithmic loops. In this work, we use the
application outlined in [11] where distributed AIFs make use of Long-
Short-Term-Memory autoencoders against group of metrics related to
network, storage, operating system features, to spot anomalous behav-
ior. The goal in such application is to support automatic reconfiguration
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Fig. 2. FL-based AIF system [8].
of the infrastructure stack (e.g., rescaling, load-balancing, rerouting)
based on the detected anomaly fingerprint.

3. Related works

Network softwarization technologies have increasingly influenced
access networks, leading to a landscape where network functions are
now mostly deployed as virtualized nodes. Additionally, hardware
components for radio and computing systems have been re-designed to
be re-programmable by external software, enabling dynamic resource
allocation and sharing. This evolving environment led itself to the
application of artificial intelligence, as it introduces numerous new
decision making points and makes a wealth of monitoring data accessi-
ble to network and service management systems. In the following, we
review recent works in the area of AI integration to networks, with a
particular focus on federated learning applications.

3.1. In-network AI applications

In-network Artificial Intelligence and Machine Learning (AIML) in-
tegrates machine learning capabilities into network devices to enhance
performance and efficiency [12,13], ranging from traffic engineering
and performance optimization such as SLA (Service-Level Agreement)
management [14,15] to network security [16,17].

In [18], authors investigate how AI and edge computing can in-
terwork. Often, AIML is used in edge network resource allocation
problems that make surface at different layers and for different re-
sources, such as CPU, radio and link resources. In [19], the authors
conduct a comprehensive survey on the usage of AIML solutions for
edge computing, focusing on deep learning models. Different degrees of
integration between AI and cloud/edge computing are identified, going
from fully cloudified environments where AI training and inference
models run on the remote cloud, to an all-on device setting where the
tasks are carried out on the device.

This coupling between AIML and networking is being facilitated
by edge computing and network virtualization. Standardization bodies
are integrating AIML application requirements in system specifications.
Namely, the Network and Data Analytics Function [20] has been pro-
posed by 3GPP to support AIML in 5G core networks. However, various
challenges are being discussed regarding different integration of train-
ing and inference sub-functions and the pipe-lining systems to get data
to distributed AIFs. Another AIML application is anomaly detection
and fault management, which consists in detecting abnormal network
states, localizing the root cause and then proposing a remediation
action to comeback to a normal working condition. In [21], the authors
3 
propose a centralized AIML framework making use of autoencoders
to detect anomalies at different infrastructure levels; the ML model
learns the normal state of a given system, then an anomalous state
fingerprinting methodology is proposed for state qualification, and to
guide a tailored remediation action.

Furthermore, [22] and [23] address the challenge of intrusion detec-
tion in network environments using federated learning while classifying
incoming packet to the edge. [22] focuses on privacy preserving in-
network traffic analysis and timely intrusion detection in IoT edge
networks. In [23], authors consider programmable data plane switches
to achieve high speed and scalable anomaly detection. Apart from
focusing exclusively on the training task, our work differs from [22,23]
by considering anomaly detection on infrastructure telemetry data,
where monitoring data is split across selected FL clients.

3.2. Federated learning applications

A largely adopted strategy for geographically distributing AIFs
down to network edges is Federated Learning [10]: it aims to prevent
data collection aggregation at a central cloud, either for privacy issues,
or for latency constraints, or even both, by collaboratively training
ML models at edge nodes. Two main steps are to be considered: (i)
the local training of the ML model at the FL clients and (ii) the
global aggregation of the updated parameters at the FL server. The
FL process, if adequately configured and designed, can grant higher
efficiency in terms of network bandwidth consumption and latency,
besides increasing privacy thanks to data locality. The FL process itself
can be repeated with several learning rounds until the model achieves
a target accuracy.

Mostly used for hand-held devices, FL is also being considered for in-
network systems as well. In [4,5], the authors propose NWDAF services
based on FL; each 5G core NF can have its own NWDAF instance
(NWDAF leaf) collecting data from its corresponding NF, training the
ML model locally and aggregate parameters at the FL-server (root)
NWDAF.

In [11], the authors present how to use FL to distribute a centralized
anomaly detection framework from [21]. The main goal is to cope with
a set of challenges, mainly to scale with the increasing amounts of
collected data and to reduce the training time to allow a near-real time
re-orchestration decision.

3.3. Stragglers control

Several approaches are proposed to handle stragglers in distributed
ML including careful client selection, enhancing training time effi-
ciency and adaptive learning model update. For instance, [24] presents
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a scalable solution FlexRR to mitigate stragglers in distributed ML.
It relies on peer-to-peer communications among workers to detect
tragglers and re-assign the work of the slowest worker to the most
fficient one. Furthermore, several works consider straggler mitigation
n in-network ML. For example, [25] uses Trio, a Juniper Network’s
rogrammable chipset, to mitigate stragglers in in-network distributed

ML aggregation. Trio allows to process the incoming packets that
contains the ML workers clients update in a non-pipelined manner
using parallel threads. Trio timer threads are used to detect stragglers.
Another work in [26] proposes an in-network aggregation solution to

itigate stragglers in distributed ML where the aggregation task is
offloaded to programmable network switches. Efficient data structures
are used to manage the synchronization barriers within the constraints
of the programmable switches.

In the following, we present the existing works to mitigate stragglers
n FL.

3.3.1. Client selection/placement
In federated learning, performance degradation of the learning pro-

ess is highly related to client selection. Several works from the litera-
ure consider optimizing communication and computation latency. For
nstance, in [7] the authors consider both system and data heterogene-

ity to minimize the occurrence of stragglers where the client selection
is done for each round. The selected clients should have near-iid data
where more bandwidth is allocated for clients with low computing
capacity or poor channel conditions. [27] and [28] consider dynamic
client selection in hierarchical FL where both resource allocation and
incentive mechanism are considered. The first step consists of an edge
ssociation task where each FL server offers rewards to FL participants

to join its cluster. A second step considers choosing the model owner
or each cluster. The authors consider the same processing capacity at

the FL clients and allocate bandwidth resources (i.e. resource blocks)
for a higher uplink bandwidth.

In [29], the authors aim to find a trade-off between energy con-
sumption and the number of active clients by choosing less clients
uring the first rounds. The authors propose an estimation of both
omputing and propagation latency while considering the waiting time
n the channel before sending the model parameters for aggregation.
n [30], authors show how FL clients selection can impact the global

FL model quality and reduce training time, in a strategic game-theoretic
setting to select FL participants based on the computing resources they
ffer: the goal is to achieve a given accuracy in the global model in
n edge environment. A similar work is presented in [31], where a
ultidimensional procurement auction for FL clients selection is used

o enhance model accuracy using a lower number of rounds.

3.3.2. Training time efficiency
Another technique to minimize stragglers is to increase the local

training efficiency. In [32], the authors propose a FL policy to improve
he training efficiency while considering heterogeneous clients. Clients
ith similar computational capacities are selected for training during a
iven round. Moreover, HWAs can also be used to increase the learning
ime efficiency. More precisely, edge computing provides AI with a
onvenient platform for models training and inferring, with a potential
olution on accelerating computations on hardware [33]; HWA can be
ade available pervasively in edge networks, starting from radio access

nd edge computing nodes. Besides reducing training and inference
ime depending on the type of accelerator [34], they can also decrease

the energy footprint of AIML by up to 20 times [35,36].
Many works in the literature investigated on the possible usage

of hardware acceleration with AIML models. For example, in [37],
authors motivate the use of FPGA to accelerate deep neural network
models. Indeed, they have evaluated the reduction in the computation
time while comparing it to a software implementation with different
numbers of threads. The authors only consider the acceleration of
nference as for the considered use-case training is done off-line. Note
4 
that in some cases, the training task should also be accelerated as
the model needs to be updated. For instance, if we consider real-time
anomaly detection, the new state of the system should be learned after
a short period of time. Another work is [38] where authors explore
different acceleration designs for a neural network-based model where
both GPU and FPGA were considered. The authors inspected different
configurations with the aim of identifying the optimal scenario for
each acceleration approach. Nevertheless, the exploitation of HWAs
in distributed/federated learning client selection seems unexplored. In
contrast to [37] and [38], in our work we examine the usage of HWA
n a FL setting where the main goal is to compensate the variance in
he end-to-end delays among FL clients.

3.3.3. Adaptive global model update
Another way to control stragglers is to adapt the global model

update.
In [39], the authors propose a live gradient compensation method to

void stragglers for distributed learning tasks: only the gradient update
or the 𝑘 fastest workers is used, while combining the results from the
lowest worker in the next iteration: the main goal is to reduce the

overall training time while producing a near convergence error close
to fully synchronous gradient descent. Enlarging the view to network
communications, the authors in [40] consider both communication
bottleneck and straggler delays in large scale distributed learning tasks:
they combine a coding approach with a bandwidth sizing strategy to
avoid bottleneck hence reducing stragglers. An enhancement of the
gradient coding is proposed in [41], where the data is assigned to the
dge AIFs in a distributed manner so that a subset of model updates
an be sufficient to compute the full gradient at the server side; then
 dynamic clustering schema is associated to the set of edge AIFs

to improve the completion time. A hierarchical FL mechanism that
ncompasses both synchronous and asynchronous training schemes is
roposed in [42] to mitigate the straggling effect. [43] addresses the

challenges posed by both stragglers and adversaries in FL systems.
It proposes a selective approach to only aggregate updates that are
rustworthy where devices are grouped based on the arrival delay of

their updates. Note that in this work, we do not consider the global
odel update algorithm for mitigating the stragglers.

Another technique to mitigate stragglers could be to rely on asyn-
chronous FL [44] where the updates from all the FL clients are not
required to trigger the aggregation task. However, our work considers
anomaly detection use case using time series data, employing models
like LSTM, which require training on the most recent data, and retrain-
ng. In this context, asynchronous FL poses a challenge as the inherent
ature of asynchronous updates could lead to models trained on out-of-
ate data, which results in biased models that do not reflect the current
tate of the system. As there is already a bias due to non-IID data,

using asynchronous federated learning is not advisable. Nevertheless,
urther work could concentrate on comparison between synchronous
nd asynchronous federated learning to numerically assess this aspect.

3.4. Our contribution

In our work, we aim at going beyond adaptive FL client section,
while including the combined control of both network and training
delays. In fact, we aim at compensating large deviations in parame-
ters arrival from edge AIFs to the FL server by allocating/releasing
HWA to reduce/increase the edge AIF training delay. We propose an
approach to control stragglers in in-network federated learning that
combines both FL-AIF selection/placement and HWA allocation. We
consider adaptive HWA usage to increase the local training efficiency
at the FL clients with the goal to minimize variance in the end-to-end
combined network and training latency, as defined hereafter. We do
not address the combined usage of adaptive global model update, edge
AIF placement and HWAs, left for future work.

In Table 1, we present the positioning of our work contribution to
existing works from the literature.
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Table 1
Research contribution positioning.

Work Solution Environment Technique Mitigation

[24] reactive datacenter peer-to-peer communication, reassignment out-of-network
[43] reactive FL/geo-distributed staneless awareness out-of-network
[25], [26] reactive distributed ML/geo-distributed offloading to programmable switch, aggregation efficiency in-network
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Table 2
Notations.

Sets and parameters

𝑁 set of edge physical servers, with 𝑛 = |𝑁|.

𝑁𝑠 set of physical servers for FL server placement.

𝑐𝑖 number of available CPU cores on node 𝑖.

𝑝𝑖𝑘 training time for 𝑖 ∈ 𝑁 with 𝑘 active edge AIFs.

𝜏 target distributed learning time (one FL round).

𝑑𝑖𝑗 communication latency between node 𝑖 and node 𝑗.

𝛼𝑖𝑘 ≥ 1, acceleration factor at node 𝑖 with 𝑘 active edge AIFs.

ℎ𝑖 assumes value 1 if a HWA is available on node 𝑖.

𝐻 maximum number of available HWAs.

 set of delay scenarios.

𝑞𝑠 probability of scenario 𝑠.

𝛽𝑠𝑖𝑘 drift of the learning time on scenario 𝑠

on node 𝑖 with 𝑘 active edge AIFs.

𝜂𝑠𝑖𝑗 drift of the propagation delay on scenario 𝑠

from node 𝑖 to node 𝑗.

𝛥 maximum tolerated end-to-end delay.

4. In-network federated learning control

We refer to our framework as In-network Federated Learning Con-
rol (IFLC) to express the fact that we aim at controlling the latency
henomena arising in in-network FL applications subjected to stringent
raining model update targets, by placing the FL-AIF clients and server
o ensure the distributed learning tasks within a time threshold1.

In in-network federated learning, we assume that data may both be
generated locally in the machine hosting the FL client, and be generated
elsewhere in the network and delivered to the FL clients by a data
pipelining system [45].

The notations used are summarized in Table 2.
We consider a FL-based AIF system (Fig. 2) composed of a set 𝑁 of

physical edge servers with heterogeneous CPU resources. These edge
servers are considered as possible locations for running AIFs.2 Let 𝑐𝑖 be
the number of available CPU cores on edge node 𝑖. We denote by 𝑁𝑠 the
set of physical servers that can be used for the AIF server placement. It
is worth mentioning that 𝑁𝑠 ≡𝑁 if the FL server AIF can be installed on
he edge servers and 𝑁𝑠 ∩𝑁 = ∅ otherwise. Additionally, we consider
 set of FL client AIFs that can be deployed on top of each physical
ode to run a given FL-based application. An AIF receives data streams
rom external nodes, triggering the training task. We consider that an
IF consumes all CPU resources that are made available to it on the

physical node.3

1 It is worth noting that placing an AIF can mean copying a function image
to a physical node or selecting a pre-fetched AIF already installed in the
physical node, so that its actual instantiation can be a near-real-time operation
in a similar time-scale to that of near-real-time execution algorithms.

2 Note that in this work, only system heterogeneity is considered. We do
not consider additional delays related to non-iid data and the time needed to
receive data at the edge AIFs that is considered negligible as well.

3 This corresponds to the default behavior of container-based services.
5 
We suppose that each physical node can be equipped with hardware
acceleration to increase the local training efficiency. We denote by 𝛼𝑖𝑘
the acceleration factor at node 𝑖 when 𝑘 FL client AIFs are active. The
total number of available HWAs is limited by a constant 𝐻 . In the
ollowing, we present the modeling of the end-to-end learning time.

4.1. End-to-end training time modeling

The global training time needed to update the global AI model at
the AIF server is therefore related to the training time, the propagation
elays and the number of active edge AIFs.4 Fig. 3 depicts the training

time model components.

Definition 1 (Local Training Time - 𝑝). Let 𝑝𝑖𝑘 be the local training time
of an AIF on node 𝑖 when 𝑘 AIFs are active.

We rely on the study carried out in [8] showing that the training
ime increases with the data size. The scenario considered here is the
ne where data is evenly split across the FL clients.

This parameter depends on (i) the number of available CPU cores
t the physical layer, (ii) the enabling of HWAs, and (iii) the amount
f training data. More precisely, the training time is directly related to
he data size, e.g., the training time in neural networks is evaluated
y the number of floating point operations which depends on the data
ize and the architecture of the neural network [46]. Consequently,

the local training time reduces with the number of active AIFs as data
is distributed amongst them. We define 𝑝 as an upper bound for the
overall training time during a given round.

Definition 2 (Propagation Delay - 𝑑). Let 𝑑𝑖𝑗 be the communication
atency on the link that interconnects nodes 𝑖 and 𝑗.

Transmission delays are negligible due to small volume of data
exchanged (if2, Fig. 2), could also be incorporated in 𝑑.

Definition 3 (End-to-End (E2E) Training Time - 𝜒). Let 𝜒𝑖𝑘 be the sum
f the local training time at node 𝑖 (while 𝑘 AIFs are active) and the
ropagation delay between the nodes deploying this client AIF and the
L server AIF 𝑗.

As in real world scenarios stochastic delays may apply on end-to-
nd training times, we consider two different behaviors for an AIF:
 deterministic behavior where the local training time and the prop-
gation delay are the same as expected, and a stochastic behavior

where additional delays may apply to the local training time, to the
ropagation delay or both.

Definition 4 (Training Time Drift - 𝛽). Let 𝛽 be the stochastic delays
pplied to the local training time.

This parameter is supposed to be unknown, even if it can be empir-
cally characterized from real systems. Furthermore, we define a set 

of possible scenarios that define the intensity of the stochastic delays.
In such a way, for each scenario 𝑠 we have a realization of the training
time drift 𝛽: 𝛽𝑠𝑖𝑘 for each node 𝑖 and 𝑘 deployed AIF.

4 FL client AIF and FL edge AIF are used interchangeably.
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Fig. 3. E2E training time (𝜒) model components and threshold.
Definition 5 (Propagation Delay Drift - 𝜂). Let 𝜂 be an additional random
value applied to the propagation delay (e.g., it can be traffic dependant
following a given queuing mode or traffic independent where it is
influenced by the link length).

For each scenario 𝑠, a drift is applied to the propagation delay 𝜂: 𝜂𝑠𝑖𝑗
for each pair of edges 𝑖 and 𝑗.

Definition 6 (Target Time - 𝜏). Let 𝜏 be the target learning time after
which aggregation is triggered at the AIF server.

Definition 7 (Maximum Tolerated Delay - 𝛥). Let 𝛥 be the tolerated
elapsed training delay between the last accepted reception of the
parameters from edge AIFs, and the effective start of the parameters
aggregation at the FL server.

Definition 8 (AIF Straggler or Straggling AIF). An AIF straggler or
straggling AIF 𝑖 is a client AIF whose end-to-end training time 𝜒 is
greater than the threshold but remains within the tolerated additional
time 𝛥 (i.e., 𝜏 ≤≤ 𝜏 + 𝛥).

Note: parameters sent by an AIF straggler are aggregated by the AIF
server if 𝜒 ≤ 𝜏 + 𝛥. The values of 𝜏 and 𝛥 depends on the use case
specification requirements, with 𝛥 < 𝜏. Additionally, we only consider
stragglers with a delay that does not exceed 𝛥. The stragglers with a
higher delay are not considered as they cannot be chosen by IFLC model
(i.e., unfeasible solution). Also, the proposed model only covers the case
where straggling effect is related to training delays, this justifies the fact
that we propose the allocation of HWA to mitigate the stragglers.

Additionally, we consider two possible settings for the FL AIFs:

• ‘edge–edge’: both server and edge AIFs are running at the edge
nodes: the propagation delays in that case can be expected to
be negligible as compared to the training time, considering the
possible duplication of the FL server instance close to the clients.

• ‘core–edge’: the server is placed at a core location (beyond ag-
gregation nodes) while edge AIFs are placed at the edges: the
propagation delays for this setting can be expected to be higher
than the previous ones (i.e., edge–edge setting).

4.2. Problem statement

Under the delay model, we can define the IFLC problem as follows.
Given a set of physical nodes 𝑁 and a defined target time for a specific
application, find an optimal placement of the FL server AIF and the FL
client AIFs to ensure that:

• the maximum E2E training time does not exceed the time require-
ments imposed by the application,

• hardware acceleration, if available, can be allocated to reduce the
local training time, along with CPU resources,

• the CPU utilization is minimized,
6 
• the average number of AIFs exceeding the target time is mini-
mized, including the stochastic scenarios (see definitions 4 and 5).

Indirectly, the number of active AIFs is pushed down towards optimal-
ity.

5. Mathematical modeling

In the following, we present the mathematical programming model
that corresponds to the IFLC scheme.

We use binary variables to represent AIF placement and HWA
related decisions. 𝑥𝑖 represents the activation state of the AIF on node
𝑖, hence it takes value 1 if node 𝑖 is used to deploy an AIF. 𝑦𝑗 provides
the position of the FL server AIF, if it is equal to 1 then the FL server
is placed on node 𝑗. If an edge AIF is installed on node 𝑖 and the FL
server is placed on node 𝑗 then 𝜉𝑖𝑗 is equal to 1. Note that the FL server
cannot be installed on the same node as a client AIF. 𝜁𝑖𝑘 and 𝑧𝑘 are used
to count the total number of active AIF. 𝜓𝑖𝑘 is equal to 1 if the hardware
accelerator is present and used on node 𝑖 and 𝑘 AIFs are active.

Real variables are introduced to model the different components of
the training time. 𝑡𝑖 represents the local training time when an AIF is
active on node 𝑖, 𝛿𝑖𝑘 represents the amount of reduction in the local
training time due to hardware acceleration, when 𝑘 AIFs are active on
node 𝑖 and 𝜒𝑖 represents the E2E training time of the client AIF deployed
on node 𝑖. Finally, we introduce the real variables 𝑡𝑖

𝑠 and ̃𝛿𝑖𝑘
𝑠 which

correspond to the stochastic local training time and the reduction in
the stochastic local training time, respectively, for scenario 𝑠. 𝜒𝑖𝑠 is the
E2E training time of the client AIF deployed on node 𝑖 with scenario 𝑠.

The mathematical notations are summarized in Table 3.

5.1. Core model constraints
5.1.1. FL clients and FL server AIFs placement

We need to determine the location of the FL server AIF and the
number and location of the client AIFs in order to guarantee that each
AIF can train and send the model parameters to the FL server on time.

Constraint (1) imposes that the FL server AIF is installed on one
and only one node. (2) impose that the node that hosts the AIF server
cannot host an edge client AIF. We recall that variable 𝜉𝑖𝑗 is used to
represent the fact that a FL client AIF is installed on node 𝑖 and the FL
server is installed on node 𝑗. Therefore, when 𝜉𝑖𝑗 = 1 the AIF installed
on node 𝑖 yields a communication latency of 𝑑𝑖𝑗 . Constraints (3) and
(4) are consistency constraints. If the server is not installed on node 𝑗
then all the variables 𝜉𝑖𝑗 must be equal to zero. For a given node 𝑖, one
and only one variable 𝜉𝑖𝑗 can assume value 1 if a client AIF is installed
on node 𝑖, otherwise they are all equal to zero.
∑

𝑗∈𝑁𝑠

𝑦𝑗 = 1 (1)

𝑦𝑖 + 𝑥𝑖 ≤ 1 ∀𝑖 ∈ 𝑁 (2)

𝜉𝑖𝑗 ≤ 𝑦𝑗 ∀𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁𝑠 (3)
∑

𝑗∈𝑁𝑠

𝜉𝑖𝑗 = 𝑥𝑖 ∀𝑖 ∈ 𝑁 (4)



N.-E.-H. Yellas et al.

n

f

n

i
C

l

a
n
𝑥

𝜒

(

𝛿

A

Computer Networks 256 (2025) 110900 
Table 3
Mathematical notations.

Binary variables
𝑥𝑖 1, if a client AIF is active on node 𝑖.

𝑦𝑗 1, if the FL server AIF is installed on node 𝑗.

𝑤𝑖 1, if the hardware accelerator is allocated on node 𝑖.

𝜁𝑖𝑘 1, if an AIF is active on node 𝑖 with 𝑘 deployed AIFs.

𝜉𝑖𝑗 1, if a client AIF is installed on node 𝑖

and the FL server AIF is installed on node 𝑗.

𝜎𝑠𝑖 1 if a client AIF on node 𝑖 is a straggler in scenario 𝑠.

𝜓𝑖𝑘 1, if a hardware accelerator is present and used on node 𝑖

and 𝑘 AIFs are active.

𝑧𝑘 1, if k AIFs are active.

Continuous variables
𝑡𝑖 distributed training time on node 𝑖.

𝜒𝑖 E2E training time of the client AIF deployed on node 𝑖

when 𝑘 AIFs are active.

𝛿𝑖𝑘 time reduction at node 𝑖 when 𝑘 AIFs are active.

𝑡𝑖
𝑠 stochastic distributed training time on node 𝑖 with scenario 𝑠.

𝜒𝑖𝑠 stochastic E2E training time of the client AIF employed

on node 𝑖 when 𝑘 AIFs are active with scenario 𝑠.

̃𝛿𝑖𝑘
𝑠 time reduction at node 𝑖 when 𝑘 AIFs are active with scenario 𝑠.

5.1.2. Training time characterization
Constraints (5) allow to calculate the deterministic training time of

ode 𝑖 when 𝑘 AIFs are deployed.
Constraints (6) and (7) are consistency constraints, that is, when

variables 𝑧𝑘 or 𝑥𝑖 assume value zero, the corresponding 𝜁𝑖𝑘, 𝑡𝑖 variables
or node 𝑖 assume value zero.

Constraints (8) together with constraints (9) allow us to count the
umber of deployed AIFs.

𝑡𝑖 =
𝑛
∑

𝑘=2
𝑝𝑖𝑘𝜁𝑖𝑘 ∀𝑖 ∈ 𝑁 (5)

𝑛
∑

𝑘=2
𝜁𝑖𝑘 = 𝑥𝑖 ∀𝑖 ∈ 𝑁 (6)

∑

𝑖∈𝑁
𝜁𝑖𝑘 ≤ |𝑁|𝑧𝑘 ∀𝑘 ∈ 2..𝑛 (7)

𝑛
∑

𝑘=2
𝑧𝑘 = 1 (8)

𝑛
∑

𝑘=2
𝑘𝑧𝑘 =

∑

𝑖∈𝑁
𝑥𝑖 (9)

5.1.3. Hardware acceleration for deterministic training
We allow the use of hardware accelerators to reduce the training

time. We introduce the necessary constraints to evaluate the impact of
the hardware accelerators on the local training time. Constraints (10)
mpose that the hardware accelerator can be used only if available.
onstraint (11) imposes that a maximum number 𝐻 of hardware

accelerators can be used.

𝑤𝑖 ≤ ℎ𝑖 ∀𝑖 ∈ 𝑁 (10)
∑

𝑖∈𝑁
𝑤𝑖 ≤ 𝐻 (11)

Constraints (12)–(15) allow to evaluate the gain in the deterministic
ocal training time obtained using hardware acceleration while associ-

ating the two variables 𝛿𝑖𝑘 and 𝑤𝑖 to keep consistency. That is, if 𝜁𝑖𝑘 =1
and 𝜓 = 1, then 𝛿 =

(

1 − 1
)

𝑝 . Otherwise, 𝛿 = 0.
𝑖𝑘 𝑖𝑘 𝛼𝑖𝑘 𝑖𝑘 𝑖𝑘 p

7 
𝜓𝑖𝑘 ≤
𝜁𝑖𝑘 +𝑤𝑖

2
∀𝑖 ∈ 𝑁 , 𝑘 ∈ 2..𝑛 (12)

𝛿𝑖𝑘 ≤ 𝜓𝑖𝑘

(

1 − 1
𝛼𝑖𝑘

)

𝑝 ∀𝑖 ∈ 𝑁 , 𝑘 ∈ 2..𝑛 (13)

𝛿𝑖𝑘 ≤
(

1 − 1
𝛼𝑖𝑘

)

(𝑝𝑖𝑘𝜁𝑖𝑘) ∀𝑖 ∈ 𝑁 , 𝑘 ∈ 2..𝑛 (14)

𝛿𝑖𝑘 ≥
(

1 − 1
𝛼𝑖𝑘

)

(𝑝𝑖𝑘𝜁𝑖𝑘) − (1 − 𝜓𝑖𝑘)𝑝

∀𝑖 ∈ 𝑁 , 𝑘 ∈ 2..𝑛 (15)

Note that 𝑝 represents the maximum deterministic training time and
can be calculated as follows:

𝑝 = max
𝑘=2..𝑛,𝑖∈𝑁

𝑝𝑖𝑘 (16)

5.1.4. Target time
For each node 𝑖, constraints (17) compute the E2E training time of

an active AIF on node 𝑖. Constraints (18) ensure that the maximum
E2E training time that an active AIF can achieve does not exceed the
ccepted target time 𝜏. These constraints are always valid even when
o AIF is installed. In fact, variables 𝑡𝑖 and 𝛿𝑖𝑘 assume value zero when
𝑖 = 0 (see, constraints (4), (5)–(6), and (14)–(15)).

𝜒𝑖 = 𝑡𝑖 −
∑

𝑘∈2..𝑛
𝛿𝑖𝑘 +

∑

𝑗∈𝑁𝑠

𝑑𝑖𝑗𝜉𝑖𝑗 ∀𝑖 ∈ 𝑁 (17)

𝑖 ≤ 𝜏 ∀𝑖 ∈ 𝑁 (18)

5.2. Stochastic variant

In the following, we introduce the stochastic variant of the AIF
placement model. The goal is to introduce robustness against dif-
ferent realization scenarios. We add the following constraints to the
aforementioned model.

Constraints (19) calculate the stochastic local training time for node
𝑖 when 𝑘 AIFs are active and a delay 𝛽𝑠𝑖𝑘 is applied.

𝑡𝑖
𝑠 =

𝑛
∑

𝑘=2
(𝑝𝑖𝑘 + 𝛽𝑠𝑖𝑘)𝜁𝑖𝑘 ∀𝑖 ∈ 𝑁 , 𝑠 ∈  (19)

In the same way as in the deterministic model, constraints (20)–
22) allow to evaluate the gain in local training time obtained using

hardware acceleration while considering the additional delays applied
to the training time.

𝛿𝑠𝑖𝑘 ≤ 𝜓𝑖𝑘

(

1 − 1
𝛼𝑖𝑘

)

𝑝 ∀𝑖 ∈ 𝑁 , 𝑘 ∈ 2..𝑛

∀𝑠 ∈  (20)

𝛿𝑠𝑖𝑘 ≤
(

1 − 1
𝛼𝑖𝑘

)

(𝑝𝑖𝑘 + 𝛽𝑠𝑖𝑘)𝜁𝑖𝑘 ∀𝑖 ∈ 𝑁 , 𝑘 ∈ 2..𝑛

𝑠 ∈  (21)

𝑠̃
𝑖𝑘 ≥

(

1 − 1
𝛼𝑖𝑘

)

(𝑝𝑖𝑘 + 𝛽𝑠𝑖𝑘)𝜁𝑖𝑘 − (1 − 𝜓𝑖𝑘)𝑝

∀𝑖 ∈ 𝑁 , 𝑘 ∈ 2..𝑛
∀𝑠 ∈  (22)

Note that 𝑝 represents the maximum stochastic training time and
can be calculated as follows:

𝑝 = max
𝑘=2..𝑛,𝑖∈𝑁 ,𝑠∈𝑆(𝑝𝑖𝑘 + 𝛽

𝑠
𝑖𝑘) (23)

Finally, constraints (24) compute the E2E stochastic time of node
𝑖 and constraints (25) impose that the E2E training time of an active

IF, including the additional delays applied to both the training and
ropagation times, are below the threshold. It is worth noticing that in
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this case we accept a maximal response time 𝜏 + 𝛥. Each AIF with a
raining time exceeding 𝜏 is considered a straggler (see variable 𝜎𝑠𝑖 ).

These constraints are always valid even when no AIF is installed
here 𝑡𝑖

𝑠 and 𝛿𝑠𝑖𝑘 assume value zero when 𝑥𝑖 = 0 (see, constraints (4),
(5)–(6), and (21)–(22)).

𝜒𝑖
𝑠 = 𝑡𝑖

𝑠 −
𝑛
∑

𝑘=2
𝛿𝑠𝑖𝑘 +

∑

𝑗∈𝐴
(𝑑𝑖𝑗 + 𝜂𝑠𝑖𝑗 )𝜉𝑖𝑗 ∀𝑖 ∈ 𝑁 , 𝑠 ∈  (24)

𝜒𝑖
𝑠 ≤ 𝜏 + 𝛥𝜎𝑠𝑖 ∀𝑖 ∈ 𝑁 , 𝑠 ∈  (25)

Additionally, we introduce the following domain constraints to
omplete the model:

𝑡𝑖 ≥ 0 ∀𝑖 ∈ 𝑁 (26)

𝑡𝑖
𝑠 ≥ 0 ∀𝑖 ∈ 𝑁 , 𝑠 ∈ 𝑆 (27)

𝑖𝑘 ≥ 0 ∀𝑖 ∈ 𝑁 , 𝑘 ∈ 2..𝑛 (28)

𝑖̃𝑘
𝑠
≥ 0 ∀𝑖 ∈ 𝑁 , 𝑘 ∈ 2..𝑛, 𝑠 ∈ 𝑆 (29)

𝑖, 𝑤𝑖, 𝑦𝑗 , 𝜉𝑖𝑗 ∈ {0, 1} ∀𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁𝑠 (30)

𝑘 ∈ 𝑍 ∀𝑘 ∈ 2..𝑛 (31)

𝑖𝑘,∈ {0, 1} ∀𝑖 ∈ 𝑁 , 𝑘 ∈ 2..𝑛 (32)

5.3. Objectives

The goal is to minimize the number of AIFs that can be in a
traggling situation in order to guarantee a certain level of performance

of the learning process with minimum costs. To this end, we introduce
two objectives. We first minimize a measure of the stragglers in the
system and then, we search for solutions with the minimal utilization
of resources.

5.3.1. Minimizing the number of stragglers
The objective in (33) allow to minimize the expected number of

stragglers where 𝑞𝑠 is the probability of each scenario 𝑠 ∈ 𝑆.

min
∑

𝑠∈
𝑞𝑠

∑

𝑖∈𝑁
𝜎𝑠𝑖 (33)

5.3.2. Minimizing the number of computational resources
After determining the optimal solution of the previous problem,

e can further minimize the number of computational resources while
imiting the increase of the expected number of stragglers. We denote
y 𝜎⋆ the minimum expected number of AIF in a straggling situation
btained by minimizing (33). Thus, the objective of the second phase

optimization problem is:
min

∑

𝑖∈𝑁
𝑐𝑖𝑥𝑖 (34)

We introduce the additional constraints (35) to limit the increase of
the number of stragglers.
∑

𝑠∈
𝑞𝑠

∑

𝑖∈𝑁
𝜎𝑠𝑖 ≤ 𝜎⋆ + 𝜖 (35)

Note that the objective in (33) along with constraints (35) are only
used by the stochastic variant, as we impose the absence of stragglers
in the deterministic scenario.

6. Polynomial-time resolution algorithm

We propose two polynomial-time resolution algorithms for solving
he AIF placement problem for both the deterministic and stochastic
ases, hence supporting near-real-time orchestration of FL-AIFs. They
hare a common structure based on the following observations:

• the number of possible locations of the FL server AIF is given by
|𝑁 | (or |𝑁| for the edge–edge setting),
𝑠 o

8 
• the number of installed AIFs is limited by |𝑁| (or |𝑁| − 1 for the
edge–edge setting),

• for each server location and given number of installed AIFs, 𝜒 can
be pre-calculated.

The proposed algorithms search for the best solution for each given
combination (𝑗 , 𝑘) of AIF server location (𝑗) and number of installed
edge AIFs 𝑘 and keep the best one, see Algorithm 1. In the edge–
dge setting, the server is chosen from the set 𝑁 and its location is
emoved from the available AIFs location. The decision of activating
n AIF is done working on the set of locations ordered by increasing
𝑖 (i.e., number of CPU cores), breaking ties using 𝜒 (smallest first).
ote that differently from the mathematical model presented in the
revious section, this model considers that the end-to-end training
ime component 𝜒 as a parameter, computed for each combination
𝑗 , 𝑘) of AIF server location (𝑗) and number of installed edge AIFs
. The two algorithms differ in the implementation of the function

‘best_placement()’’.
Algorithm 1 General IFLC Scheme
output: 𝑆⋆: set of active edge AIFs, 𝑗: server AIF position

best_cost = ∞
𝑆⋆ = ∅
for 𝑗 ∈ 𝑁𝑠 do

for 𝑘 ∈ 1..𝑛 do
𝑁̃ ← available nodes in decreasing order of 𝑐𝑖
(feasible, S, cost) = best_placement(𝑘,𝑗,𝑁̃)
if cost ≤ best_cost and feasible then

bestcost = cost
FL_server = 𝑗
𝑆⋆ = 𝑆

return (𝑆⋆, 𝐹 𝐿_𝑠𝑒𝑟𝑣𝑒𝑟)

To allow a compact representation of the two placement procedures,
e report here the calculation of 𝜒 for a given couple (𝑗 , 𝑘). In the
eterministic case, the E2E training time for a given node 𝑖 without
WA can be calculated as:

𝜒𝑖 = 𝑝𝑖𝑘 + 𝑑𝑖𝑗 (36)

and, when the hardware accelerator is allocated as:

𝜒ℎ𝑎𝑖 = 𝑝𝑖𝑘 − 𝛿𝑖𝑘 + 𝑑𝑖𝑗 (37)

Where 𝛿𝑖𝑘 is the time reduction at node 𝑖 when 𝑘 edge AIFs are active.
When HWA is used, 𝛿𝑖𝑘 is computed by dividing the local training time
by a given accelerator factor 𝛼. The value of 𝛼 depends on the number
of CPU cores available on the node and the number of active AIFs
(i.e., data size).

For the stochastic case, for a given node 𝑖 and scenario 𝑠 ∈  it is,
espectively:

𝜒𝑠𝑖 =
{

(𝑝𝑖𝑘 + 𝛽𝑠𝑖𝑘) + (𝑑𝑖𝑗 + 𝜂𝑠𝑖𝑗 )
}

(38)

𝜒𝑠,ℎ𝑎𝑖 =
{

(𝑝𝑖𝑘 + 𝛽𝑠𝑖𝑘) − 𝛿𝑖𝑘 + (𝑑𝑖𝑗 + 𝜂𝑠𝑖𝑗 )
}

(39)

Further, we can calculate the E2E training times for the worst case
cenario (𝜒), both without and with HWA:

𝜒𝑖 = max
𝑠∈

𝜒𝑠𝑖 (40)

and

𝜒ℎ𝑎𝑖 = max
𝑠∈

𝜒𝑠,ℎ𝑎𝑖 (41)

In the deterministic case, the best_placement procedure inspects the
ist of ordered nodes 𝑁̃ and checks whether is possible to place an edge
IF without exceeding the threshold. HWAs are allocate (if available)
nly if necessary to reduce the training time under the threshold 𝜏.
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best_placement for the deterministic case is presented in Algorithm 2.
When no HWA is available, the parameter 𝐻 assumes value zero. For
ase of presentation, we do not explicitly add the line that save the
ocation of the HWA (but it is saved by the implemented procedure).

Algorithm 2 Best placement - deterministic
input : 𝑗: server location, 𝑘 number of active edge AIFs,

𝑁̃ set of available nodes for locating the AIFs
utput: feasible: bool, S: set of active edge AIFs,

cost: solution cost

count = 0, cost = 0, hwa = 0, 𝑆 = ∅
Calculate deterministic E2E training times
/* try to locate 𝑘 AIFs */

hile 𝑁̃ ≠ ∅ and kcount < 𝑘 do
𝑖=pop(𝑁̃)
if 𝜒𝑖 ≤ 𝜏 then

kcount ++, cost += 𝑐𝑖, 𝑆 = 𝑆 ∪ {𝑖}

else if 𝜒ℎ𝑎𝑖 ≤ 𝜏 and hwa < H then
kcount ++, cost += 𝑐𝑖, hwa ++, 𝑆 = 𝑆 ∪ {𝑖}

if kcount == k then
return (True, S, cost)

else
return (False, ∅, ∞)

We can observe that at each step of the function presented in
lgorithm 2, the less expensive AIF location for which the E2E training

time is below the threshold is selected. Thus providing an optimal
solution for 𝑘, if it exists. If at the end of the process, the number of
selected edge AIFs is lower than 𝑘, it means that 𝑘 AIFs do not allow a
viable E2E training time (with the number of available HWAs).

In the stochastic case, the objective function depends on the prob-
ability of producing stragglers for each given scenario. Let us consider
again a given couple 𝑗 , 𝑘 of server AIF location and number of edge
AIFs, and analyze the impact of placing an edge AIF on node 𝑖.

When placing an edge AIF on node 𝑖 where it produces a worst
ase E2E time (the longest time among the scenarios) that is below the
hreshold 𝜏, the contribution to the objective function is zero. When the
orst E2E time is in the interval [𝜏 , 𝜏 + 𝛥] the contribution depends on

he E2E time of each scenario. The total contribution of an AIF located
n node 𝑖 can be calculated as follows:

𝑄𝑖 =
∑

𝑠∈∶𝜏 <𝜒𝑠𝑖 ≤𝜏+𝛥
𝑞𝑠𝑖 (42)

where 𝑞𝑠𝑖 is the probability of the scenario 𝑠 on node 𝑖 and 𝜒𝑠𝑖 is the
2E time for scenario 𝑠 on node 𝑖. Similarly, we can calculate the
ontribution to the objective function when the node 𝑖 is equipped with
WA:

𝑄ℎ𝑎𝑖 =
∑

𝑠∈∶𝜏 <𝜒𝑠,ℎ𝑎𝑖 ≤𝜏+𝛥

𝑞𝑠𝑖 (43)

where 𝜒𝑠,ℎ𝑎𝑖 is for the scenario 𝑠 on node 𝑖 with HWA.
In Algorithm 3, we report the structure of the function

‘best_placement()’ in the case of stochastic scenarios. It is worth to notice
hat the first part of the procedure has the same structure of the
eterministic case, but the worst case E2E time is used at the place
f the deterministic times. A ‘recovery step’ is added to re-discuss the
WA positions to improve the solution in term of average number
f stragglers. It is worth to notice that a HWA can be released on
n already selected node 𝑖 if its E2E time without HWA is below the
ejection threshold 𝜏 + 𝛥 paying the price 𝑄𝑖.

Time and space complexity

Both algorithms repeat the procedure ‘‘best_placement()’’ for each
couple (𝑗 , 𝑘) of FL server location and number of instantiated AIFs,
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Algorithm 3 Best placement - stochastic
input : 𝑗: server location, 𝑘 number of active edge AIFs,

𝑁̃ set of available nodes for locating the AIFs
output: feasible: bool, S: set of active edge AIFs, cost: solution cost

Calculate stochastic E2E training times
kcount = 0, cost = 0, hwa = 0, 𝑆 = ∅ 𝑁̃𝑏𝑐 𝑘 = 𝑁̃
hile 𝑁̃ ≠ ∅ and kcount < 𝑘 do
𝑖=pop(𝑁̃)
if 𝜒𝑖 ≤ 𝜏 then

kcount ++, cost+=𝑐𝑖, 𝑆 = 𝑆 ∪ {𝑖}

else if 𝜒ℎ𝑎𝑖 ≤ 𝜏 and hwa < H then
kcount++, cost+=𝑐𝑖, hwa++, 𝑆 = 𝑆 ∪ {𝑖}

if kcount == k then
return (True, S, cost)

else
/* add straggling AIFs */
𝑁̃ = 𝑁̃𝑏𝑐 𝑘 ⧵ 𝑆, sort by increasing 𝑄𝑖
while 𝑁̃ ≠ ∅ and kcount < 𝑘 do

𝑖=pop(𝑁̃)
if 𝜒𝑖 ≤ 𝜏 + 𝛥 then

kcount++, cost+=𝑐𝑖, 𝑆 = 𝑆 ∪ {𝑖}

/* ‘‘recovery step’’: try moving hwa */
if kcount < 𝑘 then

L1 =
{

𝑖 ∈ 𝑁̃𝑏𝑐 𝑘 ⧵ 𝑆 ∶ 𝜒ℎ𝑎𝑖 ≤ 𝜏 + 𝛥
}

L2 =
{

𝑖 ∈ 𝑆 ∶ 𝜒ℎ𝑎𝑖 ≤ 𝜏 𝑎𝑛𝑑 𝜒𝑖 > 𝜏
}

sort L1 by increasing 𝑄ℎ𝑎𝑖 , sort L2 by increasing 𝑄𝑖 while 𝐿1 ≠ ∅
and 𝐿2 ≠ ∅ and kcount < 𝑘 do

𝑖=pop(𝐿1), 𝑙=pop(𝐿2)
𝑆 = 𝑆 ∪ {𝑖}

if kcount == k then
repeat similar ‘‘recovery step’’ to try improving cost
exchanges are allowed only between already allocated edge
AIFs
return (True, S, cost)

else
return (False, ∅, ∞)

i.e. |𝑁||𝑁𝑐 | iterations. Both placement procedures (deterministic and
stochastic) perform a sorting of the AIF locations and an inspection of
the resulting list. The stochastic version has additional steps where it
performs two sort procedures (of the residual list of nodes) and a linear
comparison of two list of at size at most |𝑁|. Thus, the overall time
complexity for both algorithms is of the order of 𝑂(|𝑁|

2
|𝑁𝑐 | log(|𝑁|)), ≈

𝑂(𝑛3 log(𝑛)), where 𝑛 = |𝑁| and under the assumption that |𝑁𝑐 | = 𝑂(𝑛).
In terms of space complexity, IFLC algorithms store a given number of
lists of size at most |𝑁|, thus with a size ≈ 𝑂(𝑛 log(𝑛)).

6.1. FIRST-FIT algorithm

As a lowest-complexity benchmark, we introduce a baseline place-
ment algorithm to compare with IFLC strategies. It is a first-fit algo-
rithm, of ≈ 𝑂(𝑛 log(𝑛)) time and space complexity, that prioritizes the
nodes with the highest CPU resources where it increases the number
of deployed AIFs until there is no more decreasing in the E2E training
time. We chose the FIRST-FIT algorithm, a commonly used heuristic
for placement problems to assess the trade-off between efficiency and
optimality against the MILP solution.

FIRST-FIT is given in Algorithm 4.
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Algorithm 4 FIRST-FIT algorithm
output: 𝑆: set of active edge AIF, 𝑗: server AIF position

𝑁̃ ← sort 𝑁 in decreasing order of CPU resources
𝑆 ← 0
𝐸2𝐸_𝑡𝑖𝑚𝑒 = 0
𝐸2𝐸_𝑡𝑖𝑚𝑒_𝑓 𝑖𝑛𝑎𝑙 = ∞
𝑘 = 0, number of AIFs
𝑗 = 𝑟𝑎𝑛𝑑 𝑜𝑚(𝑁̃), 𝑁̃ = 𝑁̃ ⧵ {𝑗}

while 𝑁̃ ≠ ∅ do
𝑖=pop(𝑁̃)
𝑆 = 𝑆 ∪ 𝑖, 𝑘+ = 1
Update(𝐸2𝐸_𝑡𝑖𝑚𝑒, 𝑘)
if 𝐸2𝐸_𝑡𝑖𝑚𝑒_𝑓 𝑖𝑛𝑎𝑙 ≤ 𝐸2𝐸_𝑡𝑖𝑚𝑒 then

𝑆 = 𝑆 − {𝑖}, 𝑘− = 1
return (𝑆)

Update(𝐸2𝐸_𝑡𝑖𝑚𝑒_𝑓 𝑖𝑛𝑎𝑙, 𝑘)

return (𝑆 , 𝑗)

7. Simulated instances

In the following, we report how we set-up the numerical evaluation
environment, including simulated scenarios and the dataset we used.

7.1. AIF application

In order to evaluate the IFLC strategies, we use the FL-based frame-
work proposed in [11]. We run a set of AIFs as docker containers on a
Kubernetes infrastructure where each AIF is an implementation of an
LSTM autoencoder neural network system to detect anomalies in a 5G
stack. The goal of this framework is to detect anomalies at different
system levels, i.e., physical level, virtual/container level and access
level, using thousands of time-series issued by probes from network
functions, physical servers, Eth/IP and radio links. Probes are collected
from a 5G testbed replaying traffic traces of a European operator, from
the ANR COCO5G project (https://coco5~g.roc.cnam.fr), in the Lozere
region in France for 3 months in 2019.

The data collected from the probes of the 5G3E dataset from [47]
provides few dozens of feature time-series for each resource group,
where groups are related to CPU, RAM, storage and link states. We
use data batches of 4000 samples to train the aforementioned AIML
model, assumed to be the retraining time of the system and could vary
in general depending on the sampling rate. The batch size is set to the
data size, hence considering all the samples. The data is then evenly
load-balanced as a function of the number of edge AIFs employed.

Note that the dataset we used to evaluate the FL framework has
non-iid samples because data points are (i) not independent since the
servers may have potential correlations as they belong to the same
Kubernetes infrastructure, (ii) non identically distributed where each
server may have its own distribution and (iii) non stationary as this type
of data shows seasonality when server workloads change. Having non-
IID data is another motivation to avoid stragglers as much as possible.
To compensate for the non-IID nature of the data, the reference AIF
model groups metrics in different autoencoder groups.

We use the FL-based anomaly detection in [11] where FedAvg is
used as the aggregation algorithm. The number of epochs (𝐸) is 10
and the model is trained for one round (𝑅 = 1). The rest of the
hyper-parameters are set as explained in [11].
10 
Fig. 4. Training time distribution as a function of the number of active client AIFs
and available CPU cores. 𝑅 = 1, 𝐸 = 10.

7.2. Computation of training and propagation time samples

We generate the training time samples as a function of the number
of client AIFs and the amount of computation resources using the
aforementioned AIF application. Fig. 4 depicts the distribution of the
maximum local training time for different numbers of edge AIFs and
different numbers of available CPU cores. We can remark that the
training time decreases with the number of AIFs and the available CPU
cores up to a certain threshold.

In contrast to conventional user-device FL-based services, this
framework considers an in-network service where the time scale at
which the anomaly detection model is expected to react is on the order
of few seconds, or even sub-second. Nonetheless, it is worth mentioning
that our IFLC scheme can be applied on any FL application.

For the purpose of evaluating IFLC on large instances, we generate
a synthetic set of pseudo-random training times that approximate a
pre-specified correlation coefficient between the training time values,
the number of active AIFs and the number of available CPU cores.
This correlation coefficient is retrieved from the original training time
samples. We make available the samples and related scripts for the
simulations in [48]. Note that the generated dataset contains training
times for different number of active AIFs and available CPU cores.

Fig. 5 depicts the distribution of the training times of both the
original and synthetic datasets, based on the total number of CPU cores
(i.e., number of CPU cores that are used by all active AIFs).

As a function of the AIF positioning setting, we configure the E2E
training time components as follows:

https://coco5~g.roc.cnam.fr
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Fig. 5. Training time distribution vs the number of CPU cores.

Table 4
Training time and propagation delays options.

Cases Training time Propagation delay

case D–D deterministic deterministic

case D–S deterministic stochastic

case S–S stochastic stochastic

• ‘edge–edge’ setting: we define the maximum one-way latency
between the furthest edge AIF and the AIF server as the 25%
quantile value of the training time during one epoch divided by
10.

• ‘core–edge’ setting: the highest value of the one-way latency
between the furthest FL client AIF and the FL server is set equal
to the mean value of the training times during 10 epochs.

We consider a combination of deterministic and stochastic behav-
iors for both propagation and training times as shown in Table 4. Note
that ‘S–D’ case is not cited because it generates the same solutions
as ‘S–S’. This can be explained by the fact that both cases apply
stochastic delays on the local training time, and since the latter has the
highest impact on the E2E training time compared to the propagation
delay, the placement solution is the same for both cases as they have
similar strictness on time constraints. We set the stochastic drifts as
proportional to the nominal values of the training time and propagation
delays, respectively.

We developed our mathematical model using AMPL (A Mathemat-
ical Modeling Programming Language), utilizing CPLEX as the linear
solver optimizer. We run our algorithm on an Ubuntu server 14.04 LTS
virtual machine with 64 GB of RAM and 8 × 2.5 GHz CPU cores.

7.3. Simulated network instances

First, as network topology we use Mandala, a hierarchical topology
from [49]: it consists of connecting access nodes through three tiers,
i.e., aggregation, core and application (i.e., egress) nodes. For instance,
one may consider the edge servers as MEC hosts in a MEC system in
a Metropolitan Area Network topology or a near edge AIF deployment
(see Fig. 6). The total number of nodes is equal to 26 including 16 edge
nodes. Also, we consider that each node can be randomly equipped
with 1, 2, 4, 8 or 16 CPU cores. Note that IFLC can be deployed by
an scheduler such as the MEC orchestrator in a MEC system.

We compare four resolution approaches:

• no-HWA: degenerate IFLC with no HWAs employed.
• IFLC-8: 50% of edge nodes (i.e. 8) equipped with HWAs.
11 
Fig. 6. Mandala network topology.
Source: [49].

• IFLC-16: all edge nodes (i.e. 16) equipped with HWAs.
• FIRST-FIT baseline Alg. 4 (not allocating HWA).

The comparison is done looking at the following features:

• the number of straggling AIFs,
• the E2E training time and its variance,
• the computational overhead related to the number of active AIFs

and of CPU cores.
We rely on [37] and [38] to define the acceleration factor of HWAs:

accordingly, we consider that it depends on the number of active AIFs
and the number of available CPU cores [37]. More precisely, since
the acceleration factor decreases with the data size [38] and that the
training dataset is evenly shared among client AIFs, we assume that 𝛼𝑖𝑘
increases with the number of active AIFs.

Moreover, in order to test different levels of strictness on the train-
ing time target constraints, we use different values for the target time
𝜏 (i.e., 2 and 4 s) and the number of epochs (i.e., from 60 to 105 with
a step of 5 epochs). The target time represents the retraining time to
ensure that the model remains effective as new data arrives. As we are
considering the use case of a near real-time anomaly detection system
able to capture recent events as attacks or new vulnerabilities [50], the
target time ranges from hundreds of milliseconds to seconds. In fact, the
time to retrain an anomaly detection model in real-time depends on
several factors such as the volume of data, the complexity of the model
and the computational resources. To define the target time, we rely on
the work in [51] where the end-to-end time to train a few hundred of
data samples does not exceed a few seconds (i.e., ranges from a few
seconds to ten seconds).

The stragglers occurrence ranges from a few milliseconds to 1/4 of
the time limit delay. Extending the time limit would incur in a low
quality of the model as it may not reflect the current state of the system
anymore.

We consider that the maximum tolerated delay 𝛥 is 4 times less than
the target time, which roughly corresponds to the maximum lifetime
network connections that are not bulk transfers. Then, we range from
loose timing constraint (e.g., 𝜏 = 4 s with 60 epochs) to extremely
rigorous ones (e.g., 𝜏 = 2 s with 100 epochs). Also, additional stochastic
delays may reach nearly twice the nominal time.

We run 30 instances for each approach and each different setting
where the propagation time, the stochastic delays and the placement of
hardware accelerators are randomly generated for each instance. The
number of available CPU cores is fixed for all instances.

8. Results analysis

In this section, we provide a detailed numerical evaluation fo-
cused on stragglers, training times and computation overhead. Overall,
Table 5 presents the proportion of instances that lead to a feasible
solution (with respect to the target delay bound). For the two AIF
placement settings, no-HWA could produce a solution only at most for
15% of the instances. This increases to 100% when IFLC is used. On
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Fig. 7. Distribution of the number of straggling AIFs.
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Table 5
Percentage of feasible instances per approach.

Approach Edge–edge Core–edge

no-HWA 15% 10%

IFLC-8 100% 100%

IFLC-16 100% 100%

FIRST-FIT 0% 0%

the other side, all the solutions produced by FIRST-FIT algorithm are
nfeasible, as it has no check on the target time. It is worth noting
hat if the E2E training time of an AIF exceeds the time threshold, we
onsider that the local training parameters cannot be used by the FL
ggregation task.

8.1. Number of stragglers

In Figs. 7, we present the distribution of the number of AIF strag-
lers for both edge–edge and core–edge settings, and excluding the

‘D–D’ case since it does not model the stragglers. We can notice that:

• With IFLC, the likelihood of being in a straggling situation de-
creases with the number of available HWAs when the training
time is stochastic.

• With FIRST-FIT, the number of stragglers is the worst, and it
is higher in the core–edge setting: the placement at the edge
gives more flexibility thanks to lower propagation delays, hence
leading to lower E2E training times. This does not happen with
IFLC, showing its robustness against high propagation delays
(core–edge setting).

• For all approaches and settings, the number of straggling AIFs
increase when the training time is stochastic, as it can be seen
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from Figs. 7(b) and 7(d). Specifically, the median value increases
from 4 to 5 for FIRST-FIT with the edge–edge setting, whereas
in core–edge the minimum number of stragglers increases by 2.
On the other side, the highest number of stragglers generated
by IFLC-8 and IFLC-16 increases from 0 to 2 for both placement
settings. This number increases from 0 to 4 with no-HWA for both
settings.

• In the ‘D–S’ case (see Figs. 7(a) and 7(c)), our approach signifi-
cantly outperforms FIRST-FIT, regardless of the number of HWAs.
Under more stringent targets (S–S), FIRST-FIT yields lower num-
ber of stragglers than no-HWA with edge–edge, where the mini-
mum number of stragglers achieved by no-HWA (i.e., 4 stragglers)
corresponds to the first quartile value achieved by FIRST-FIT in
the edge-edge setting, and the minimum value in the core-edge
one. Note that the placement decision made by FIRST-FIT can not
be considered as it is exceeding the threshold.

Overall, thanks to time modulation, IFLC always outperforms FIRST-
FIT in terms of the number of stragglers, for all the cases. Adaptive
HWA allocation helps reducing the local training time which allows
low AIFs to reach lower E2E training times and consequently respect

the imposed target time. The number of stragglers with IFLC can be
divided by more than two, and often is reduced to zero.

8.2. Training time

Fig. 8 represent the distribution of the maximum local training
imes. We can notice that:

• In contrast to FIRST-FIT, IFLC approaches have similar distribu-
tions of the training time for each of the placement settings. This
can be explained by the fact that the latter leads to solutions that
are robust against high propagation delays.
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Fig. 8. Distribution of the maximum local training time.
Fig. 9. Distribution of the variance in E2E training time.
• The distribution of the training time is very similar for IFLC-8 and
IFLC-16 for all cases. This can be due to the fact that both IFLC-
8 and IFLC-16 yield different placement solutions that generate
similar end-to-end training time (i.e., same number of AIFs with
higher CPU resources and a lower number of active HWAs or the
opposite). This can also show that a low number of HWAs can be
sufficient to respect the target time even with very strict targets.

• Both ‘D–D’ and ‘D–S’ cases have lower maximum training times
compared to S–S for all cases. This happens because S–S has
higher local training times due to additional applied delays.

Overall, IFLC gives lowest training times thanks to HWA, followed
by no-HWA and finally FIRST-FIT which yields the highest training
times (which are higher than the imposed target time, hence discarded
by the FL server).

Figs. 9 report the distribution of the maximum variance in E2E
training times (only for the edge–edge setting, as no major difference
appears with the core–edge one). We can notice that:

• The lowest variance in E2E training time corresponds to IFLC-16
followed by no-HWA then IFLC-8. Indeed, IFLC deploys AIFs with
close E2E training time with the aim of reducing the number of
stragglers during each round, attempt favored by HWAs that get
allocated to accelerate training for farthest AIFs from the server.
The variance is further decreased in deterministic cases.

• IFLC-16 yields lower variance when compared to IFLC-8 for all
cases. This can be explained by the fact that the former has more
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control in placing the AIFs on nodes with similar capacities as
HWA is present on all nodes. On the other hand, IFLC-8 has less
flexibility where the node selection depends on the HWA avail-
ability. Moreover, the variance increases with time constraints as
can be seen from ‘D–S’ and ‘S–S’ cases when comparing IFLC-8
and IFLC-16. In fact, IFLC-16 allows to allocate HWA on nodes
with similar processing capacities which results in equivalent
local training times. On the other hand, IFLC-8 may not have
available HWAs on these nodes and thus nodes with different
processing capacities are used. This results in higher variance. As
previously explained, this can yield similar end-to-end training
times for both IFLC-8 and IFLC-16.

Globally, since (i) the weight of the local training time in the E2E
training time is greater than the propagation delay one, and (ii) given
that training times get higher if HWA unavailability, we can determine
that finding viable solutions gets harder as it turns into finding nodes
with higher CPU resources to respect the target time.

8.3. AIF computational overhead

The latter observation can be clarified by Figs. 10 and 11 that depict
the distribution of the number of active AIFs and the total number of
CPU cores that are used by the active AIFs. We only report the cases
D–S and S–S in this section as D–D yields the similar distributions as
‘D–S’.
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Fig. 10. Distribution of the number of active AIFs.
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Besides expectable behaviors for FIRST-FIT deriving from the pre-
vious analysis, we can highlight that:

8.3.1. Total number of active AIFs
• The number of active AIFs reduces with the number of HWA.

More precisely, for no-HWA feasible solutions refer to instances
with less stringent time constraints. The corresponding number of
active AIFs is equal to 4, that is, 4 AIFs are deployed to respect
the target time. This number decreases by up to 50% thanks to
HWA: both IFLC-8 and IFLC-16 yield a lower number of active
AIFs (i.e, 2 AIFs) when the same time constraints apply.

• For FIRST-FIT, the minimum number of active AIFs is higher with
core–edge setting,
as it is more flexible than edge–edge in placing edge AIFs. In that
case, if the stopping point is not yet achieved (i.e., possibility to
decrease the local training time), FIRST-FIT will keep increasing
the number of AIFs. This confirms the previous results showing
that the local training time is lower with core–edge.

• IFLC-8 yields the same number of active AIFs as IFLC-16. This
can be explained by the fact that IFLC may sometimes promote
allocating HWA instead of increasing the number of active AIFs
to reduce the local training time. As HWA may not be available
on some physical nodes with IFLC-8, the latter chooses the same
number of active AIFs as IFLC-16 but with higher CPU resources.

8.3.2. Total number of active CPU cores
• Higher CPU resources are needed to reduce the local training time

and consequently the E2E training time for FIRST-FIT and no-
HWA, which is correlated with the higher number of active AIFs
even with less strict time constraints. Also, FIRST-FIT achieves
the same minimum cost as IFLC for a small number of instances
with edge–edge placement. For these instances, the stopping point
is achieved with a low number of active AIFs w.r.t the other
instances, which results in a lower number of CPU cores.
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• The distribution of CPU cores is slightly different when comparing
IFLC-8 and IFLC-16. As already explained, when stringent time
constraints apply, IFLC-8 yield the same number of active AIFs
as IFLC-16. However, the former may not have available HWA
on nodes with low CPU resources which leads to solutions with
slightly higher processing capacities.

Overall, the advantage of an IFLC scheme is the capability of
exploiting HWA, leading to the lowest computational costs, as less CPU
resources are needed.

8.4. Comparison between hierarchical and flat topology

To assess the impact of topology changes on IFLC, we propose
o additionally evaluate a random flat topology with a total number

of nodes and the average degree of nodes equal to the one of the
revious analyzed mandala topology. The interconnection of nodes
s random and the propagation delays are bounded by the minimum
nd maximum values used for mandala topology and are generated
ollowing the same distribution. In contrast to mandala, the random
opology allows to place the AIFs allover the nodes.

In the following, we present the distribution of the number of
stragglers, the local training time, the number of active AIFs and the
number of CPU cores used, for the stochastic case ‘S–S’ and using the
following approaches:

• Man-8E: 50% of edge nodes (i.e. 8) equipped with HWAs, using
mandala topology with ‘edge–edge’ setting;

• Man-16E: all edge nodes (i.e. 16) equipped with HWAs, using
mandala topology with ‘edge–edge’ setting;

• Man-8C: 50% of edge nodes (i.e. 8) equipped with HWAs, using
mandala topology with ‘core–edge’ setting;

• Man-16C: all edge nodes (i.e. 16) equipped with HWAs, using
mandala topology with ‘edge–edge’ setting;
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Fig. 11. Distribution of the total number of CPU cores.
Fig. 12. Distribution of the number of straggling AIFs using IFLC: S–S case.

• Rand-8: 8 nodes equipped with HWAs, using the random topol-
ogy;

• Rand-16: 16 nodes equipped with HWAs, using the random topol-
ogy.

Differently from mandala topology, the cases with random flat
opology produces feasible solutions for 95% (65%, respectively) of the
nstances when 16 (8, respectively) HWAs are available.

8.4.1. Number of AIF stragglers
In Fig. 12, we evaluate the number of stragglers for the three

ifferent deployments (i.e., edge and core settings with mandala, and
andom flat topology) for all the instances presented in Section 7.3.
15 
Fig. 13. Distribution of the local training time using IFLC: S–S case.

• We can notice that IFLC produces the same number of stragglers
when the number of hardware accelerators is equal to 8, for the
three deployments.

• When increasing the number of HWAs the number of stragglers
remains the same for edge scenario (i.e., Man-E16). It decreases
with core scenario where the median value is reduced to 1 AIF
straggler. With the random flat topology, the number of strag-
glers decreases w.r.t the two other scenarios except for few in-
stances with strict time constraints where the number of stragglers
achieved 3.

8.4.2. Local training time
In Fig. 13, we present the local training time for the three scenarios

and for different numbers of available HWAs.
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Fig. 14. Distribution of the number of active AIFs using IFLC: S–S case.

• As already mentioned, edge and core scenarios has similar local
training times as for mandala topology the propagation delays are
neglected compared to training time. When the number of HWAs
is equal to 8, the local training time is lower when using the
random flat topology for a high number of instances. The training
time increases with instances having stricter time constraints
when compared to edge and core scenarios. This can be explained
by the fact that in the random topology, the latency on the links
is more important and thus, has more impact on the end-to-
end learning time. When strict time constraints applies, finding
a feasible solution that respects the E2E target time with lower
local training time becomes difficult since achieving the trade
off between choosing nodes with high capacity to deploy AIFs
and ensuring low propagation delays to the AIF server becomes
harder.

• When increasing the number of HWAs to 16, the random flat
topology produces lower training times w.r.t core and edge set-
tings. This can be explained by the fact that in flat topologies we
have more freedom on placing the AIFs and since the number
of HWAs is higher, finding solutions with lower training times
becomes easier.

8.4.3. Number of active AIFs
In Fig. 14, we present the total number of active AIFs using mandala

nd the random flat topology.

• We notice that the number of active clients with random topol-
ogy is 3 times higher compared to mandala topology with both
edge and core settings. Unlike Mandala which is a hierarchical
topology, the random topology is a flat one with homogeneous
links which results in higher propagation delays and thus, the con-
tribution of propagation delays to the en-to-end delays is higher
w.r.t to manadala topology. In that case, IFLC proposes a higher
number of active client AIFs to reduce the local training time
which allows to compensate the increased propagation delays.

8.4.4. Number of active CPU cores
In Fig. 15, we present the number of CPU cores produced by IFLC

sing manadala and random topology.

• As already explained, a higher number of CPU cores refers to
lower training time. In fact, the random flat topology incurs in
higher propagation delays and consequently higher E2E delays.
Increasing the number of CPU cores allows to reduce the local
training time and consequently reducing the E2E learning time.

Overall, the mandala topology simulates a mobile network with
on heterogeneous links. In that case, the E2E latency on the links is
16 
Fig. 15. Distribution of the number of CPU cores using IFLC: S–S case.

lower compared to a flat topology such as the one we used, where the
latency on the links are much more important. This results in totally
different placement solutions produced by IFLC, as in the second case
the propagation delays have higher impact on end-to-end delays. Addi-
tionally, IFLC is designed for optimizing training time efficiency thanks
to the possible allocation of hardware acceleration, which explains its
effectiveness with topologies where the propagation delays are of minor
importance compared to the training time.

8.5. Link utilization estimation

It is worth noting that the link utilization can be influenced by
the feature size of the training dataset: the higher the size of the
features, the higher is the model size to be transferred. For instance,
the dataset from [47] has hundreds of features, the size of weights is
around 60 to 70 Megabytes. If we consider that the transmission delays
are negligible (as per Definition 2) and that therefore the used links
re over-provisioned as it is often the case in provider networks, we

can assume that link utilization is not affected by model exchange.
Certainly this assumption may not hold in other use-cases, such as
private networks, which may have scarce link resources.

9. Conclusion and perspectives

In this paper, we proposed a federated learning system control
cheme for dynamic placement of FL nodes for in-network applications

taking jointly into consideration learning and network delays. Our
scheme is designed to decrease the number of learning stragglers, while
making efficient use of heterogeneous computing resources. A major
highlight is that we demonstrated how adaptive hardware acceleration
enabling can halve or even remove the occurrence of stragglers. We
show how the proposed scheme outperforms static deployments of
hardware acceleration, avoid their random or systemic use; we show
that we can so avoid too high variance in the end-to-end training
times on the one hand, and useless computational overhead on the
other hand. Our scheme achieves this performance thanks to an original
delay model we proposed to combine network delays with distributed
training delays, when seeking efficient learning solutions. We also show
how we can integrate stochastic variations to both network delays and
local training times in the design of our in-network federated learn-
ing control scheme. Finally, we compared IFLC performance against
topologies, a hierarchical one and a flat one.

Future work could cover a detailed numerical evaluation and inte-
ration of the anticipated IFLC variants to be robust against transient
ode failures, as well as the refining of the aggregation functions at

the federated learning with server level, in order to further increase
the learning efficiency. Moreover, we plan to work on scaling the
resulting learning systems by means of split learning to cover multiple
heterogeneous learning domains.
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Appendix. Robustness against single AIF software failure

In the following, we show how versatile the IFLC formulation is, by
roposing its extension (under the stochastic IFLC model) to support

transient single node failures. This extension allows to find a solution
that can satisfy the target distributed learning time even in case one
f the selected AIF nodes (or underlying physical node elements) fails.

This makes the model robust in particular against transient failures for
which it is not worth to rerun the algorithm given the limited duration.
We focus on the stochastic version of our model, where the objective is
to minimize the expected number of stragglers. We assume that in case
of a single node failure the load balancer (in the data-pipelining system)
is able to dynamically dispatch training data among the residual 𝑘 − 1
working AIFs [51].

First of all, we extend the set of scenarios  to introduce the single
node failures scenarios. We do so also to allow us having a probability

eight to different types of impairments: node failures, variability in
propagation delay and training time variations due to AI-algorithm
convergence. Let us call 𝑓 the additional scenarios taking specifically
nto account node failures. We need to add the following variables and
onstraints to the stochastic model (see Section 5) to take into account
he training time in case of single-node failure.

Local training time

We denote 𝜋𝑖
𝑠 the local stochastic training time for a given scenario

𝑠 on active node 𝑖 when 𝑘 AIFs are active, but one of them is under a
ransient failure condition.

𝑖̃
𝑠 =

𝑛
∑

𝑘=2
(𝑝𝑖(𝑘−1) + 𝛽𝑠𝑖(𝑘−1))𝜁𝑖𝑘 ∀𝑖 ∈ 𝑁 , 𝑘 ∈ 2..𝑛, 𝑠 ∈ 𝑓 (A.1)

we recall that the deterministic training time depends on the number of
working AIFs. Therefore, if one node fails, 𝑘− 1 AIFs share the workload
and need a training time equal to 𝑝(𝑘−1).

Hardware acceleration

Let us denote by 𝜋̃ the maximum stochastic time in case of single
ode failure among all possible scenarios.

𝜋 = max
𝑘=2..𝑛,𝑖∈𝑁 ,𝑠∈𝑓 (𝑝𝑖𝑘−1 + 𝛽

𝑠
𝑖𝑘−1) (A.2)

and 𝜔𝑠𝑖𝑘 the reduction in time due to hardware acceleration in the case
of single-node failure. The following constraints allow to set correctly
17 
the value of the time reduction:

𝜔̃𝑠𝑖𝑘 ≤ 𝜓𝑖𝑘

(

1 − 1
𝛼𝑖𝑘−1

)

𝜏 ∀𝑖 ∈ 𝑁 , 𝑘 ∈ 2..𝑛

∀𝑠 ∈ 𝑓 (A.3)

𝜔̃𝑠𝑖𝑘 ≤
(

1 − 1
𝛼𝑖𝑘−1

)

(𝑝𝑖𝑘−1 + 𝛽𝑠𝑖𝑘−1)𝜁𝑖𝑘 ∀𝑖 ∈ 𝑁 , 𝑘 ∈ 2..𝑛

𝑠 ∈ 𝑓 (A.4)

𝜔̃𝑠𝑖𝑘 ≥
(

1 − 1
𝛼𝑖𝑘−1

)

(𝑝𝑖𝑘−1 + 𝛽𝑠𝑖𝑘−1)𝜁𝑖𝑘 − (1 − 𝜓𝑖𝑘)𝜏

∀𝑖 ∈ 𝑁 , 𝑘 ∈ 2..𝑛
∀𝑠 ∈ 𝑓 (A.5)

E2E learning time

The E2E learning time when a single node fails, represented by
variable 𝛱̃ , is determined by the following constraints:

𝑖̃
𝑠
= 𝜋𝑖

𝑠 −
𝑛
∑

𝑘=2
𝜔̃𝑠𝑖𝑘 +

∑

𝑗∈𝐴
(𝑑𝑖𝑗 + 𝜂𝑠𝑖𝑗 )𝜉𝑖𝑗 ∀𝑖 ∈ 𝑁 , 𝑠 ∈ 𝑓 (A.6)

and the active stragglers for single-node scenarios 𝑓 can be deter-
mined by:

𝑖̃
𝑠
≤ 𝜏 + 𝛥𝜎𝑠𝑖 ∀𝑖 ∈ 𝑁 , 𝑠 ∈ 𝑓 (A.7)

where variables 𝛥𝜎𝑠𝑖 are extended to set 𝑓 .

Objective

The objective in (33) is modified to take into account all failure
cenarios as follows:

min
∑

𝑠∈𝑆
𝑞𝑠

∑

𝑖∈𝑁
𝜎𝑠𝑖 +

∑

𝑠∈𝑓

𝑞𝑓𝑠
∑

𝑖∈𝑁
𝜎𝑠𝑖 (A.8)

where 𝑞𝑓𝑠 is the probability of single-node failure scenario 𝑠 ∈ 𝑓 .
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Data will be made available on request.
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