14th International Conference on Network and Service Management (CNSM 2018)

Dynamic Network Slicing for LoRaWAN

Samir Dawaliby, Abbas Bradai, Yannis Pousset

XLIM Laboratory

University of Poitiers

Poitiers, France

samir.dawaliby @univ-poitiers.fr, abbas.bradai@univ-poitiers.fr, yannis.pousset@univ-poitiers.fr

Abstract—One of the most important novelty in 5G is network
slicing proposed as a collection of logical network functions for
services running on a common physical device. In an Internet
of Things (IoT) context, network resources need to be efficiently
reserved and assigned for IoT devices in an isolated manner to
handle and support specific Quality of Service (QoS) require-
ments for each slice. The focus of this paper is to investigate
network slicing in LoRa network and propose a dynamic inter-
slicing algorithm based on a maximum likelihood estimation
that avoids resource starvation and prioritizes a slice over
another depending on its QoS requirements. Moreover, we place
the emphasis on a novel intra-slicing strategy that maximizes
resource allocation efficiency of LoRa slices with regard to their
delay requirements. After integrating an energy module for LoRa
in NS3, simulation results performed in realistic LoRa scenarios
highlight the utility of our dynamic network slicing proposition in
providing isolation between slices with specific QoS guarantees.

Index Terms—Internet of Things (IoT), LoRa, resource allo-
cation, dynamic, network slicing

I. INTRODUCTION

By 2020, it is expected that the 5th generation (5G) wireless
mobile networks will provide the means to allow an all-
connected world of objects and humans offering with it the
needed flexibility to manage heterogeneous networks with ma-
jor arising technologies namely software defined networking
(SDN) and network functions virtualization (NFV). With the
development of the latter, network slicing technology exhibits
great potentials and is proposed to provide a feasible solution
for 5G services [1]. 5G provision three services with conflict-
ing quality of service (QoS) requirements (i.e., enhanced mo-
bile broadband (eMBB), ultra-reliable low-latency communi-
cations (URLLC) and massive machine-type communications
(mMTC)). Machine type communication devices (MTCDs)
require heterogeneous behavior mainly when it comes to
reliability and latency requirements for delay-sensitive devices.
Therefore, network slicing came out as potential solution
that allows multiple virtual networks with various QoS to be
created on top of a common physical substrate, being mutually
instantiated on-demand with independent management.

The massive number of IoT devices continuously increasing
and connecting alongside mobile devices to the new generation
core network (NGCN) in 5G, brings an exceptional need for
bigger flexibility on network slicing definition and virtualiza-
tion. This leads to new challenges in designing a dynamic
network slicing and resource allocation strategy, which must
guarantee the slicing isolation principle and simultaneously

978-3-903176-14-0 © 2018 IFIP

134

Roberto Riggio
FBK
CREATE-NET
Trento, Italy
rriggio@fbk.eu

facilitates for the infrastructure provider resource allocation
for different architectures deployed in a cost-effective manner.

Recently, few research works tackled network slicing for
the internet of things, with focus on machine critical com-
munications over various wireless networks. The work in [2]
introduce a slicing infrastructure for 5G mobile networking
and summarize research efforts to enable end-to-end network
slicing between 5G use cases: eMBB, mMTC and URLLC.
Authors in [3] focused on URLLC and proposed several slicing
methods for URLLC scenarios which require strong reliability
and latency guarantees. Furthermore, authors in [4] and [5]
adopted network slicing in LTE mobile wireless networks. The
former propose a dynamic resource reservation for machine-
to-machine (M2M) communications whereas the latter present
a slice optimizer component with a common objective in
both papers to improve QoS experience of devices mainly
reliability and delay requirements. In a 5G wearable network,
authors in [6] took advantage of slicing technology to enhance
the network resource sharing and energy-efficient utilization.
Moreover, authors in [7] perform slicing in virtual wireless
sensor networks to improve lease management of physical
resources with multiple concurrent application providers.

At this stage, guaranteeing service-based QoS requirements
in LoRa wireless access network (LoRaWAN) with traffic
slicing remain as open research issues [8]. Therefore, un-
like the previous work, we aim in this article to investigate
network slicing in LoRa technology which, to the best of
our knowledge, has not been treated before by the research
community. LoRa proved to date to be one of the most
promising wireless technologies for IoT because it meets
low data rates requirements and offers the flexibility needed
between throughput and range [9]. The main contribution
is to extend the latter with a dynamic network inter-slicing
algorithm based on a maximum likelihood estimation and an
intra-slicing algorithm that meets the QoS requirements of
each LoRa device depending on its running application. The
remainder of this paper is organized as follows. We devote
Section II to present the system model and a description of
the problem is established in which we present the latter’s
constraints. Section III presents the proposed slicing algorithm
implemented over the LoRa module of NS3 simulator [10].
We evaluate the performance of the algorithm and analyze
simulation results carried out through various scenarios in
Section V. Finally, Section VI concludes the paper.
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Fig. 1. LoRa-like architecture for IoT

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. System Model

As illustrated in Fig. 1, we consider a LoRa-like network
for IoT, consisting of a set of K = {1,2,...,k} MTCDs
and M = {1,2,..,m} LoRa Gateways (GWs) randomly
distributed over a cell and connected to the cloud LoRa Servers
via fronthaul links. Compared to other technologies in the IoT
market such as Sigfox [11] and NB-IoT [12], LoRa is more
resilient to jamming and interference [9] due to its ability
to trade communication range against high data-rates in an
efficient manner.

Network slicing mainly brings flexibility to the network by
virtually reserving physical resources in order to meet the QoS
requirements of each slice. We define a slicing framework
that consists of a set of L virtual network slices such that
L ={1,2,...,1} can be created on physical network hardwares
(i.e., GW, server, etc.). In IoT, MTCDs are imposed by a set of
QoS requirements depending on the running IoT application
that may require critical delay deadlines. The main goal behind
slicing is to virtually split the network by reserving resources
for each slice on the same physical device with each slice [
characterized by a priority sp; and a bandwidth b; ,,, at the
GW level. We define a set of virtual flows F' where a device
k associated to slice [ generates a flow fy; ,,, that goes from
the GW m to LoRa servers and is characterized by a utility
metric Uy, which will be specified later on in this paper.
The gateways in range will receive the packets but only one
slice in a gateway will forward the packet to LoRa servers
to avoid duplicated packets. LoRa is based on LoRaWAN
protocol which uses chirp spread-spectrum (CSS) modulation
at the physical layer described in the IEEE standard 802.15.4
[13]. Regarding channel modeling, CSS modulation transmits
symbols by encoding them into multiple signals of increasing
or decreasing radio frequencies making signals more robust to
multi-path interference, Doppler shifts and fading [14]. Each
MTCD £ experiences a signal-to-interference-plus-noise ratio
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(SINR) from each GW m that depends on the spreading factor
(SF) adopted by each device for information transmission.
LoRa spreads each symbol in a rate of 2% chips per symbol
with SF = {7,...,12} resulting a data rate computed as
written in Eq. 1 below:

bl,m
~ SF.o

R,
Ryym=SF

\55F bits/s

ey

where R, denotes the chip rate and Ry ., the data rate
achieved by a device k depending on the bandwidth assigned
to slice [ of LoRa gateway m. Increasing the spreading factor
reduces the transmitted data rate, offers a better sensitivity and
increases the strength of the signal at the receiver following
to the Eq. 2 below:

tx T tx
Pk,l,mgk,l,mgk-,z,m X
L

TT _

k,l,om —

2

where P/4  and Pf7  denotes the received and transmit-
ted power with a channel antenna gain expressed with g; .,
and g;% ,, respectively. L is the path loss which depends on
the distance between the transmitter and the receiver and ef
is the lognormal shadowing component with & ~ N(0,02?).
Regarding interference, we follow the assumptions in [10]
where a packet should survive interference that comes from
other LoRa transmissions. Each LoRa device experiences a
SINR value computed based on the Eq. 3 below:

PiTw

0-2 =+ EnGBJ P 77;T

where P/ is the power of the packet n under consideration
sent by device with SF = i and J; a set of interfering packets
with a common SF' = j. Hence, packet survives interference
with all interfering packets if, summing the received power
values for each SF, it satisfies a higher receiving power margin
value than a threshold V; ; with ¢, € {7,...,12} listed in the
matrix below [15]. Each V; ; element in the matrix represent
the co-channel rejection when considering all couples of SF,
i.e. the power margin (dB) threshold of the signal that a packet
sent with SF = ¢ must at least have in order to be successfully
decoded over every interfering packet with SF' = j.

SINR; ; = 3)

SF; SFy SFy SFio SFi1 SFio
SF;, —6 16 18 19 19 20
SFg 24 -6 20 22 22 22
SFy 27 27 -6 23 25 25
SFio 30 30 30 —6 26 28
SFi1 33 33 33 33 —6 29
SFi2 36 36 36 36 36 —6
In IoT dense environment, the propagation loss model
is computed based on the log-distance propagation model
following to the Eq. 4 below:
d
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where L denotes the path Loss (dB), d the length of the path
(m), n represents the path loss distance exponent, dy the ref-
erence distance (m) and Lg the path loss at reference distance
(dB). Table I summarizes the key denotations adopted in the

paper.

B. Problem formulation

In this paper, network slicing optimization in IoT is three-
fold and involves: 1) MTCDs admission and association to
slices; 2) Dynamic flexible inter-slicing resources reservation;
3) Intra-slice resources allocation. In the first step, we search
to define L slices based on the delay urgency factor then we
assign each device to the slice that meets its service latency
requirement. It is noteworthy that in IoT, the delay urgency
factor represents the key index to define the priority of a
device over another without neglecting the service type, packet
loss rate and the load that results from the large amount
of IoT devices simultaneously connected to the network. In
the second step, we estimate the capacity needed ¢; for each
slice [ based on which physical receive paths on each GW m
will be reserved and characterized by a specific utility value
Uy,1,m- Finally in the third step, we search to optimize intra-
slice resource allocation by assigning each device in slice [ to
the most efficient virtual flow with the highest utility metric.
Let o, € 0,1 be a binary variable that indicates whether a
device k is associated with a flow fi ;. € F. The goal is
to maximize the number of LoRa devices assigned to virtual
flows in a way that maximizes the utility function adopted
by each slice members. Therefore, the slicing and resource
allocation problem for IoT can be formulated as

Maz Z Zak’thLm,Vm eM 5
k€K IEL
subject to
Cl:Y apy=1Yke K (62)
leL
C2: Z BrmPim < Pr%* ¥Ym e M,Vl € L (6b)
keK
C3: Z ak,lﬂk,mrk,l,m < RZL:LI,VZ e L,Yme M (6¢)
ke K
C4: Brm €{0,1},Vk e K,Nm e M (6d)

where constraint (6a) ensures that each MTCD is associated
to exactly one slice regardless of the chosen flows. The total
transmission power of each GW m is limited in constraint
(6b). Moreover, constraint (6¢) guarantees the sum of uplink
traffic sent by slice members do not exceed the maximum
data rate capacity of the slice that can be sent through each
gateway. Constraint (6d) ensures binary-association values
Bi,m of device k to GW m.

TABLE I
LIST OF PARAMETERS
Parameter ~ Parameter Name
M the set of LoRa Gateways
K the set of MTCDs
L the set of Slices
K; the set of devices associated to slice [
0j the set of packets with SF' = j
fri,m virtual flow for device & in slice [ through GW m
Uk,i,m utility for device k in slice [ on GW m
spL slice priority of slice {
by,m bandwidth assigned for slice [ over GW m
pnar maximum transmission power of GW m
9k,l,m power gain between a GW m and a MTCD k
es lognormal shadowing component
a1 admission index of MTCD &k to slice [
Br,m association index of MTCD k to GW m
U urgency factor for MTCD &k
dp instant packet delay for MTCD k
PDBy packet delay budget for MTCD k

III. THE PROPOSED SLICING METHOD

In a centralized LoRa network, the general control plane
and resource management module are moved to a management
and control entity (MCE) in the cloud to ensure an efficient
coordination of resources. Hence, LoRa servers will be the
final decision maker of assigning the devices to the appropriate
slice and defining the gateway that will transmit the packet
following to a three-steps optimization algorithm. In the first
step, each MTCD will be assigned to the slice that meets its
QoS requirements based on a balanced iterative reducing and
clustering method using hierarchies (BIRCH). Then, in the
second step GW resources will be dynamically reserved for
each slice based on a maximum likelihood estimation (MLE)
before choosing the best gateway that will forward the packet
to the server based on a maximum-utility algorithm.

A. BIRCH-based Slicing Definition

Due to the ultra-dense nature in an IoT, we adopt BIRCH
algorithm [16] which belongs to the agglomerative hierarchi-
cal clustering family and was proven as the best available
clustering method for handling large datasets [17] [18]. The
main goal behind this method is to define slices by checking
the QoS requirements of each MTCD and moving from a
large set of MTCDs into a group of subsets with similar
QoS requirements. We consider that MTCDs are dynamically
joining or leaving a slice following to their QoS requirements.
This process is controlled by the server in which it will
associate a device to a network slice at each slicing interval.

Root

G1(CFy) GI(CE)

C11(CFy) L C11(CFyy) Ci1(CFy) L Cri(CFy)

[ [
CFy,CF,...,CFx, ,

CF/,CF}",....CFx,,

Fig. 2. BIRCH-based Slicing Tree
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The most urgent MTCDs are the ones that have the closest
instant delay dj, to their packet delay budget PDBj, and are
assigned the highest priority. We denote wj as the urgency
factor of device k with uy = di/PDBy. Given K; MTCDs
in a cluster [, the latter will be considered as a utility point
ug of each MTCD device in a cluster with £ = 1,2, ..., K.
Each node in the CF-tree is a cluster of subclusters defined
by a clustering feature C'F' as follows:

K
CF = (K, LS, SS) Kl,zuk,zuk (7)
k=1

where K denotes the number of MTCDs in the cluster, LS
the linear sum of the K utility points and SS the square sum
of the K utility points. BIRCH dynamically builds a CF-tree,
plotted in Fig. 2, at each time a new MTCD is inserted based
on two parameters: a branching factor B and a threshold 7.

Pseudo-code 1 BIRCH-based MTCDs-admission Algorithm

Input : Set of MTCDs K, diameter D, branching factor L,
threshold T’

begin
Initialize as many clusters as MTCDs
for each k € K do
Start from root
Search for closest child node according to D
Search for closest subcluster according to D
if number of entries <'I' then
‘ Add k to subcluster Cj;; Update CF of Cj;
else if number of childs < B then
Create a new subcluster Cj ;/

Add k to Cyp ; Update CF of the parent node .S;
else if number of parents < B then
‘ Split child nodes

Redistribute CF entries according to closest D
else

| Split parent nodes
end

end
Update CF entries in CF-tree

end
Output: Set of MTCD groups G;(I=1,2,...,.L)

Each parent node contains a maximum number of B childs
and a single child node contains at most 7' entries. In this
problem, B represents the number of L slices created with
K, the group of MTCDs admitted to slice /. Hence, [ nodes
derive from the root representing the slices created with each
slice is made up of a group of MTCDs subclusters. In Pseudo-
code 1, the algorithm scans the clusters from the root (line
3) and recursively traverses down the CF-tree and chooses
the closest node at each level with the smallest average inter-
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K;

2.

k=1k'=

cluster distance D as follows:
KLJrKl/
/2
minD = ( ) ,VkEKl,Vk‘IEKZ/
(3

(up — upr)
Ki+1
K lK I

After defining the candidate child node, a test is performed
to find the closest CF-entry and define if the MTCD can
be added to the candidate subcluster without violating the
threshold condition. If so, group the node with the chosen
entry and update the CF-entry of the candidate subcluster
(line 4). If not, a new entry is created for the node inside the
candidate child node without breaking the branching factor
condition (line 5-6). Otherwise, we split the child node and
redistribute the utility points based on the closest distance
criteria to obtain a set of new subclusters that do not break
the branching factor constraint (line 7-8). In case the number
of childs already reached the maximum, we split the parent
nodes and the childs are redistributed to the closest parents
(line 9-10). We finally update all CF informations of the path
from the inserted information to the root (line 13).

B. Dynamic MLE-based Inter-Slicing Algorithm

Knowing that the physical capacity ¢ of each GW’s radio
resources is limited. The goal here is to estimate and reserve
the appropriate resources by finding the maximum likelihood
buffer demands for each slice [ starting by the one with the
highest slicing priority. We assume that the traffic that needs
to be uploaded follows a Poisson distribution and the servers
are aware of the buffer status B; of MTCDs in each slice .

Lemma 1: Let T; be the throughput needed by each MTCD
i,Vi € K, captured at each slicing interval and identified by
a corresponding probability distribution. For a fixed capacity,
the optimum slicing strategy is to virtually reserve resources
for each slice based on the mean throughput of its members.

Proof: We consider T; follows a Poisson distribution P()\;)
where \; denotes the throughput needed by device 7 assigned
to slice [,Vi € K. Let f(T;|\;) be a probability density
function similar to L(A;|T;) that represents the likelihood of
A; given the observed throughput.

LT, T3, ..., Tk,) = f(Th| A1) f(Ta|A2).... f(Ti\)
K, T
e "
LT, Ty, ... Tre,)) = [ | i
=1
K" e—Al)\Tz
logL(/\|T17T2,...,TKL):log[H T—!Z
=1
_,\ )\T
logL(\|Ty, Ty, ..., Tk, Zlog
Kz
logL(A[Ty, Ty, ..., Ti,) = Y [ = A + TilogA — log(T3!)]
i=1
K,
logL(A[Ty, T, .., Ti,) = Kidi + Y Tilogh;
=1
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To find the maximum likelihood parameter, we apply the first
derivative and solve it to zero

K
> T

=1

Ai

OlogL(\|Ty,Ts, ..., Tk,)
13\

—K; +

K,
> T

i=1
K;

>

Vi e K

o~

Hence, \; represents the optimal parameter estimation
which proves that the optimal slicing decision is to consider
the mean throughput of each slice members. However, slices
are not equal in terms of priority. Therefore, resource on GWs
will be dynamically allocated to the most urgent slice starting

P
by the channel with the highest reliability. Let ©; = A\;/>_ T;

be the slicing rate based on which the algorithm reservleglfor
each slice a capacity ¢; , = ¢,,,.0;,Vi € L. The algorithm
starts with the most urgent slice, computes its needed through-
put estimation \; and defines ©; for channels reservation. The
algorithm moves to the next slice and repeats the process until
it serves all the slices or stops when no resources are left for
the lowest priority slice.

C. Intra-Slicing Resource Allocation Algorithm

After defining and reserving the radio resources for each
slice, we search in this section to maximize the utility
function of MTCDs in each slice. Here, utility function for
each slice is computed based on multiple criteria weights
w, and w;q for reliability and load respectively manipulated
using the analytical and hierarchy process (AHP) approach.
The latter is proved as a verydecent method for multi-criteria
decisions and was adopted by a large number of applications
[19]. Based on the QoS table proposed in Table II, one can
note that in IoT, MTCDs can be classified into three categories:

1) High critical communications (HCC): require the high-
est priority due to urgent delay communications and relia-
bility, i.e: surveillance, emergency alerting and alarm mon-
itoring. Based on Eq. 9, Ugcc is computed to define
the utility for critical communications MTCDs with o, =
SINRy 1, m/SIN R4, the rate of reliability of SINR that
a device k achieves on a flow fj;,, over the highest flow
reliability that can be achieved through slice [ and J,., a binary
variable that guarantees a minimum threshold when searching
for the highest reliability links.

with 6, € {0,1} )

UHCC = 5r(0rwr)

2) Medium critical communications (MCC): require lower
priority consideration and are less critical in terms of delay.
This slice presents a trade-off between reliability and load, i.e:
health sensors and home security systems.

Upmcc = orwy + oqwig (10)

138

TABLE II
APPLICATION PARAMETERS [20]
Packet
SLice Delay e Percentage of
Qct ID Budget Services IoT flows
Surveillance and

5 1 <100 ms Emergency Alerting 10 %
12| 2 [100-1000ms | HeahSemos s g
’ 3.4 ‘ 5 ‘ 100-1000 ms ‘ Home Security System ‘ 15 %

Smart Metering
6 3 >1000 ms Applications 60 %

3) Low critical communications (LCC): require the lowest
priority due to their non-guaranteed data rate and delay-
tolerant QoS requirements, i.e: smart metering applications.

Urcc = o1qwiq

Y

The algorithm searches in each slice for the gateway with
the most robust and reliable link that offers the lowest delay
[21], finds the highest Uy metric and allocates resources
accordingly. Adding load to Ugcc metric could play a
negative role in finding the most reliable link for a small
number of urgent devices. However, unlike HCC slice, for a
greated number of devices in Up;cc and Ur o slices, load is
important because in some cases the most reliable link may be
overloaded due to the massive number of devices and should
not be taken into consideration. Hence in Eq. 10, Uy;cc is
defined to search for the optimal flow that searches for a
trade-off solution that offers the highest reliability with the
minimum load possible. And finally in Eq. 11, LCC slice
includes delay-tolerant devices with high packet delay budgets
which justify Urcc metric calculation in a load-aware manner
without taking reliability into consideration. In Fig. 3, we
consider a directed network N = (V, E), where each MTCD
k is a source node s uploading traffic to the internet considered
as a sink node t such that s, € V. Moreover, each GW m is
considered as edge node and bounded by the amount of flow
allowed for MTCDs in each slice {. For each MTCD £ in [,
we search in the network for the flow that maximizes its utility
function. Without loss of generality, we assume that no edges
enter the sources or exist sinks. For each edge, we consider
the respective utilities Uy, ; ,, and U}/, . in the network based
on Eq. 12 below: 7 ,

Unom = Uk pom + Ui 1m (12)

Each MTCD £ assigned to slice [ search for the most efficient
virtual flow with the objective to find the highest utility metric
Uy,1,m following to Pseudo-code 2 below.
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Uii2
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Fig. 3. Flow modeling for IoT Network Slicing

Pseudo-code 2 Max-Utility Inter-Slice Resource Allocation

Input : Set of MTCDs K, GWs M, slices L and capacity c
begin

for each GW i € M do
Put slices in increasing order based on sp;
Reserve ¢; ; based on MLE estimation
Initialize flow utilities to null for all e € F
end
for each slice | € L do
for each MTCD k € K; do
Draw network N (V, E)
Find path with the highest utility Uy, ; p,
Allocate device k to fi 1,m
Update capacity ¢;
end
end
end

Output: Max-Utility flows allocation for MTCDs

IV. SIMULATIONS AND RESULTS

In uplink, centralized LoRa servers enable the opportunity
to make efficient slicing configurations based on data traffic
in MTCD’s buffer. In this work, we used the LoRa model
implemented by [10] in the open source NS3 simulator [22].
Simulations are replicated 50 times with respect to the pa-
rameters shown in the first section of Table III. We realize
the experiment in a realistic LoRa scenario where MTCDs are
randomly uploading small packet data to LoRa servers but in
a periodic manner. While fixing the number of LoRa gateways
to 4, the number of devices is increased till it reaches 1000
devices in a single cell. Simulations start with 100 devices to
emulate a load of one due to the legal duty-cycle limitations of
1% in the European region [23]. LoRa devices and gateways
are both placed over a cell of 7.5 KM radius following to a
uniform random distribution. Each device is configured with
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spreading factors that varies from 7-12 when uploading traffic
to LoRa GWs characterized by 8 receive paths in the 867-
868 MHz european sub-band. Based on the Eq. 13 below, we
seek to evaluate the energy consumed by each MTCD when
we increase the number of LoRa devices in each slice.

pzr + p;“ac
V + epa

where Ej ;. is the energy consumed by an IoT device, V
the LoRa supply voltage, epa the amplifier’s added efficiency,
di, the duration of transmission, p;” the power of reception
and p}* the power of transmission that vary between 2 and 14
dBm based on the spreading factor 7 adopted. However, energy
is not implemented yet for the LoRa module. Therefore, we
added an energy module inspired by the one that already exists
for Wifi module and we configured the energy parameters
following to the power model adopted for LoRa in [14] and
[24] as shown in the second section of Table III below.

Eyim = (13)

Utz /re

A. Energy Consumption

When increasing the number of nodes, the total energy
consumed increases for all the simulated slices, as plotted
in Fig. 4 below. However, HCC (Slice 1) scored the low-
est energy consumed regardless of the number of devices.
This returns to the reliability utility value that forces delay-
sensitive devices to take the most reliable path with the lowest
spreading factor values and transmission power compared to
MCC (Slice 2) and LCC (Slice 3). On the other hand,
considering load in utilities will push sometimes a device to
select a farther gateway with lower reliability. In that case, the
device is configured with a higher spreading factor and will
increase afterwards its transmitting power to reach the gateway
efficiently. Hence, energy consumption for this device and
other MTCD’s belonging to the same slice will also increase
on the expense of reliability. This explains the highest energy
consumption on LCC' slice members because they do not
consider reliability in their metric calculations.

vt Slice 1|
Slice 2

3.5 | ¥ Slice 3

Mean Energy Consumption (J)

500 600 700 800 900

Number of nodes

300 400

200

1000

Fig. 4. Energy Consumption Variation
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Simulation Parameters
600 seconds

Simulation Time

Slicing Interval Time 50 seconds
Cell Radius 7.5 KM
Number of replications 50

MTCDs and GWs distribution
Propagation loss model

Random Uniform
Log-distance

Bandwidth 125 kHz
Spreading Factor {7.8,9,10,11,12}
Confidence intervals 95%

European ISM sub-band 863-870 MHz

Power Consumption Parameters [14] [24]

Battery Maximum Capacity 950 mAh
LoRa Supply Voltage 3.3V
Amplifier Power’s added Efficiency | 10%
Connected (Tx/Rx-SF7) 2 dBm
Connected (Tx/Rx-SF8) 5 dBm
Connected (Tx/Rx-SF9) 8 dBm
Connected (Tx/Rx-SF10) 10 dBm
Connected (Tx/Rx-SF11-12) 14 dBm
Standby 0.09 mW
Sleep 0 mW

TABLE III
SIMULATION PARAMETERS

B. Dynamic Slicing (DS) vs Fixed Slicing (FS)

To validate our dynamic-slicing proposition we consider the
scenario where we fix the number of receive paths assigned
in an equal manner between slices for all slicing intervals and
we compare it to the proposed dynamic slicing where path
reservation is dynamically done based on the MLE throughput
estimation for each slice. We evaluate the performance of
both mechanisms in terms of reliability, throughput and the
percentage of devices that respected their delay deadlines.
Simulations are replicated 50 times to be able to draw figures
with 95% confidence intervals.

60

== Fs-Slice 1
&0 FS-Slice 3
g DS-Slice 1
50 F nil DS-Slice 3

40 |

Packet Loss Rate (%)
w
o
oy

20 | ;

400 500 600 700 800 900
Number of nodes

100 200 300 1000

Fig. 5. Packet-loss Rate Variation

1) Packet Loss Rate (PLR) Variation: As plotted in Fig. 5
below, excluding load from metric calculations of HCC
slice reduced the percentage of packets lost due to reliability
consideration unlike the case of LCC' slice where only load
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was considered. Moreover, regarding the latter comparison,
one could obviously note the efficiency of dynamic slicing
in reducing the rate of packets lost with an approximately
50% improvement in both HCC and LCC slices. This
improvement returns to the proper estimation method which
adapt the bandwidth of a slice to the needed throughput
starting by the most critical slice. The sporadic nature of
packet transmissions in HC'C' slice require low latency and
high reliability with unsteady throughput needs which may
sometimes exceed the actual bandwidth reserved on the most
reliable gateway. Hence, if this slice do not get the required
bandwidth, PLR increases due to congestion.

2) Throughput Variation: In Fig. 6, increasing the number
of devices decreases throughput to small values in the order
of few kb/s. This is normal due to the increasing congestion
in each slice. However, regardless of the congestion, DS
method had the upper hand in all the slices simulated. One
should note that as expected, HC'C slice always scored the
highest throughput compared to M CC and LCC slices due
to the lowest spreading factor configured on its members
when choosing the highest reliable paths between the ones
available on each LoRa gateway.
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=2a FS-Slice 3
g DS-Slice 1
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|
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Fig. 6. Mean Throughput Variation

3) Percentage of Unserved nodes: The efficiency of DS
is mainly shown in Fig. 8 below. Here, LCC slice was
not simulated due to the delay-tolerant nature of its mem-
bers. An IoT device transmitting on a more reliable link is
configured with a spreading factor that will let him reduce
the spectrum occupancy time. This explains why HCC' slice
members always respected their delay deadlines compared to
MCC members regardless of the strategy adopted for slicing.
The improvement in PLR that DS achieved compared to FS
strategy, reduced the number of packets retransmitted and the
percentage of devices that respected their delay deadlines.
Therefore, in a comparison between HCC and MCC slice
and despite having the lowest packet delay budget, HCC slice
members with DS always scored better results than FS in
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Fig. 7. Performance Study with/without considering load in metric calculations

respecting delay deadlines with an unserved rate that never
exceeded 20% of the total number of packets transmitted.
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C. Load vs Non-load aware

We also studied the impact of adding load metric to
utility calculations when we increase the number of LoRa
devices assigned to each slice. In this scenario, we focused
on evaluating performance metrics in terms of throughput,
packet loss rate and the percentage of devices that respected
their delay deadlines with (load-aware) and without (non-
load aware) considering load in utilities computation. In an
IoT environment, nearby devices may have interests with the
same gateway regardless of the slice that they occupy. In that
case, all devices will try to connect with the same gateway’s
bandwidth which will suffer from congestion specially if they
belong to the same slice decreasing with it the probability of
successfully decoding the packet. Therefore, it would be better
if the algorithm tries to decrease the load by distributing and
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forwarding packets to a less-loaded slice on another gateway
with acceptable reliability. Simulation results in Fig. 7 prove
the efficiency of load consideration when computing the mean
values of slices with and without considering load in metric
calculations. This mainly improved the performance of LoRa
devices in terms of throughput (Fig. 7a) where a higher
throughput was always achieved when the number of devices
increase. This mainly returns to the 50 % improvement in
the rate of packets lost shown in (Fig. 7b). The centralized
scheduler assign a device to a less-loaded gateway when
the latter suffers from congestion and this mainly happens
for MCC and LCC slices. HCC slice members get the
highest priority and the needed bandwidth on the most reliable
gateway leaving a smaller bandwidth for the remaining slices
and a higher probability of congestion. The number of devices
that respected their delay deadlines also improved as shown in
(Fig. 7c). In this aspect, M CC slice is the main beneficiary
from load consideration because it has delay requirements with
lower capacity reserved for its members compared to than the
one provided for HCC slice. This will increase the rate of
packets successfully delivered for M C'C' slice members with
respect to delay deadlines when they transmit to less-loaded
gateways instead of loosing them cause of congestion.

V. CONCLUSION

The number of technologies enabling LPWANS are increas-
ing with the goal to improve QoS in an IoT environment
with emerging technologies such as network slicing. In this
paper, we evaluate the latter in LoRa technology with the
goal of defining LoRa slices and maximizing utilities in each
slice. Therefore, we propose a dynamic network inter-slicing
algorithm based on a maximum likelihood estimation and an
intra-slicing algorithm that meets the QoS requirements of
each slice. Numerical results show that dynamic slicing im-
proved the efficiency of LoRa devices in terms of throughput,
energy consumption and the percentage of satisfied devices
with regard to their delay requirements.
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