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Abstract—Mobile data traffic demand has been growing at
an unprecedented rate in the last few years. Cache–enabled
mobile edge computing is known to be one of the most promising
techniques to accommodate the traffic demand and alleviate the
congestion at the backhaul links. However, due to limited cache
capacity at the eNBs, at some parts of the network, congestion
of the backhaul links and the radio resources is still possible.
Thus, efficient approaches are needed in order to cache content
at eNBs as well as to leverage the utilization of the resources in
the mobile network while trying to avoid their congestion.

In this paper, we study the trade–offs between the radio
resource utilization and the backhaul link utilization in cache–
enabled mobile networks. Initially, we show the trade–offs by
formulating a mobility–aware joint content caching, user asso-
ciation, and resource allocation problem as an Integer Linear
Programming problem and proposing a greedy heuristic to solve
the large instances of the problem. We then propose an approach
to compute radio resource and backhaul link costs, and by using
the costs, we formulate a joint user association and resource
allocation problem aiming at preventing network congestion,
assuming that the cached content is given. The results reveal
that around 10% more users get an association to the network
by using the proposed algorithm.

Index Terms—LTE, Mobile Edge Caching, Resource Alloca-
tion, User Mobility.

I. INTRODUCTION

Cisco’s analysis shows that the global mobile data traffic

grew 63% in 2016, ranging from 44% growth in the North

America to 96% in the Middle East and Africa. According

to its forecast, the global mobile data traffic is expected

to increase from 7 exabytes in 2017 up to 49 exabytes in

2021 [1]. Whereas, Ericsson’s forecast shows that by 2022

the global mobile data traffic will reach up to 71 exabytes

out of which around 75% accounting for video traffic [2].

This traffic increase will take place not only due to a huge

number of mobile subscriptions (around one million more

subscriptions in 2020 compared to the ones in 2017) but also

due to vertical applications such as Vehicle–to–Everything

(V2X) communication, e-health, etc.

This galloping trend forces Mobile Network Operators

(MNOs) to perform costly upgrades in order to meet this

data traffic demand. Cache–enabled Mobile Edge Computing

(MEC) is known to be one of the promising ways in order to

boost mobile network capacity. Since the video traffic demand

will predominate other sorts of mobile traffic demands [2],

it is vital to apply MEC techniques in order to save huge

backhaul link resources which, otherwise, would be highly

loaded [3]. Since local cache capacity at evolved Node Bs
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(eNBs) is limited, the efficient content (e.g., file, service)

caching requires careful considerations. For example, in order

to effectively select the content that is to be locally cached at

the eNBs, in our opinion, it is important to take into account

also users mobility, apart from their content preference.
On the other hand, although caching the high–demanded

content undoubtedly curtails the load at backhaul links, one

cannot claim that it totally prevents the backhaul link con-

gestion, whose utilization along with the utilization of radio

resources1 depends on the spatio–temporally fluctuating traffic

demand, which has been recently snowballing at a rapid pace.

Backhaul links and PRBs at some eNBs may be congested

while, at the same time, those resources may be underutilized

at other eNBs. It is, therefore, of a great importance to have

some techniques at disposal for leveraging the PRB utilization

and the backhaul link utilization. For example, if the file

demand that has been cached at an eNB is very high such that

it results in many User Equipments (UEs) being associated

with the eNB, leading to a congestion of its PRB utilization,

MNOs may decide to associate some of the UEs to less utilized

neighbor eNBs that may not have the requested file cached.

This would increase the PRB and the backhaul link utilization

of the neighbor eNBs while alleviating the load of the former

eNB, thereby, providing the possibility of serving more UEs.
With the advent of LTE networks, the focal point for MNOs

has been shifted from increasing the data rate experienced by

UEs towards more supporting high Quality of Service (QoS).

Bringing the content to the mobile networks edge (i.e., closer

to users) also plays a pivotal role in enhancing the QoS of

UEs by curtailing the round–trip time for service provisioning.

Ideally, in order to guarantee a high QoS for the UEs in

mobility, MNOs should always find an optimal UE–eNB

association and allocate enough PRBs to the UEs. Otherwise

with low QoS, the video quality, for example, may degrade.

The picture may appear distorted and in a slow motion, while

the audio and video portions may be unsynchronized. As

a consequence, the subscribers frequently experiencing such

problems may decide to change their mobile network provider.

In this work, it is our assumption that the host eNBs always

allocate PRBs to the UEs enough to meet the throughput

demand of the consumed services without degrading their

quality. The contribution of this paper is threefold.

• First, assuming that the UEs always achieve their re-

quested throughput, we study the trade–offs between PRB

1Radio resources are considered in terms of Physical Resource Blocks
(PRB) a pair of which is the smallest resource element assigned by the LTE
eNB schedulers to UEs. Their quantity at eNBs depends on the number of
sectors, LTE channels and the number of carriers. Hereafter, radio resources
will be referred as PRBs.
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utilization and backhaul link utilization by formulating

and solving a joint content caching, UE association

and resource allocation problem as an Integer Linear

Programming (ILP) problem. In order to address the

complexity of the proposed algorithm, we also propose a

greedy heuristic to solve the problem.

• Second, we study the effect of the cache capacity and the

file repository size on the resource utilization.

• Third, assuming the cached content is given, we compute

the cost of PRB and backhaul bandwidth based on their

utilization and, by using these costs, we propose an

algorithm to jointly associate UEs and allocate resources,

having the goal of avoiding congestion of those resources.

The rest of this paper is structured as follows. The related

work is discussed in Sec. II. The problem statement along with

the substrate network and UEs association request models are

introduced in Sec. III. The problem formulation is presented in

Sec. IV. The numerical results are reported in Sec. V. Finally,

Sec. VI draws the conclusions.

II. RELATED WORK

A considerable amount of literature has been published on

joint user association and cache placement problem, optimiz-

ing various aspects of wireless communication and mobile

computing in cache–enabled mobile networks. The major

part of these works focuses on minimizing users’ download

delay [4], [5], [6]. A multiuser joint task offloading and

resource optimization problem is studied in [4]. A heuristic

decision offloading algorithm is proposed aiming at maxi-

mizing the utility metric, which characterizes users’ Qual-

ity of Experience (QoE) in terms of their task completion

time and energy consumption. Another joint user association

and content placement problem is studied in [5] aiming to

minimize the weighted sum of user download delay and

caching cost, with the latter being proportional to the size

of the content. The problem is formulated as a non-linear

optimization problem, transformed into convex subproblems

and solved using Kuhn–Munkres algorithm. In reference [6],

a joint design and optimization of the content caching and

user association problem is formulated as an integer non–

linear programming problem aiming to minimize the average

download delay subject to cache and backhaul link capacity

constraints. In order to reduce the complexity of the problem,

the authors decompose the original problem into an assignment

problem and simple integer linear subproblems.
With the goal of maximizing the probability of files being

fetched by the local cache, an optimal cache placement prob-

lem is studied in [7]. The problem is modeled as a discrete

Markov chain with k–step corresponding to users random

walk. It is then transformed into a binary integer programming

problem and solved using Branch & Bound algorithm to find

the optimal solution, and a greedy approximation algorithm to

find a near–optimal solution.
Another group of studies focuses on maximizing users

data rate and backhaul savings [8], [9]. In [8], the authors

study the trade–offs between users’ association and backhaul

load reduction in cache–enabled mobile networks. Initially, an

exact algorithm is proposed for joint optimization of content

placement and users’ association, aiming at maximizing the

weighted sum of users’ data rate and backhaul savings. Then,

the authors propose an iterative algorithm that optimizes the

content placement at each base station assuming fixed user

association and optimizes user association assuming fixed

caching policy. In reference [9], the authors formulate a user–

cell association problem as a one–to–many matching game and

propose a distributed algorithm to solve it. Unlike the previous

work, the authors use users’ speed and direction of arrival in

order to estimate the duration in which a user will remain

under the coverage of a cell.

Some other works aim to load balance users traffic in the

network [10], [11], [12]. The authors of [10] propose a dis-

tributed user–traffic association algorithm with the goal of load

balance the traffic at cached base stations under the assumption

that the files are cached a priori. The load balancing is achieved

by setting a soft limit on the maximum traffic associated with

cached base stations. A joint user association and resource

allocation problem is also studied in [11]. Having the objective

of balancing users’ total data rate and the data rate retrieved

from the cache, the authors formulate a mixed integer non–

linear problem and solve it using a dual composition method.

However, very few works consider users’ mobility in their

optimization problem, which in our opinion plays a pivotal role

in a cache placement problem since cache contents are likely

to change depending on the users’ mobility. Moreover, to the

best of our knowledge, this is the first work that studies the

trade–offs between radio resources at eNBs and backhaul link

resources making sure that users always get their demanded

traffic. Additionally, this work employs a PRB and a backhaul

link cost selection approach in order to avoid congesting the

aforementioned resources in the network.

III. NETWORK MODEL

This section formally states the problem and details the

mobile network and the UE association request models.

A. Problem Statement

Figure 1 depicts the reference network scenario for the

joint content caching, UE association and resource allocation

problem. Consider an LTE network composed of two eNBs,

which are equipped with a cache having limited capacity,

and a core network, which serves as a gateway to access all

the content files. For simplicity, it is assumed that the files

requested by UEs have the same size and that each eNB has

a fixed amount of memory. If the files have different sizes,

they can be divided into blocks with equal sizes [11]. Thus,

the cache capacity can be expressed in terms of the number

of files that can be stored, which is obtained by dividing the

cache memory size by a file size. In this reference network, it is

assumed that each eNB has a cache with the capacity of storing

two files. Suppose the UE is connected to eNB1 requesting

the content one (C1). Since we consider UEs mobility, at

some point in time, the UE may be located in an area where

eNB2 may provide a better channel condition than eNB1.

Assuming that C1 content is not cached at eNB2, the UE

can either stay connected to eNB1 consuming more PRBs,

or the UE can handover connection to eNB2, and therefore,

although use a fewer PRBs, consume backhaul link resources.

Hence, a trade–off exists between the backhaul link utilization
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TABLE II: UE request parameters

Variable Description

Greq UE association request graph.

Nuef Set of files requested for all UEs in Greq .

Nuef (u) Set of files requested for the UE u ∈ Nue.

Nue Set of UEs in Greq .

Ereq Set of all virtual links in Greq .

Ereq(u) Set of virtual links of the UE u ∈ Nue.

loc(u) Geographical location of the UE u ∈ Nue.

ωu
prb

(m, f) PRBs needed from eNB m ∈ Nnet for file f ∈ Nuef (u).

ωu
prb

(m) PRBs needed from eNB m ∈ Nnet for UE u ∈ Nue.

ωu
tp(f) Throughput request by file f ∈ Nuef (u) of UE u ∈ Nue.

ωu
bwt

(e′) Bandwidth demand of link e′ ∈ Ereq(u) of UE u ∈ Nue.

TABLE III: Binary decision variables {0, 1}

Variable Description

Φu
m Shows if the UE u ∈ Nue has been mapped to the eNB

m ∈ Nnet.

Φu,f
m Shows if the file f ∈ Nuef (u) requested by the UE u ∈ Nue

has been fetched from the eNB m ∈ Nnet.

Φ̂u,f
m Shows if the file f ∈ Nuef (u) requested by the UE u ∈ Nue

that was mapped on the eNB m ∈ Nnet has been fetched
from the CDN eNB that is different from the host m eNB.

Φu,e′

e Shows if the virtual link e′ ∈ Ereq(u) of the UE u ∈ Nue

has been mapped to the substrate link e ∈ Enet.

IV. PROBLEM FORMULATION

Upon arrival of a UE association request, the substrate

network must decide if it can be accepted and mapped or if it

shall be rejected. This association problem can be considered

as a virtual network embedding problem [14], which is NP–

hard and has been studied extensively in the literature [15],

[16]. The embedding process consists of two steps: the node

embedding and the link embedding. In the node embedding

step, each virtual node (i.e., UEs, UEs’ requested files) in the

request is mapped to a substrate node (i.e., an ordinary eNB, a

CDN eNB). In the link embedding step, each virtual link (i.e.,

the link between UEs and their requested files) is mapped to

a single substrate path (i.e., a path between the host eNBs).

In both cases, nodes and links constraints must be satisfied.

A. ILP Formulation

Before formulating the ILP problem, we first need to find

the candidate eNBs for each UE in the UE association request.

Considering the location loc(u) of the UE u ∈ Nue along

with the location loc(m) and the coverage radius δ(m) of the

eNBs ∀m ∈ Nnet, a cluster of candidate eNBs Ω(u) for the

UE u ∈ Nue can be defined as follows:

Ω(u) =
{
m ∈ Nnet|dis(loc(m), loc(u)) ≤ δ(m)

}
(1)

We can now formulate the ILP problem. The objective

function (formula (2)) of this ILP problem is to minimize

the weighted sum of the PRB utilization and the backhaul

link utilization. The weights/costs Λbwt and Λprb provide the

possibility for the MNOs to control the use of the PRBs and

backhaul links of the eNBs aiming at preventing partial radio

resource and/or backhaul link congestion in the network.

min
( ∑

u∈Nue

∑
m∈Nnet

∑
f∈Nuef (u)

Λprb(m)Φu,f
m ωu

prb(m, f)+

+
∑

u∈Nue

∑
e∈Enet

∑
e′∈Ereq

Λbwt(e)Φ
u,e′

e ωu
bwt(e

′)
)

(2)

We will now detail the constraints used in this ILP problem.

Constraint (3) ensures that each UE is associated to one eNB

that belongs to its cluster of candidates (4).∑
m∈Nnet

Φu
m = 1 ∀u ∈ Nue (3)

∑
m∈Nnet\Ω(u)

Φu
m = 0 ∀u ∈ Nue (4)

Constraint (5) makes sure that each file f ∈ Nuef (u)
requested by the UE u ∈ Nue is fetched by only one eNB

that can be either the host eNB or a CDN eNB (6).

∑
m∈Nnet

Φu,f
m = 1 ∀u ∈ Nue, ∀f ∈ Nuef (u) (5)

Φu
m − Φu,f

m − Φ̂u,f
m = 0 (6)

∀u ∈ Nue, ∀f ∈ Nuef (u), ∀m ∈ Nnet

Constraint (7) enforces for each virtual link between the UE

u ∈ Nue and its requested file f ∈ Nuef (u) be a continuous

path established between the eNB hosting the UE and the eNB

providing the requested file. E�m
net is the set of the backhual

links that originate from any eNB and directly arrive at the

eNB m ∈ Nnet, while Em�
net is the set of the backhaul links

that originates from the eNB m ∈ Nnet and arrive at any eNB

directly connected to m.

∑
e∈E�m

net

Φeu,f

e −
∑

e∈Em�
net

Φeu,f

e =

⎧⎪⎨
⎪⎩
−1 if m = u

1 if m = f

0 otherwise

(7)

∀m ∈ Nnet, ∀eu,f ∈ Ereq

Virtual links can be mapped to a backhaul link in the mobile

network as long as the backhaul link has enough capacity to

meet the bandwidth demand of the virtual links (8).

∑
u∈Nue

∑
e′∈Ereq(u)

ωu
bwt(e

′)Φu,e′

e ≤ ωnet
bwt(e) ∀e ∈ Enet (8)

The cache capacity at each eNB determines the number of

files that can be cached, assuming that the files have equal

size. Constraint (9) makes sure that the quantity of the cached

files is less or equal to the cache capacity of the host eNB.

∑
f∈NF

Φf ≤ ωnet
ccp (m)

{
Φf = 1 if

∑
u∈Nue

Φu,f
m ≥ 1

Φf = 0 otherwise
(9)

∀m ∈ Nnet
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Algorithm 1: eNB Caching Algorithm

Data: (Gnet, Greq)
Result: Cached Content at the eNBs.
Phase I: Find the list of candidates;
for u ∈ Nue do

• For the UE u, find the candidate eNBs;
end
Phase II: Cache the popular content;
repeat

for f ∈ NF do
for m ∈ Nenb do

ratio =
PRB(m,f)

BANDWIDTH(m,f)·QUANTITY (m,f)
;

end
end
• Start file caching from the file at the eNB that has the minimum ratio;
• Delete the demand for the file that has been cached from those UEs

that request that file and have as a candidate eNB the eNB that has just
cached the file.

until Cache of each eNB is full;

Algorithm 2: UE Association Algorithm

Data: (Gnet, Greq , Nf )
Result: UEs Association and Resource Allocation.
repeat

• Compute PRB and backhaul link costs;
for u ∈ Nue do

• Associte the UE u to the candidate eNB that after association its
requested file(s) can be fetched with the minimal cost;

for f ∈ Nuef (u) do
• Fetch the file f requested by the UE u from the eNB which

would serve the file with the minimal cost;
• Allocate PRB and backhaul bandwidth resources;
• Update network resources;
• Compute PRB and backhaul link resource utilization.

end
end

until All batch requests are mapped;

Constraints (10) and (11) pertain to the PRB utilization.

Specifically, constraint (10) forces that the PRBs be provided

by the eNB that the UE has been associated with, regardless

of the eNB that provides the requested file. In other words,

even if the requested file is fetched from the CDN eNB, which

is different from the host eNB, PRBs must be allocated by the

host eNB. Lastly, constraint (11) ensures that the eNBs can

associate UEs as long as they have enough PRBs to meet their

requested file throughput demand.

ωu
prb(m)Φu

m −
∑

f∈Nuef (u)

(Φu,f
m + Φ̂u,f

m )ωu
prb(m, f) = 0 (10)

∀u ∈ Nue, ∀m ∈ Nnet∑
u∈Nue

∑
f∈Nuef (u)

ωu
prb(m, f)(Φu,f

m + Φ̂u,f
m ) ≤ ωnet

prb(m) (11)

∀m ∈ Nnet

The described ILP formulation is for the joint content

caching, UE association and resource allocation problem.

Notice that for the joint UE association and resource allocation

problem, the ILP problem formulation is the same with the

only difference that the files are cached a priori. Therefore,

the ILP has no need to select which files to cache at the eNBs

since it is already given. This information exempts the need

for applying constraint (9). Whereas, the rest of the constraints

along with the objective function are left the same.

B. Heuristic

The ILP problem becomes computationally intractable as

the size of the mobile network, the cache capacity at the eNBs

and the number of UEs, making association request, increase.

For example, the ILP algorithm takes 10 minutes on Intel Core

i7 laptop (3.0 GHz CPU, 16 Gb RAM) using the Matlab ILP

solver (intlinprog) to associate 50 UEs (a single batch UE

association request) and provide their requested content by

the mobile network composed of 1 CDN eNB and 6 eNBs

that have cache capacity enough for storing 3 files. In order

to address this scalability issue, we also propose a heuristic

that is able to embed the same batch UE association request

in less than a second.

Let us make the following notations before describing the

heuristic. Let n1 = |Nue| and n2 = |Nnet| be the number

of, respectively, UEs and eNBs. Then, let c1 and c2 be the

number of, respectively, candidate eNBs of the UEs and the

files cached at the eNBs. Finally, let k = |Enet| be the number

of the links between ordinary eNBs and the CDN eNB.

The proposed heuristic is composed of two parts: eNB

caching (Alg. 1) and UE association (Alg. 2). Both of the

algorithms are employed in order to solve the joint content

caching, UE association and resource allocation problem.

Whereas, only the UE association algorithm is used to solve

the joint UE association and resource allocation problem,

providing cached files at the eNBs as an input. The eNB

caching algorithm consists of two phases and aims at finding

the optimal content to be cached at the eNBs. In the first phase,

for each UE, the algorithm loops over each eNB and creates a

list of candidate eNBs by considering the coverage of the eNBs

and the distance between the UE and the eNBs. The required

time in order to complete this step is O(n1n2). The second

phase aims at finding the popular content to be cached at the

eNBs. Initially, the quantity, the PRB requirement in order

to support the overall throughput demand, and the bandwidth

demand on the backhaul links is computed for each requested

file at each eNB. Then, a composite metric, which is the ratio

between the PRB demand and the product of the bandwidth

demand and the quantity of the requested file, is computed

for each file of each eNB. The file caching starts from the

eNB that has the minimum ratio for any file and that file is

cached at that eNB. This is followed by deleting the cached

file demand from the UEs that are under the coverage area of

the eNB that has just cached the file. This process is repeated

until the cache capacity of the eNBs is filled with the cached

files. This phase takes O(n2c2[n1c1 + n2]) time.

Once the content caching is over, the information about the

cached content is fed to the UE association algorithm, which

initiates the UE association process. Before mapping the UE

batch association request, the PRB and the backhaul link costs

are computed, respectively, for each eNB and backhaul link by

considering their utilization. The costs of these resources are

directly proportional to their utilization. In other words, the

less is the utilization of a PRB/link at an eNB, the cheaper

is the cost of the PRB/link at that eNB. For each UE in

each batch association request, the algorithm considers all its

candidate eNBs and computes the association cost, expressed

as the sum of the costs of the required PRBs and the backhaul
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bandwidth, in order to map the files requested by the UE

to their corresponding candidate eNBs. The algorithm then

associates the UE with the cheapest candidate eNB.

After the UE has been associated, the algorithm considers

the files requested by the UE and checks the availability

of each file at the cache of the host eNB. If the file is

available, it is fetched from the host eNB; otherwise, it is

fetched from the CDN eNB through the shortest path, which

is picked by using Dijkstra’s shortest path algorithm. After the

file mapping, the required PRB and bandwidth resources are

allocated, and the network resources are updated. Lastly, the

utilization of PRBs and the backhaul links is computed for

each eNB, and the described process is repeated until all the

UE association requests of all the batches are mapped. This

step takes O(n1c1[log10 n2(c1 + 1) + 1]) time.

V. EVALUATION

The goal of this section is to compare the ILP–based and

the heuristic algorithms. We shall first describe the simulation

environment in our study. We will then report on the outcomes

of the numerical simulations carried out in a simulator imple-

mented in Matlab R©.

A. Simulation Environment

A small cluster (i.e., 7 eNBs) of an operational LTE–A

network in the city center of Yerevan (Armenia) is considered

in our simulations. The cluster provides mobile coverage in

an area of 3Km2. The CDN resides with the eNB deployed

in the center. All other ordinary eNBs are connected to the

core network by means of 1 Gbps wireless microwave links.

The number of sectors per eNB, as well as the number

of carriers/cells per sector, vary in the set of {3, 4} and

{1, 2, 3}, respectively. Three LTE channels, 20MHz, 15MHz

and 10MHz, are employed in the network. For simplicity, it is

assumed that omnidirectional antennas are employed and that

the eNBs support 2 × 2 MIMO configuration. However, the

overall channel bandwidth capacity of each eNB corresponds

to the real value computed as the sum of the LTE channel

bandwidths available at each sector of the considered eNB.

Initially, we consider mobile users and we compute the

optimal file caching, considering their requirements. It is

assumed that the users are moving in random directions

with different speeds [17]. More specifically, in our model

users speed are randomly picked in [3, 5, 10] Km/h set. 10
simulation runs are considered each corresponding to a single

time sample of users movement. Due to scalability issue of the

ILP–based algorithm, the simulations are considered for from

50 to 300 UEs, which make association requests with each

specifying maximum two files and the required throughput per

file. For simplicity, during each simulation run, it is assumed

the UEs requirements are known and do not change over time,

regardless of their location. Although capturing UEs changing

requirements would make the scenario more realistic, it would

also unnecessarily complicate the model without adding any

value to the main message of this study. UEs randomly request

files from the file repositories with the size of 10, 15 and 20.

The local cache capacity is expressed in terms of the number

of files that can be cached, assuming the files have equal size,

and the simulations are run for cache capacities enough for

storing 1, 2 and 3 files.

The results plotted in Fig. 2 and Fig. 3 are for the average of

10 simulations for both ILP and heuristic algorithms for cheap

PRB (CP-I and CP-H) and for cheap link (CL-I and CL-H)

cases. In these simulations, the cost of cheap PRB (Λprb) for

both algorithms is selected as a half of the cost of a backhaul

link. Whereas, the cost of a cheap link (Λbwt) is selected as a

half of the cost of a PRB. It is important to mention that these

values are selected for the sake of demonstrating the trade–off

between the backhaul link utilization and the PRB utilization.

In order to show the effect of computing and using appropri-

ate PRB and backhaul link costs, we also conduct a simulation

in which the MNO sequentially receives 100 batches of UE

association requests (each composed of 5 UE association

requests), assuming the eNBs have already cached the content.

B. Simulation Results

Figure 2 and Fig. 3 show the backhaul link, the PRB and

the overall resource utilization as a function of, respectively,

the cache capacity and the file repository size at the eNBs for

a fixed file repository size for a single batch of UE association

request composed of 50 UEs. In Fig. 2a, it can be observed

that the link utilization reduces for the ILP and for the heuristic

algorithms in both cases with the increase in the cache capacity

at the eNBs. This is justified by the fact that with the cache

capacity increase, the eNBs are able to cache more files, and

therefore, the probability that the files requested by UEs can be

directly fetched from the host eNBs increases, which, in turn,

reduces the backhaul link utilization. It can also be observed

that for both algorithms the backhaul link utilization is more

when its cost Λbwt is cheaper from the PRB cost Λprb.

Figure 2b displays the PRB utilization as a function of the

cache capacity. It can be seen that there is no significant

difference in the PRB utilization when the cache capacity

increases. This is because regardless of the cache capacity,

the UEs have to be provided the required number of PRBs in

order to meet their traffic demand. For both algorithms, we

can notice that the PRB utilization in the case of cheap PRBs

is more than that in the case of cheap links.

In order to compare the ILP algorithm with the heuristic,

let us now analyze the sum of the link resource utilization and

the PRB utilization for different cache capacities (see Fig. 2c).

Irrespective of the cache capacity at the eNBs, we can observe

that the overall resource utilization for ILP algorithm for both

cheap PRB and cheap link cases is less or equal to the overall

resource utilization in the case of the heuristic. This negligible

difference in the resource utilization witnesses the fact the

heuristic is able to find solutions very close to the optimal

ones found by the ILP algorithm.

Figure 3a captures the effect of the file repository size on

the link utilization. We can observe that the link utilization

increases along with the increase in the file repository size

since the more is the variety of the files that can be request-

ed/cached, the less is the probability that the requested files are

available at the local cache of the eNBs. This, in turn, increases

the probability of the files being fetched from the CDN eNB

located in the core network rather than from the host eNB,

resulting in an increase in the backhaul link utilization.
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(a) Link utilization vs. cache capacity.
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(b) PRB utilization vs. cache capacity.
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(c) Resource utilization vs. cache capacity.

Fig. 2: Average link utilization, PRB utilization and overall resource utilization as a function of the cache capacity of the eNBs

in the joint content caching, user association and resource allocation problem.
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(a) Link utilization vs. file repository size.
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(b) PRB utilization vs. file repository size.
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(c) Resource utilization vs. file repository
size.

Fig. 3: Average link utilization, PRB utilization and overall resource utilization as a function of the file repository size in the

joint content caching, user association and resource allocation problem.

The PRB utilization for different file repository sizes is il-

lustrated in Figure 3b. We can observe that the PRB utilization

slightly decreases with the file repository size increase. Since

the probability of the requested files being available at the

local cache of the eNBs reduces with the file repository size,

the UEs have no need for consuming many more PRBs in

order to reach to a farther eNB candidate that might otherwise

have the requested file at the local cache. Therefore, the UEs

prefer to use fewer PRBs in the cases of both algorithms.

Moreover, we can observe that the PRB utilization is more for

both algorithms when the PRBs cost cheaper than the backhaul

links. Finally, let us analyze the overall resource utilization as

a function of the file repository size depicted in Fig. 3c. We

can observe that similar to Fig. 2c, the heuristic for both cheap

PRB and cheap link cases achieves resource utilization values

very close to the optimal ones found by the ILP algorithm,

leading to nearly equal utilization of the overall resources.

Thus, both Fig. 2 and Fig. 3 clearly demonstrate the trade–

off between PRB and backhaul bandwidth. Specifically, we

observe that the cheaper is the cost of a PRB from the cost of

a Mbps backhaul bandwidth, the higher is the PRB utilization,

but also the lower is the backhaul link utilization at the eNBs.

Similarly, the cheaper is the single unit of backhaul bandwidth

utilization cost from the cost of a PRB, the higher is the

utilization of the backhaul link; however, the lower is the PRB

utilization at the eNBs. Hence, setting appropriate backhaul

bandwidth and PRB utilization costs enables MNO to balance

the utilization of these resources with the ultimate goal of

avoiding their congestion at the eNBs. One possible way to

TABLE IV: Execution Time

Number of UEs 50 100 150 200 250 300

CP-I (sec.) 5.93 30.37 90.37 144.01 237.93 304.33

CL-I (sec.) 5.9 30.49 89.42 145.7 258 326.1

CP-H (sec.) 0.11 0.17 0.31 0.34 0.39 0.43

CL-H (sec.) 0.12 0.2 0.29 0.34 0.39 0.47

implement this pricing mechanism is to employ cell range

expansion techniques such as the one using RSRP bias [18],

which allows UEs to camp on the eNBs having weak RSRP,

and therefore, offloading the eNBs having congested resources.

The main motivation for proposing the heuristic is to address

the scalability issue of the ILP algorithm. In order to get an

insight into how fast and scalable is the proposed heuristic, let

us analyze Table IV, which shows the execution time of both

algorithms for cheap PRB and cheap link cases for a different

number of UE association requests. The reported values are

for the studied mobile network in which the file repository

size is 10, and each eNB has a cache capable of storing a

single file. It can be observed that the execution time increases

dramatically with the number of UEs for the ILP algorithm for

both cases, while the execution time increase is negligible for

the heuristic. For example, in order to associate 300 UEs to

the network meeting their file and traffic demand, the required

time for the ILP algorithm is 5 minutes, while the heuristic

can achieve this association in less than a half second.

In order to ascertain the effect of the PRB and the backhaul

link cost selection on the utilization of the said resources, let

us analyze Fig. 4, which illustrates the distribution of the PRB
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(a) PRB utilization distribution at eNBs.
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(b) Link utilization distribution at eNBs.

Fig. 4: Distribution of PRB and backhaul link resource utilization for 100 batches of UE association requests for the cases of

using the computed PRB and backhaul link costs (upper box plots), and the default costs (the lower box plots) in the joint

user association and resource allocation problem.

utilization and the backhaul link utilization for all eNBs after

sequentially mapping 100 batches of UE association requests

in the joint UE association and resource allocation problem.

We remind the reader that each batch request in this problem

is composed of 5 UEs, and the cached content at the eNBs is

given. Fig. 4a displays the distribution of the PRB utilization at

eNBs for both ILP and heuristic algorithms with the upper box

plot corresponding to the case when the PRB and the backhaul

link costs are computed after each batch association and used

for next batch associations, and the lower box plot for the case

in which the default costs are always used (Λprb = Λbwt = 1).

It can be observed that computing and using PRB and the

backhaul link costs results in a more uniform utilization of

those resources at the eNBs for both the ILP and the heuristic

algorithms compared to the case of using the default costs. For

example, we can see the PRB utilization at eNB1 reaches up

to 100% in the default cost case (the lower box plot); whereas,

at the same time, the PRB utilization is less than 50% at the

eNB2, regardless of the employed algorithm. This uneven load

distribution in this particular scenario leads to around 10%

rejection of the UEs association request compared to the case

when Λprb and Λbwt are computed and used (the upper box

plot). Both the ILP and the heuristic have accepted all the

batch association requests (i,e., 500 UEs in total) in the case

of using the computed costs. Whereas in the case of using the

default costs, both of them have equally associated 455 UEs.

The picture is similar also for the backhaul link utilization

depicted in Fig. 4b. It can be observed that a significant

difference exists in the backhaul link utilization of the eNBs

in the case of using the default cost for the backhaul links

(the lower box plot). Conversely, the backhaul links of eNBs

are more uniformly utilized in the case of employing the

computed link cost, leading to a reduction of the probability of

rejecting UE association requests due to insufficient backhaul

link capacity. Fig. 4b also illustrates that in the considered

scenario the UEs batch association requests never got rejected

because of the insufficient backhaul link capacity since the

maximum link utilization at the eNBs is around 40%. This

is solely due to the fact that in the considered scenario each

eNB has only a single backhaul link, which results in each link

being used by only one eNB. However, in the case of having

multiple hops from the eNBs to the core network where the

CDN resides, some of the backhaul links will have to be shared

among several eNB, and the problem of uniform backhaul

link utilization will become more severe, requiring careful

backhaul link mapping in order to avoid as much as possible

congesting some of the backhaul links, which otherwise may

become a cause for rejecting UE association requests.

VI. CONCLUSIONS

Cache–enabled Mobile Edge Computing is perceived to be

a promising way to alleviate mobile backhaul load. In order

to fully deliver on its promises, however, it calls for efficient

content caching approaches at the network edge (i.e. at eNBs).

Additionally, approaches are needed to balance the utilization

between the backhaul links and PRBs at the eNBs.

In this study, we demonstrate the trade–offs between the

backhaul link utilization and the PRB utilization at eNBs

by formulation and solving a mobility–aware joint content

caching, UE association and resource allocation problem.

Assuming content is cached a priori, we then show the effect

of computing and using a unit of a backhaul link and a PRB

costs at the eNBs by formulating and solving a joint UE as-

sociation and resource allocation problem. Both problems are

formulated as VNE problems and solved using ILP techniques

with the objective of minimizing the weighted sum of backhaul

link and PRB utilization while making sure that UEs QoS

is not compromised. Heuristics are also proposed in order to

tackle the scalability issues of the ILP algorithms.

Small–scale simulations show that our algorithm, due to

more uniform PRB utilization at the eNBs, got 10% more UEs

associated with the network compared to the baseline approach

in which no backhaul link and PRB costs were used. Given the

imbalanced backhaul link utilization of the baseline approach,

we can deduce that in a big–scaled network, the gap in the

number of UEs association between these two approaches will

grow more. This stems from the fact that the backhaul links

of each eNB will be utilized also by other eNBs resulting in

a congestion on some backhaul links, which may ultimately

entail to rejecting more UEs association requests.
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