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Abstract—Streaming high-quality video over dynamic radio
networks is challenging. Dynamic adaptive streaming over HTTP
(DASH) is a standard for delivering video in segments, and
adapting its quality to adjust to a changing and limited network
bandwidth. We present a machine learning-based predictive pre-
fetching and caching approach for DASH video streaming, imple-
mented at the multi-access edge computing server. We use ensem-
ble methods for machine learning (ML) based segment request
prediction and an integer linear programming (ILP) technique
for pre-fetching decisions. Our approach reduces video segment
access delay with a cache-hit ratio of 60% and alleviates transport
network load by reducing the backhaul link utilization by 69%.
We validate the ML model and the pre-fetching algorithm, and
present the trade-offs involved in pre-fetching and caching for
resource-constrained scenarios.

Index Terms—video streaming, DASH, caching, pre-fetching,
machine learning, MEC, mobile edge, 5G.

I. INTRODUCTION

Video content is the dominant traffic in terms of volume on
the current Internet. Cisco forecasts that video will constitute
roughly 79% of the total Internet traffic by the end of 2022 [1].
With the ongoing deployment of 5G high-speed networks,
the expectation for high-quality 2K/4K video streaming over
mobile networks has also increased. The emerging multi-access
edge computing (MEC) technology enables mobile network
operators (MNO) to provide network services at the mobile
edge [2]. The effective handling of video traffic at the edge by
MNOs will become increasingly important to satisfy customers
with guaranteed video quality of service (QoS), as they stream
higher volumes at higher qualities. A video streaming use-case,
such as live streaming events at a sports festival, is an example
of a challenging scenario wherein a large number of users
stream videos in a small area, streaming instant replays, live
streams etc. of other games at the sports festival. In the future,
this could even include live-VR with stricter QoS requirements.

Currently, DASH [3] is the dominant video delivery standard
that has been adopted by most content providers, e.g., YouTube,
and Netflix [4]. It dictates that each video is split into equally-
sized segments available at multiple video qualities, or bitrates.
High variability of the bandwidth available to a user in dynamic
mobile networks requires an adjustment of the video bitrate
based on the current state of the network and playback buffer.
This is done by the adaptive bitrate (ABR) algorithm, which,

using monitoring information adjusts the bitrate of the next
segment request, to maintain the highest possible quality of
experience (QoE) for the users [5].

Caching video content closer to the users, at the edge
MEC servers, yields benefits both for the users as well as
for the MNOs. It reduces the content access delay for the
users, improving their QoE [6] while also alleviating the
backhaul (BH) transport network load for the MNOs. The
limited capacity of the edge MEC servers, however, calls for
intelligent decisions on what content to cache and where to
cache it, so as to improve QoE while also using the network
resources (e.g., storage, bandwidth) in an efficient manner.
In this context, the prediction, anticipatory pre-fetching, and
caching of video segments of the right quality during streaming,
at the MEC servers, plays a pivotal role in MEC-enabled
DASH video streaming.

In this work, we employ machine learning (ML) algorithms
to predict the number and bitrate of the video segments
expected to be requested based on current network bandwidth,
playback buffer conditions, and radio network metrics made
available by the radio network information service (RNIS) at
the MEC. We also predict user base station association to
know where to pre-fetch a predicted segment when the user
associations are changing. We then formulate an ILP based
problem for jointly optimizing video segment pre-fetching,
transcoding, and resource allocation, with the objectives of
maximizing cache-hit and byte-hit ratios.

II. RELATED WORK

A. Pre-fetching and Caching

The problem of DASH video caching has been well studied
in various network deployment scenarios [6–12]. Algorithms
for pre-fetching and caching under the constraints of limited
BH bandwidth [6, 7] have been proposed and evaluated for
maximizing the byte-hit ratio objective. Kumar et al. [12]
propose a method that stores the highest bitrate of each segment
on the MEC and employs the processing power at the MEC
server to transcode the video segment on demand. Liang et
al. [6] demonstrate and motivate the benefits of predictive
pre-fetching. They consider streaming over a wired network
wherein the rate of change of segment bitrate is very low,978-3-903176-31-7 c© 2020 IFIP
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Fig. 1: Prediction inputs and outputs at a decision instant.

justifying their assumption that the next bitrate requested can
be assumed to be the same as the previous bitrate requested.

In contrast to existing literature, our work considers the
trade-offs that exist between pre-fetching, transcoding higher
bitrate video segments, MEC resource allocation, and jointly
optimizes them. Our formulation also incorporates using Xn
links between base stations (gNBs), making it possible to
further improve performance by fetching requested segments
cached on adjacent gNBs. With input from our ML prediction,
we can evaluate scenarios that are more dynamic and realistic
in 5G mobile networks.

B. ML-Driven DASH

Performing predictions in radio access networks (RANs)
is especially challenging due to a large number of metrics
involved, non-linear relationships between them, and fast-
changing network conditions [13]. Using ML for RAN state
prediction has hence gained importance in the past years [13–
16]. Within the context of DASH, previous work employing
ML focus mainly on throughput prediction at the client , which
constitutes an input to most ABR algorithms. In this context,
random forests (RF) [17], and reinforcement learning with
Actor-Critic neural networks [18] have been evaluated. Raca
et al. [19] demonstrate that integrating throughput prediction
in the client can increase QoE regardless of the employed
ABR algorithm.

In summary, compared to the literature, we consider a sce-
nario that specifically addresses the challenges of pre-fetching
in a highly dynamic wireless environment by using ML-driven
segment prediction, and not throughput prediction, make it
agnostic to the underlying ABR.

III. PROPOSED METHOD

A. ML Prediction Model

The prediction algorithm runs periodically over prediction
windows to predict the requests expected in the next window.
The ILP decides which of these requests to pre-fetch at the
beginning of each window at the decision instant. The predic-
tion model’s goal is to provide the ILP with information at
each decision instant about what segment requests are to be
expected from the clients in the next window. For each client,
the ILP requires a prediction of the segment requests and their
bitrates, as well as a prediction of gNB association to know
which MEC server node in the network to cache the content at.

This prediction is made for each DASH client at the respective
MEC server, at each decision instant before the ILP is run. As
shown in Fig. 1, the prediction window size is denoted by ∆t.
At any given decision instant k, RAN and DASH client-related
metrics are collected over the metrics aggregation window, i.e.,
over the time interval [tk−θ∆t, tk) , θ ∈ R+. These metrics
are fed to the predictor model (see Fig. 1). Since the ILP runs
synchronously, the prediction output Pn,k for each client n at
the decision instant k must include (i) the number of segments
expected to be requested by each client over the prediction
window, (ii) the expected bitrate of these segments, and (iii) the
expected gNB association to place the content. In this work,
we devise a ML system composed of these three individual
predictors, as we describe below.

Number of Segments: The NSEG-Predictor returns the ex-
pected number of segments requested by the client n (Nn,k in
Fig. 1-III). Configurations at the DASH client and the playback
buffer’s current state determine the client’s expected number of
requests (which could also be zero). Hence, Nn,k is an integer
number greater than or equal to 0 (Nn,k ∈ N0).

Bitrate mode: The MODE-Predictor returns the most fre-
quent bitrate of the requested segments for client n (Qn,k in
Fig. 1–III). This bitrate Qn,k is predicted and assigned to the
Nn,k segments expected to be requested. While the bitrate of
requested segments within a window can be different, we assign
them all the bitrate of the mode since the rate of change of this
bitrate is low in reference to our window size. In case there are
multiple modes, the highest bitrate is selected since this can be
transcoded to a lower bitrate at the MEC. MODE-Predictor
performs predictions only on instances with Nn,k ≥ 1.

gNB association: The GNB-Predictor returns the expected
gNB association for client n (Bn,k in Fig. 1–III). gNB as-
sociation is relevant when considering client mobility since it
determines where to place the pre-fetched content. Wrongly
allocating MEC capacity to content will negatively affect the
cache-hit ratio.

Each predictor is designed as a multi-class classification
model. The number of possible classes for NSEG- and MODE-
predictor depends on the choice of ∆t, which is chosen in the
order of seconds. For the GNB-Predictor, it depends on the
number of MEC edge servers in the network over which we
are performing the ILP optimization. Fig. 1 summarizes the
metrics used for the three prediction tasks. The input metrics
used to train the NSEG- and MODE-predictors either directly
or indirectly influence the bitrate chosen by ABR algorithms
(a–e from Fig. 1–I). The input metrics to the GNB-Predictor in-
fluence the clients gNB association (b,g,f from Fig. 1–I). Since
only averages over windows do not capture the distribution of
some fast changing metrics, we also use the 25th, 50th, 75th,
and 90th quantiles for metrics a, b, and d.

These metrics can be obtained at the MEC server through
the RNIS and a monitoring component that logs the current
state of each DASH client based on the segment requests and
responses that pass through the MEC. The overall complexity
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of the prediction procedure scales linearly with the number of
clients in the network.

B. ILP Model

Problem Statement: The envisioned mobile network is
composed of a 5GC, and gNBs, with MEC servers co-located
with gNBs. The MEC servers are characterized by processing,
memory, and storage resources. While these resources are
limited for the MEC servers at the network edge, they are
abundant at the 5GC. Therefore, the resource usage at the 5GC
is much cheaper than that of the network edges, though the
former also imposes transport network usage costs.

We assume that at any given time, a set of requests will
be issued from UEs for a set of video segments, possibly in
different bitrates. The ML model proposed in Section III-A
is responsible for predicting the requests, the bitrate, and the
gNB association of each UE. After obtaining the prediction
outcome from the ML model, the ILP model decides whether
to pre-fetch the requested video segment(s) in specific bitrates
to the network edge, or, if available, to transcode higher bitrate
segments available at the network edge to make sure that the
bitrate requirements of UEs are satisfied while the network
resources are used efficiently.

Depending on the segment duration, segment bitrate, and
availability of the substrate network resources, there might
be multiple pre-fetching options, each in favor of optimizing
certain aspects of the network. The problem of joint video
segment pre-fetching, transcoding, and resource allocation can
be formally stated as follows.

We consider a 5G network composed of MEC servers col-
located with gNBs and the 5GC, which are interconnected via
transport network links. A set of UEs that are connected to these
gNBs make video segment requests with specific bitrates. Our
task is to find a joint video segment pre-fetching, transcoding,
and resource allocation solution, with the objective to maximize
(i) the cache-hit ratio and (ii) the byte-hit ratio. We define the
cache-hit ratio as the number of requests served from the edge
(whether directly from the same gNB, from neighbor gNBs,
or using transcoding) to the number of requests issued to the
network. Similarly, the byte-hit ratio is defined as the number
of bytes served from the edge to the number of bytes requested
by the UEs.

Mobile Network Model: Let G = (N,E) be an undirected
graph modeling the mobile network, where N represents the
computing nodes, which are the union of the set of gNBs Ngnb

and the 5GC N5gc, N = Ngnb ∪N5gc. E represents the set of
BH and Xn links, interconnecting the gNBs with the 5GC and
gNBs with each other, respectively. As already mentioned, each
node n ∈ N has a collocated MEC server that is characterized
with a storage Cstg(n) and processing capacity Ccpu(n). While
the former is used to cache video segments, the latter, if needed,
is used to transcode video segments from a high bitrate h to a
lower bitrate q, which is the one predicted to be requested
by the UE. There is a link em,n ∈ E between the nodes
m,n ∈ N if they are directly connected, which has a certain
amount of bandwidth denoted by Cbwt(e). Nvid represents the

TABLE I: Mobile network parameters

Parameters. Description
G = (N,E) Graph representing the mobile network.
N Set of nodes that can host videos N = Ngnb ∪N5gc

E Set of links connecting the nodes in G.
Ngnb Set of gNBs in G.
N5gc Set of core nodes/servers in G.
Nvid Set of videos.
Nv

seg Set of segments of each video v ∈ Nvid.

Nv,s
br

Set of available bitrates for each segment s ∈ Nv
seg of

video v ∈ Nvid. Bitrates are in order from the lowest to
the highest q1 < ... < q5.

ωh,q
cpu

Number of CPU cores required for transacting a segment
from bitrate h to the desired bitrate q of the user.

Ccpu(n) Number of CPU cores available on node n ∈ N .
Cstg(n) Caching storage of node n ∈ N in Megabytes.
Cbwt(e) The bandwidth capacity of the substrate link e ∈ E.

τs
Segment time duration. All the segments are considered
to be in the same duration.

α The weight factor to prioritize the embedding options.

TABLE II: UE request parameters

Parameters Description
Ḡ(N̄, Ē) Video request graph.

N̄ Set of requests in Ḡ.

N̄r
vid The video in the request r ∈ N̄ .

N̄r,v
seg The segment of video v ∈ Nvid in the request r ∈ N̄ .

Nr
br The bitrate of the request r for its video segment.

ωbr(r) The bitrate of a video segment for the UE’s request r ∈ N̄ .

Ē Set of links connecting UEs to the requested bitrate in Ḡ.

set of videos available to the UEs. Each video v ∈ Nvid is
divided into multiple segments Nv

seg , each of which s ∈ Nv
seg

is available in multiple bitrates Nv,s
br . Table I summarizes the

parameters of the mobile network.
UE Request Model: The UE requests are modeled as a

directed graph Ḡ = (N̄ , Ē), where N̄ is the union of UEs and
their requested bitrate of a specific video and segment, N̄ =
N̄ue∪N̄v,s

br , and Ē represents the virtual links between UEs and
their requested bitrate. Moreover, ωbr(r) represents the bitrate
of the given requested video segment by the UE. It is possible
to have multiple requests from the same UE in any given time.
Table II summarizes the notations used for the service requests.

Problem Formulation: The joint video segment pre-
fetching, transcoding, and resource allocation problem is mod-
eled as a virtual network embedding (VNE) problem, which
is proven to be NP-hard [20]. The embedding process is
performed in two steps, including the node embedding and the
link embedding step. In the node embedding step, each virtual
node (e.g., UEs and video segments) in the request is mapped
to a substrate node (e.g., gNBs). In the link embedding instead,
each virtual link is mapped to a single substrate path.

1) ILP Formulation: ILP techniques are employed to for-
mulate the described VNE problem that has two objective
functions. While the first objective (1) tends to maximize the
cache-hit ratio, the second (2) maximizes the byte-hit ratio.
Table III summarizes the variables used in the ILP model.

Authorized licensed use limited to: Universita' Politecnica delle Marche. Downloaded on September 21,2021 at 10:42:11 UTC from IEEE Xplore.  Restrictions apply. 



There are multiple ways to increase the cache-hit ratio.
The UE requested video segment(s) with a specific bitrate, if
already cached/available, can be served either from the host
gNB or from a neighbor gNB leveraging the Xn interface. If the
requested bitrate of the desired segment is not already available
at any of the gNBs/edge sites while higher bitrates of the same
video segments are available, then they can be transcoded to
the desired bitrate/quality. Note that the video segment pre-
fetching is based on the prediction of the UE-requested video
segment along with its bitrate for the subsequent timeslot.

CacheHit : max
∑
r∈N̄

∑
n∈Ngnb

∑
h∈Nr

br
h≥q

αχr,h
n (1)

The second objective (2) has the goal of maximizing the byte-
hit ratio, employing the same weighting factors. This objective
is particularly beneficial for storing videos with high storage
demand at the edge resulting in the BH load alleviation.

ByteHit : max
∑
r∈N̄

∑
n∈Ngnb

∑
h∈Nbr(r)

h≥q

αχr,h
n ωbr(r) (2)

In the following, we present the constraints that, regardless of
the objective function, have to be satisfied for a valid solution.
The first constraint ensures that the storage used for storing the
videos does not exceed the maximum storage capacity of the
edge nodes.

∀n ∈ Ngnb :
∑

v∈Nvid

∑
s∈Nv

seg

∑
q∈Nv,s

br

χv,s,q
n ωv,s

br τ
s ≤ Cstg(n) (3)

At any given time, each UE should be provided with one video
segment in the requested bitrate.

∀r ∈ N̄ :
∑
n∈N

∑
h∈Nr

br
h≥q

χr,h
n = 1 (4)

The following constraint guarantees that a video segment is
available at the edge only if at least there is one UE requesting
that video segment.

∀n ∈ N, ∀v ∈ Nvid,∀s ∈ Nv
seg, h ∈ N

v,s
br :∑

r∈N̄

χr,h
n − µχv,s,h

n ≤ 0 (5)

where s and v are the segment and the video of request r,
while µ is a big number. Constraint (6) ensures that the virtual
links are mapped on a substrate link as long as the link has
sufficient capacity.

∀e ∈ E :
∑
ē∈Ē

χē
eωbr(ē) ≤ Cbwt(e) (6)

Constraint (7) enforces a continuous path established between
the UE and the bitrate of the video segment in the virtual
request r ∈ N̄ .

TABLE III: Binary decision variables

Variables Description

χv,s,h
n

Indicates if the bitrate h ∈ Nv,s
br of the segment s ∈ Nv

seg
of video v ∈ Nvid has been mapped on the edge node
n ∈ Ngnb.

χr,h
n

Indicates if the request r ∈ N̄ of the video segment bitrate
h has been mapped on the node n ∈ N .

χē
e

Indicates if the virtual link ē ∈ Ē is mapped on the
substrate link e ∈ E.

∀i ∈ N, ∀em,n ∈ Ē :

∑
e∈Ei→

χem,n

e −
∑

e∈E→i

χem,n

e =


− 1 if i = m

1 if i = n

0 otherwise

(7)

where Ei→ represents the links originating from node i ∈ N ,
while E→i represents all the links entering node i ∈ N .

Finally constraint (8) makes sure that the number of CPU
cores utilized for transcoding a video segment in bitrate h ∈
Nv,s

br to the lower desired bitrate q ∈ N̄r
br are not higher than

the number of CPU cores available at the edge.

∀n ∈ Ngnb :
∑
r∈N̄

∑
h∈Nr

br
h>q

χr,h
n ∗ ωh,q

cpu ≤ Ccpu(n) (8)

IV. EVALUATION

Here we begin by describing the process of training the ML
predictors and their evaluation. We then present an evaluation
of the proposed ILP algorithms (with cache-hit and byte-hit
objectives) in comparison to a baseline.

A. Data collection for prediction and evaluation

We use an ns-3 [21] simulated network to generate data
to train the prediction algorithms and to evaluate the ILP
algorithms. The ILP evaluation is done offline by processing the
output from the predictor, and the ground-truth from the ns-3
generated data. Two separate datasets [22] were generated from
a simulated urban mobile network deployment scenario with the
same setup parameters. We use the ns-3 DASH implementation
by Vergados et al. [23] to simulate client-server interaction of
segment requests and response.

The setup consists of 12 gNBs and uses carrier aggregation
with three 20 Mhz component carriers to provide a maximum
downlink bandwidth of 60 Mhz, which can reach an aggregated
downlink bitrate of up to 225 Mbps. A variable number of
UEs (between 27-68) move between these gNBs with velocities
ranging between 1.4 - 5.0 m/s (walking/cycling speeds expected
in the considered deployment scenario). UEs use DASH to
stream video content. Monitoring and application level data
is collected over 27 runs of 1000 seconds each. Of these, 23
of them were used to training the ML predictors, and 4 of
them for the evaluation of predictive pre-fetching as described
in Sec. IV-C.

The UEs in the network request segments from one of 10 live
stream videos. The UE’s video stream play times are within
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10 seconds of each other, representing expected behavior of
live streams that are viewed within small delays of the actual
event (this delay could be due to replays or delayed requests).
The videos consist of 8 second segments and are streamed
at 50 frames per second. The set of available bitrates are
{1, 2.5, 5, 8, 16, 35} Mpbs (higher rates correspond to HD,
2K, and 4K video qualities).

B. ML Prediction

We employ random forest (RF) for the predictor models
since it has the flexibility of a non-parametric method and has
been demonstrated to perform well for similar tasks [16, 17].
Additionally, we explore gradient boosting trees for classifi-
cation (XGB) [24] due to prior evidence of boosting trees
outperforming RF [25].

1) Pre-Processing: This step consists of reading and parsing
the log files generated by various monitoring components in the
network. Metrics are aggregated over the metrics aggregation
window and the data is parsed and structured over prediction
windows for each client’s data logs.

2) Prediction Window Size ∆t: This parameter directly
influences the number of possible classes for the NSEG-
and MODE-predictor. Since one bitrate is predicted for all
segments in the prediction window, the ideal would be to
have only one segment request in each window. This occurs
if we use 2 second windows, but results in an imbalanced
class distribution with no segments requested ∼ 80% of the
time. Additionally, the window size must be significantly larger
than the ILP run-time so that there is enough time to pre-fetch
the predicted segments before they are requested. We evaluate
window sizes of 4, 8, and 16 sec, with number of training
samples equal to 211630, 105484, and 52010 respectively,
to find the best performing predictors.

3) Training: We employ a train-test set split of 80%-
20%. The XGB models use the softmax objective with the
default learning-rate and regularization [24]. The RFs per-
form split decisions based on the Gini impurity, and trees
were built using bootstrapping. For both RF and XGB we
perform a grid search with the following hyperparameters:
i) the number of estimators (number of trees), with possible
values {5, 15, 50, 100, 200, 350}, and ii) the maximum tree
depth, with possible values {5, 15, 25}. Hence, a total of 36
models are trained for each predictor. We employ 10-fold cross-
validation, and the best performing model configuration in
terms of accuracy on the test set is chosen.

Table IV summarizes the models’ performance. The best
NSEG-predictor (test accuracy of 83.3%) employs XGB with
350 estimators and 25 max depth using 4-sec for both pre-
diction and metrics aggregation windows. The best MODE-
predictor (test accuracy of 89.7%) employs XGB with 350 es-
timators and 25 maximum depth using a 4-sec prediction and a
10-sec metrics aggregation window. Overall, XGB is generally
capable of outperforming RF regardless of the window size
combination due to its ability to reduce variance. Moreover,
irrespective of the prediction window size, an increase in the
metrics aggregation window size decreases the NSEG model’s

performance. An increase in the prediction window size also
reduces overall performance: even matching the number of
training samples of the 4-sec prediction window size to that
of the 16-sec window yields an 80.7% test accuracy. Since the
GNB-predictor problem is simple due to smaller number of
metrics with a simple relationship to the target prediction, it
obtained a test accuracy close to 100% regardless of the model
employed. Overall, the high accuracy score on the training
sets suggests that the models are able to learn the separation
hyperplanes to classify the data, but the corresponding test
accuracy indicates that the models generally overfit, even with
a depth of 5. The best performing models were used to provide
the required input to the ILP.

C. Pre-fetching

The ILP model that makes the pre-fetching decision
was evaluated using the Gurobi mathematical optimization
solver [26] in Python. The evaluation was performed on a
scenario wherein the 5GC, where the DASH video server runs,
is equipped with a 16-core 2.4 GHz processor, and the edge
MEC server is equipped with a 4-core 1.6 GHz processor with
varying storage of {25, 50, 75, 100, 125, 150} MB.

This storage space is shared among all the applications
supported by the edge, requiring the use of efficient caching
strategies. The edge MEC servers are interconnected over
5 Gbps Xn links, which, along with exchanging control infor-
mation, are also used to transfer video segment data. The MEC
servers are connected to the 5GC over a 20 Gbps BH link.

The pre-fetching ILP algorithm runs periodically every 4
seconds (as was chosen based on evaluations presented in
Sec. IV-B), in what we call a pre-fetching time slot. In each
pre-fetching time slot, a decision maker at the 5GC obtains
the segment/bitrate/association predictions for all UEs from
the MEC and puts together a set of pre-fetching requests.
Each request is defined by the tuple [destination UE, segment
number, bitrate, gNB association of UE]. The ILP tries to find a
solution that serves all predicted requests. The pre-fetching time
slot matched with the prediction time window is chosen to be
always longer than the time to run the pre-fetching algorithm
to ensure that the requests from one slot are fetched before
the beginning of the next.

The predicted requests can be addressed by either pre-
fetching the requested segments to the edge, transcoding an
existing higher bitrate segment at the edge, or just waiting for
the 5GC to serve the actual request when it occurs. Three cases
result in a user being served from the 5GC. (i) the ILP decides
that it cannot pre-fetch the request due to resource constraints
(ii) due to an error in prediction, the wrong segment bitrate was
pre-fetched, and (iii) due to error in gNB association prediction,
the pre-fetched segment was placed at the wrong edge MEC
server. The cache at the MEC server uses a simple least recently
used (LRU) replacement strategy for content management. Data
from the ns-3 simulator is processed offline using the output
from the ML predictor as input to the ILP and comparing the
status of the cache with ground truth values of real requests to
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TABLE IV: Accuracy of the trained ML models using different prediction window and metrics aggregation window sizes.

Prediction w-size: 4 sec 8 sec 16 sec

Metrics w-size: 4 sec 10 sec 20 sec 8 sec 10 sec 20 sec 16 sec 20 sec

Acc. for set [%]: Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test

NSEG
RF 97.4 82.8 97.6 79.5 97.3 77.0 96.5 75.2 96.5 74.7 96.1 73.4 95.8 60.2 95.8 58.3

XGB 98.3 83.3 98.1 80.7 86.4 79.3 97.6 76.0 97.6 75.5 97.4 73.9 95.9 59.5 95.9 57.9

MODE
RF 98.6 87.1 98.8 88.8 98.6 86.3 98.5 85.5 98.5 85.0 98.1 81.9 97.7 77.4 97.5 76.3

XGB 98.8 88.0 98.9 89.7 98.7 87.8 98.6 86.0 98.6 86.3 98.3 83.3 97.7 77.6 97.6 77.2
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Fig. 2: Average cache-hit ratio, byte-hit ratio and BH link utilization for different cache sizes.

obtain the evaluation results. The results are averaged over 4
runs and 95% confidence intervals are obtained.

Cache-hit ratio: Fig. 2a shows the cache-hit ratio under
different cache sizes. A higher cache-hit results in the end-users
experiencing less delay, resulting in obtaining higher bitrates,
and also reducing the MNOs’ BH traffic.

Fig. 2a shows that the average cache-hit ratio, for smaller
cache sizes, is higher for the cache-hit objective compared to
the byte-hit objective. When the cache storage is very limited,
all the predicted segments cannot be accommodated at the MEC
servers. In such a scenario the ILP cache-hit can make more
intelligent decisions compared to the ILP byte-hit algorithm in
selecting a set of segments and bitrates to be pre-fetched that
leads to the maximum cache-hit. Although, with the increase
in the cache size, we encounter a scenario in which all the
predicted segments can be stored at the MEC servers; therefore,
making the pre-fetching decision straightforward for all of the
algorithms to pre-fetch whatever predicted and achieving a high
cache-hit ratio.

Byte-hit ratio: Obviously, with more bytes served at the
edge, more savings over the BH link can be achieved. This
performance metric captures the ratio between the number of
bytes served from the edge and the overall number of bytes
requested. Therefore, we expect the ILP byte-hit to perform
better than the ILP cache-hit algorithm in pre-fetching higher
bitrate segments that can be shared among multiple UEs to
save BH bandwidth. Another advantage with the pre-fetching
of high bitrate segments is that a higher bitrate segment can be
transcoded to the lower bitrate segments and avoid the request
being re-directing to the core.

As illustrated in Fig. 2b, the number of bytes served from
the edge for the ILP byte-hit algorithm is more than the
ILP cache-hit algorithm. Similar to the cache-hit evaluation, the
algorithm shows a better comparable performance concerning
the ILP cache-hit when the cache size is smaller, and the
algorithm needs to decide on pre-fetching intelligently video

segments to the edge. Here, the ILP cache-hit shows a close
performance to ILP byte-hit because it can pre-fetch more
number of segments, increasing the number of served bytes,
but still being less than the ones achieved by ILP byte-hit.

Link utilization: Figure 2c illustrates the BH link utilization
as a function of cache size. This is compared with the baseline
in which all the segments are served from the core and no
pre-fetching is performed. We can observe that ILP byte-hit
achieves the lowest BH link utilization compared with the
baseline. This is justified by the fact that ILP byte-hit tends
to pre-fetch high bitrate segments that might be shared among
multiple requests at the edge. Therefore, a smaller portion of
the high bitrate requests will be directed to the core, and the
BH link will be conserved. As seen in Fig. 2c, the proposed
algorithm can save the BH link up to 69%.

V. CONCLUSION

In this paper, we proposed a novel method for ML-driven
predictive pre-fetching for the problem of DASH video stream-
ing in MEC-enabled mobile networks. The ML model predicts
the number of segment requests, bitrate, and the gNB asso-
ciation of the UEs over a prediction time window. An ILP
model with two objectives has been proposed for video content
pre-fetching and transcoding at the edge. We showed that with
an accuracy of (83-88-99%) for the three predictive tasks and
using the MEC to pre-fetch (or transcode) segments we gain
the cache-hit ratio of 60%, which implies a reduction in access
delay for 60% of the requests. We demonstrated that the BH
link utilization could be reduced by 69% through caching at the
edge using max byte-hit objective in a live streaming scenario.
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