

Delay-aware VNF Placement and Chaining based
on a Flexible Resource Allocation Approach

Abdelhamid Alleg1, Toufik Ahmed1, Mohamed Mosbah1, Roberto Riggio2, and Raouf Boutaba3

1) CNRS-LaBRI (UMR5800), Univ. Bordeaux / Bordeaux INP, France
2) Future Networks (FuN), FBK CREATE-NET, Trento, Italy

3) David R. Cheriton School of Computer Science, University of Waterloo

aalleg@labri.fr, tad@labri.fr, mosbah@labri.fr, rriggio@fbk.eu, rboutaba@uwaterloo.ca

Abstract— Network Function Virtualization (NFV) is a

promising technology that is receiving significant attention in
both academia and the industry. NFV paradigm proposes to
decouple Network Functions (NFs) from dedicated hardware
equipment, offering a better sharing of physical resources and
providing more flexibility to network operators. However, in
such environment, efficient management mechanisms are
crucial to address the problem of Placement and Chaining of
Virtual Network Functions (PC-VNF). In this paper, we
introduce a PC-VNF model based on a flexible resource
allocation approach that takes into account service
requirements in terms of latency, throughput, and error rate,
in addition to traditional connectivity and resource utilization.
This is particularly important for emerging 5G services such as
ultra-reliable, low latency and massive machine type
communications. The end-to-end performance needs to meet
the user expectations as well as service requirements to provide
the desired QoS/QoE. Our main goal is to determine the
optimal VNF placement minimizing resource consumption
while providing specific latency (i.e., end-to-end delay) and
avoiding violation of Service Level Agreements (SLA) by
constraining allocated resources to a given VNF to reach its
required performance. Results show that our approach
achieves the required latency with better resources utilization
compared to the classical approaches, with a reduction of up to
40% of resource consumption and a higher rate of accepted
requests by recovering 15 to 60 % of the rejected requests.

Keywords— Network Function Virtualization; Placement and

chaining VNF, QoS (Quality of Service), QoE (Quality of
Experience).

I. INTRODUCTION

The majority of network services are built on top of
physical proprietary hardware devices known as middle
boxes. The diversity and the increasing number of new
services requested by users have led to significant CAPEX
and OPEX supported by operators to purchase, store and
maintain these middle boxes. Recently, network providers
started shifting towards virtualized and softwarized network
infrastructures capable to offer innovative services to
subscribers and keep abreast of continuous changes.

Network Function Virtualization (NFV) has been
proposed as a means to meet this need and provide concrete
solutions to underlying challenges of placement,
management, chaining and orchestration of network

services. In particular, NFV provides a malleable approach
to design, deploy and manage network services. The main
idea is to substitute by software appliances network
functions, such as Deep Packet Inspection (DPI),
firewalling, media gateways and intrusion detection, that
were until now carried-out by dedicated hardware devices.
Virtualized Network Functions (VNFs) are easy and
inexpensive to deploy, maintain, upgrade and scale over
virtualized network infrastructures (NFVI).

Each network service is represented by a Service Function
Chain (SFC) and has specific requirements in terms of
latency, throughput, and error rate in order to offer a specific
QoS (Quality of Service). Next generation 5G networks
propose to classify network services into different categories
offering diverse performances for broadband
communications, mission critical communications, massive
IoT, etc. The aim is to slice the network resources
(computing and networking) so as to support requirements
for diverse services, use cases, and business models ranging
from high throughput services to latency-sensitive services.

Each SFC is composed of a sequence of VNF instances
that require a specific amount of resources. The allocated
resources (computing, memory, storage and bandwidth) and
the physical location of each deployed VNF instance will
affect considerably the resulting end-to-end QoS
performance such as latency.

In this work, we formulate the Placement and Chaining
problem of VNFs (PC-VNF) as a Mixed Integer
Quadratically Constrained Program (MIQCP) called
Flexible Resources Allocation Model (FRAM). The novelty
of our work lies in considering the relationship between the
resources allocated to a VNF instance and the expected
latency, this way ensures delay-awareness in the placement
and chaining of VNFs process.

For comparison purpose, we develop a Strict Resources
Allocation Model (SRAM) as a baseline that represents
exiting approaches which did not consider the
aforementioned relationship and solve the PC-VNF by
allocating the exact amount of resources requested by VNFs.
We define the processing delay or latency as the time needed
for a data packet to pass through a VNF instance from
ingress to egress.

Existing approaches based on strict resource allocation
tackle the PC-VNF problem by answering the following
question “How much resources does each VNF require to be
instantiated?”. However, our flexible resource allocation
approach handles this problem differently by addressing the
question of "How much resources have to be allocated to the
VNF in order to satisfy the required latency?”. This will
provides solutions to the PC-VNF problem that satisfy delay
requirements without allocating unnecessarily resources
hence avoiding overconsumption of network resources.
Moreover, our approach sheds light on new aspects of the
PC-VNF problem, such as the variation of performance
according to the type of VNF for the same amount of
allocated resources and the impact of the VNF
implementation on resource consumption.

The rest of this paper is organized as follows. Section II
presents relevant related work. Section III discusses the
Network Model, the PC-VNF problem and define the
resource-delay dependency. Section IV describes both
FRAM and SRAM models and their mathematical
formulations. Section V evaluates their performance, and
finally section VI concludes the paper.

II. RELATED WORK

NFV promises to reduce CAPEX and OPEX network
operators by leveraging commodity hardware as a platform
for deploying softwarized network functions. It also
provides a more flexible means for designing and managing
network services. A large number of research papers have
been published on the placement and chaining of VNF (PC-
VNF) problem [1] with the goal of optimizing the placement
of VNFs subject to different optimization objectives
(number of VNF instances, resource utilization, provising
cost, etc.). Works in this field can be classified according to
their proposed formulations (model and objective) proposed
by their solutions.

Addis et al. [2] modelled the problem of VNF service
chain placement and routing as a Mixed Integer Linear
Program (MILP) to optimize both network link and compute
resource utilization. Considering two forwarding modes
(Standard and Fastpath), they defined the delay introduced by
a VNF as function of traffic demands. In the first mode, the
processing and forwarding latency is defined as a linear

function while in the second, it is defined as constant up to a
maximum aggregate bit-rate. However, their model considers
VNF delay as a function of traffic load rather than a function
of the amount of physical resources allocated to a VNF
instance. For example, similar VNFs can have different
processing delay when dealing with same traffic demand but
using different amount of resource. (the case when varying
the number of vCPU). In addition, authors in [7] formulated
an ILP model and proposed a heuristic procedure based on a
binary search. They associate a processing delay value to
each type of VNF but this value is static and constant
regardless of the amount of allocated resource or the traffic
load.

Mehraghdam et al. [5] proposed a mixed-integer
quadratically constrained programming (MIQCP) with
different optimization objectives for VNF placement. They
developed a heuristic to specify the VNF service chain. The
MIQCP demonstrated the effect of optimization objective on
the obtained VNF placement. However, authors did not
consider the delay introduced by VNF instances and its
impact on end-to-end delay.

Bari et al. [6], solved the placement problem by finding
the required number of VNF instances to optimize OPEX
(node and link resource utilization level) by formalizing an
ILP. Moreover, heuristics based on dynamic programming
are proposed to solve larger networks. As a service level
agreement (SLA) constraint, they only considered link
propagation delay and did not tackle latency introduced by
node processing delay.

Taleb et al. [15] considered two competing objectives for
VNF placement in mobile core network and proposed three
solutions. First, ensuring an acceptable QoE by a near-user
placement of data anchor gateway. Second, avoiding the
mobility anchor gateway relocation by placing VNFs far
enough from users. The third solution is a trade-off between
the two previous solutions modeled using game theory [17].
The scope is however limited to only two particular mobile
core network functions and VNF resource requirements have
not been considered.

In a similar context, Baumgartner et al. [14], investigated
the placement of virtual mobile core network functions
excluding VNFs on the radio access network. They aimed to
minimize resource provising cost while meeting VNF
requirements in terms of bandwidth, processing and storage.
However, they do not address latency constraint.

Table III. MODELS ADDRESSING THE PC-VNF PROBLEM

WORKS MODEL HEURSTIC
PROCESSING

DELAY
DELAY CONSIDERATION OBJECTIVE

[2]
MILP

Multi-objective math-
heuristic

 as function of traffic demands
Minimize number of cores (CPU)

and optimize link utilization
[5]

MIQCP
Data rate based

algorithm
x Only link latency

Maximize the latency, the remaining data rate
and the number of nodes

[6] ILP Dynamic programming x Only Propagation delay Minimize the operational cost of a network.
[7] ILP Binary search heuristic  Constant processing delay Minimize the VNFs number
[8] ILP Selective heuristic x No delay consideration Minimize the provisioning cost

[14]
ILP - x No latency consideration

Optimize both Virtual Network Topology and
Virtual Network Embedding

[15]
ILP - x Only transfer delay

Minimize the path length
and optimize the sessions mobility.

Riggio et al. [8] examined the VNF placement problem in
the radio access network (RAN) domain including functions
such as load-balancing, firewall, and virtual radio nodes. An
ILP model and a heuristic are proposed. Their objective is to
minimize the cost of mapping virtual functions to substrate
network (nodes and links) while satisfying VNF requirements
in terms of CPU, memory, storage, radio, and bandwidth
resources. However, they do not consider the delay
introduced by the VNFs. Table I. summarizes some of the
most prominent works in the literature.

It is worth noting that, none of the aforementioned works
considered the impact of the amount of allocated resources to
a given VNF on its processing delay. Indeed, specific
resource requirements for each VNF are determined in
advance. However, these values can change depending on
many parameters such as physical host performance,
workload variation, topology changes and utilization level.
So, the relationship allocated resource-VNF performances
should be considered to satisfy SLA requirements with
respect to the underlying infrastructure performance and
status. We focus in this paper on leveraging this relationship.
More details about our approach will be provided in the next
section.

III. NETWORK MODEL AND VIRTUAL FUNCTION

PLACEMENT AND CHAINING PROBLEM

In this section, we provide a definition of the PC-VNF
problem and its formulation. Then, we investigate and
describe the nature of the dependency relationship between
the attributed resources to a given VNF and its performance
level in terms of processing delay and its impact on the end-
to-end delay. This will allow us to define our model based
on a flexible resource allocation approach that takes into
consideration the aforementioned dependency.

A. NETWORK MODEL

We adopt a Network Function Virtualization architecture
composed of NFVI (physical network), set of VNFs and
NFV management and orchestration (MANO) platform, in
accordance with the terminology presented in [3]. The
NFVI consists of hardware resources including a set of
Physical Nodes (PNs) that are able to host a certain number
VNFs depending on their resource capacities. PNs are
connected via Physical Links (PLs) that forward traffic
between VNFs composing a Service Function Chain (SFC).
Each SFC can be abstracted as a graph containing VNFs (as
nodes) and the network demand between these VNFs (as
edges).

Usually, PC-VNF involves two important steps:
 Placement, which consists in assigning a set of

VNFs to a set of PNs (physical locations) in the
NFVI.

 Chaining, which builds paths that interconnect the
VNFs previously assigned to different PNs (during
placement step) in order to constitute SFCs.

Table II. summarizes the NFVI and SFC notation and
parameters.

Table II. NFVI AND SFC NOTATION

B. NFVI MODEL

We model the network infrastructures as a graph
��(��, ��), where �� is the set of physical nodes (PNs) that

compose network and �� is the set of physical bidirectional

links (PLs) connecting these nodes. Each PN � ∈ ��
represents a possible location that can host a single or
multiple VNF instances.

Each PN � ∈ �� represents the quantity of available

resources in terms of Computing, Memory and Storage
denoted Ɵ� . Similarly, each PL (�, �) ∈ �� connecting two

PNs �, � ∈ �� has its capacity (Bandwidth, Bitrate, etc.)

denoted �(�,�).

C. SERVICE FUNCTION CHAIN

SFC defines an ordered (resp. partially ordered) set of
VNFs. Ordering constraints must be applied to packets,
frames, and/or flows obtained after a classification process.
The implied order may not be a linear progression as the
architecture allows for SFCs that copy to more than one
branch, and also allows for cases where there is flexibility in
the order in which service functions need to be applied. The
term "service chain" is often used as shorthand for "service
function chain"[4]

We note ���� the set of SFC requests. Each SFC request

� ⊆ ���� is modeled as a subgraph ��
�(��

�, ��
�) where ��

� ⊆ ��
is a set of VNFs and ��

� ⊆ �� is a set of directed edges called
virtual links connecting these VNFs. In addition, each VNF
instance �� ∈ ��

� has its own requested amount of resources

PAR. DESCRIPTION

NFVI

�� NFVI graph

�� Set of physical nodes in ��

�� Set of physical links between phyical nodes

Ɵ� Available resource at physical node � ∈ ��

�
(�,�)

 Available capacity of physical link (�, �) ∈ ��

�����
(�,�) Transmission delay of the physical link (�, �) ∈ ��

SFC

�� SFCs graph

�� Set of VNFs in ��

�� Set of virtual links between VNFs in ��

��
� Set of VNFs composing the request � where ��

� ⊆ ��

��
� Set of links between VNFs ∈ ��

� such as ��
� ⊆ ��

�
(�,�)

 Required capacity of virtual link (�, �) ∈ ��
�

��� Requested resources of VNF �� ∈ ��
�

������
�� Allocated resources to VNF �′ ∈ ��

��
��

 Processing delay of VNF �� ∈ ��
� mapped into node � ∈ ��

using an amount of resources equl to ������
��

�����
��

 Processing delay generated by VNF �� ∈ ��
� using exaclty

the required amount of resources ���

���
� End-to-end delay threshold associated to � ⊆ ����

����
��

 Maximum reachebale processing delay of VNF n’ using the

Minimum allowed amount of resources ����
��

����
��

 Minimum reachebale processing delay of VNF n’ using the

Maximum allowed amount of resources ����
��

denoted ���. Also, each virtual link (�, �) ∈ ��
� connecting

two VNFs �, � ∈ ��
� has some characterizing metrics

(bitrate, delay, etc.) denoted �
(�,�).

Let us define ���
� as the target latency, which delimits the

end-to-end delay threshold associated to each SFC � ∈ ����.

The value of ���
� is expected to meet a specific requirement

according to the type of the deployed service as presented
in Table III.

We define the end-to-end delay provided by a deployed
SFC as the sum of delay processing of its component VNFs
instances and the delay needed to forward the flow between
these VNFs.

Table III. SERVICE DELAY REQUIREMENTS

D. Resource-Delay Dependency

In the following, we explore an important aspect that was
not considered in previous works when addressing PC-VNF
problem. Indeed, the fact of handling VNFs that are
basically software (programs), allows us to suppose
intuitively that the delay needed to execute any VNF is
necessarily impacted by the amount of resources allocated
to this VNF. There is a large body of literature in the area
of parallel and distributed computing community that
describes the behavior of a system when increasing its
resources [11][12][13].

For the sake of simplicity, we assume that the resource-
delay dependency is linear (Formula 1) and that processing
delay ��

��
 generated by a VNF n’ mapped into the physical

node n is defined as a function of allocated resources ������
�� :

��
��

= �(������
��) = ��� ������

�� + ��� (1)

Where an’ and bn’ are giving by the formulas (2) and (3):

��� =
����

��
 ����

��

����
��

����
�� (2)

��� =
����

�� ����
��

����
�� ����

��

����
��

����
�� (3)

We define ����
�� (resp. ����

��) as the minimum (resp. the
maximum) processing delay that can be provided by a VNF
instance �′ ∈ �� and it is reached by allocating an amount

of resources equal to ����
��

 (resp. ����
��

). Additionally,

[����
��

, ����
��

] is defined as the operating range of VNF n’.
The dependency defined in our approach represents an

approximation of the well-known Amdahl’s law [11] that
gives the theoretical speedup in terms of execution time of
a fixed workload task as a function of the number of

processors executing it. Also, this verifies two important
properties which are:

1) the speedup depends on the parallelizable portion of
the program.

2) beyond a given number of processors the execution
time will remain fixed.

The aforementioned properties are preserved by our
vision of Linear Dependency as illustrated in Fig 1. Indeed,
the processing delay is specific to each VNF (software).

Fig 1. DELAY PROCESSING AS A FUNCTION OF ALLOCATED RESOURCES

(LINEAR DEPENDENCY CASE)

Thus, this delay depends on how this VNF is
implemented (portion of parallel part of VNF program).
The second property is verified by the fact that for any
amount of resources higher than ����

��
 the delay generated

reaches its lower bound ����
��

 and cannot be further
improved. Moreover, for an amount of resources less than

����
��

 the VNF �� cannot be executed.
Furthermore, Amdahl’s law defines resources

exclusively as the number of processors while in our linear
dependency the parameter resources has a more general
meaning that encompasses the number of processors, their
frequency, memory and storage capacities.

IV. PROBLEM FORMULATION

A. Flexible Resources Allocation Model (FRAM)

The problem addressed in this paper can be formulated
as a MIQCP model that takes into consideration the
aforementioned dependency. The inputs to the placement
phase are the network capacity (nodes and links capacities)
and latency requirements of different SFC requests. The
output represents the optimal solution for placement and
chaining of VNFs that minimizes the resources allocation
while meeting the delay condition defined by ���

� . The
objective function that we have formulated is given in (4):

��� � � � (������
�� ��

��)

��∈���∈��

+ � � (�
(�,�)

�(�,�)
(�,�)

)

(�,�)∈��(�,�)∈��

� (4)

Type of Service Delay end-to-end delay
requirment

Conversational Services (CS) ≤ 150 ms

Streaming Services (SS) ≤ 300 ms

Background Services (BS) ≤ 600 ms

������
�� is an integer variable indicating the amount of

resources allocated to VNF instance �′ ∈ �� in physical

node � ∈ ��. ��
�� (resp. �(�,�)

(�,�)
) is a binary variable indicating

whether VNF instance �� (resp. virtual link (�, �) ∈ ��) is
mapped onto the PN � (resp. onto the physical link
(�, �) ∈ ��). The optimization objective is subject to the
following constraints:

� (������
�� ��

��) ≤

��∈��

Ɵ� ∀ � ∈ �� (5)

� ��
(�,�)

�(�,�)
(�,�)

� ≤

(�,�)∈��

�
(�,�)

 ∀ (�, �) ∈ �� (6)

����
��

≥ ������
�′ ≥ ����

��
 ∀ �′ ∈ �� (7)

� � ���� ������
��

+ ����

�∈��

��
��

��∈��

+ � � ������
(�,�)

�(�,�)
(�,�)

�
(�,�)∈��(�,�)∈��

 ≤ ���
�

∀ � ∈ ���� (8)

� �(�,�)
(�,�)

� �(�,�)
(�,�)

�∈���∈��

= ��
� ��

�

∀ � ∈ ��, ∀ (�, �) ∈ �� (9)

� ��
��

�∈��

= 1 ∀ �′ ∈ �� (10)

Constraint (5) ensures that the amount of resources
allocated to VNFs does not exceed the available resource Ɵ�
of physical node � ∈ �� while constraint (6) ensures that the

bandwidth required by the virtual links mapped onto
physical link (�, �) ∈ �� does not exceed its available

capacity �(�,�).
We ensure that the amount of resources allocated to each

VNF �� is included in its operating range by defining
constraint (7). Constraint (8) guarantees that the end-to-end
delay does not exceed the delay threshold specified by the
service. The first part of the equation is a sum of the delay
incurred by packet processing in VNFs, while the second
part defines the delay incurred by transmitting packets
between these VNFs.

Constraint (9) is introduced to enforce the condition that
for each virtual link (�, �) ∈ �� there must exist a continuous
path (�, �) ∈ �� allocated between the pair of physical

nodes �, � in which VNFs �, � have been mapped.
Constraint (10) states that each VNF �′ has to be mapped

only once into the physical infrastructure. In other words, the
whole amount of resources (Computer, Memory and
Storage) allocated to �′ must be provided by exactly one
physical node n.

B. Strict Resource Allocation Model (SRAM)

This model is used in this paper as baseline to which our
proposed FRAM is compared. Indeed, SRAM behavior
reflects most of works in this filed that do not consider the
resource-delay dependency and simply satisfy each VNF by
allocating the exact requested amount of resources (not more
or less). Such strict resource allocation can impact

negatively the quality of the placement. For example, a
whole SFC request may be rejected due to the fact that one
of its VNFs requires two CPUs while only one CPU is
available. Whereas the flexibility offered by FRAM allows
to accept this SFC by allocating the available CPU to this
VNF if and only if the end-to-end delay constraint is
respected.

SRAM is formalized as a Mixed Integer Linear Program
(MILP). The optimization objective of SRAM is to
minimize the amount of allocated resources to VNFs
(Equation 11). This objective has the most significant and
direct impact on network provider’s costs. However, this
model could be easily adapted to describe other objectives
or a multi-objective optimization that considers many
factors simultaneously. The optimization objective and
constraints of SRAM are presented below.

��� � � � (��� × ��
��)

��∈���∈��

+ � � (�
(�,�)

× �(�,�)
(�,�)

)

(�,�)∈��(�,�)∈��

� (11)

Subject to:

� (��� ��
��) ≤

��∈��

Ɵ� ∀ � ∈ �� (12)

� ��
(�,�)

�(�,�)
(�,�)

� ≤

(�,�)∈��

�
(�,�)

 ∀ (�, �) ∈ �� (13)

� ��
��

��∈��

= 1 ∀ � ∈ �� (14)

� �(�,�)
(�,�)

� �(�,�)
(�,�)

�∈���∈��

= ��
� ��

� ∀ � ∈ ��, ∀ (�, �) ∈ �� (15)

� � ������
�′

��
�′�

��∈���∈��

+ � � ������
(�,�)

× �(�,�)
(�,�)

�
(�,�)∈��(�,�)∈��

≤ ���
�

∀ � ∈ ���� (16)

Constraint (12) ensures that the sum of resources
(Computing, Memory and Storage) required by VNFs �′
mapped to nodes n does not exceed the amount of available
physical resources. In turn, constraint (13) ensures that each
physical link has enough available capacity to carry the
virtual links mapped over it. Constraint (14) ensures that
each VNF requested by an SFC is assigned to a unique
physical node. Constraint (15) consists in building the
virtual paths between the required endpoints. Finally,
constraint (16) ensures that for each mapped SFC request the
end-to-end delay threshold will be respected.

V. PERFORMANCE Evaluation

In this section, we evaluate the placement performances
of the models presented previously using different types of
SFCs. All models were implemented using AIMMS
Modeling Optimization version 4.3 [9].

All experiments were performed on Windows 8 server
with Intel Core i7-3740QM processor with 16GB of
memory. All evaluations are repeated 20 times. Also, the
confidence intervals are not reported in order to improve
readability since it was always smaller than 5%. We first
describe the simulation environment and then discuss the
used performance evaluation metrics.

A. Simulation environment

In our simulation, we do not explicitly differentiate the
type of resource, we just use one single value to represent
node resources. The available PNs resources, the available
capacities of PLs and the required capacities of virtual links
have fixed values. The transmission delay of PLs are based
on the study conducted by Choi et al. [16], which
characterizes typical average packet delays in Internet
Service Provider (ISP) networks.

However, the target delay threshold ���
� is generated

randomly according to the type of service provided by SFC
request r within the main three categories: Conversational
Services (CS), Streaming Services (SS) and Background
Services (BS). Similarly, each VNF requires an amount of
computing, memory and storage capacities which are
randomly generated. The processing delay of each VNF is
calculated according to its linear parameters (Equations 1,
2 and 3) which are set in a manner to have a processing
delay within the range [10,30]. Finally, we use three
topologies (Topo 1, 2 and 3) with different network
densities (0.1, 0.5 and 0.9) respectively. Table IV.
summarizes the simulation parameters.

SRAM and FRAM are evaluated using four structural
variants of SFC. The first, C1 is a linear chain composed of
a sequence of VNFs between two endpoints (Fig 2 a). The
second, C2 consists of a bifurcated (branched) chain using
different VNF in each path between two endpoints (Fig 2
b). The third and fourth variants (C3 and C4) use the same
topologies as the ones described previously, but vary in
size.

In order to evaluate the two formulations (FRAM and
SRAM), we use performance metrics adopted in previous
works [8][10]. For each model, we measured the average
end-to-end delay, the average resource consumption, the
accepted requests rate and the average execution time.

Fig 2. SFC STRUCTURAL VARIANTS

B. Simulation Results

First, we analyze the end-to-end delay provided by the
two formulations SRAM and FRAM. Fig 3 depicts the
average end-to-end delay that depends on the class of
service and the delay measured between endpoints in all
experiments. The end-to-end delay is computed as a sum of
network function processing delays and transmission delays
between endpoints “S” and “D” as depicted in Fig 2. FRAM
yields provides an acceptable end-to-end delay that does not
exceed the required delay threshold specific to each request.
In fact, our model tries to attain the exact delay threshold
while SRAM yields the lowest end-to-end delay per request
by consuming extra resources.

Fig 3. END TO END DELAY FOR DIFFERENT SERVICES

In terms of resource consumption presented in Fig 4, the
SRAM provides the worst result compared to FRAM. Such
result is due to the strict resource allocation approach
applied by this model. Moreover, by assigning the exact
amount of resources requested by VNFs, SRAM uses extra
computing resources to reduce unnecessarily the end-to-end
delay. Indeed, we can notice that VNF demands are
oversized which causes an overconsumption of network
resources.

0

50

100

150

200

250

300

350

400

CS SS BS

E
N

D
 T

O
 E

N
D

 D
E

L
A

Y
 A

V
E

R
A

G
E

 (
m

s
)

TYPE OF SERVICE

SRAM FRAM

Table IV. SIMULATION PARAMETERS

Parameters Value range

Number of VNF per service C1,C2 [1, 3]

C3,C4 [4, 6]

Delay threshold ���
�

 (CS) 150 ms

 (SS) 300 ms

 (BS) 600 ms

Available resources at PNs Ɵ� set at 100%

Requested resource ��� Uniform [1, 5] %

Required capacity of virtual link

�
(�,�)

set at 1%

Transmission delay of PL �����
(�,�)

 set at 10 ms

Processing delay ��
��

= �(������
��) Range [10,30] ms

Available capacity of PL �
(�,�)

 set at 100%

Fig 4. RESOURCE CONSUMPTION COMPARISON

Fig 5. SFC ACCEPTANCE COMPARISON

Fig 5 shows the average rate of accepted SFC requests
for both models. As expected, FRAM achieves a better rate
of accepted SFC requests in all scenarios when SRAM
tends to reject SFC requests as their number increases. This
early overload of network resources (30 % accepted SFCs
for SRAM versus 90% in the case of FRAM) caused by
SRAM, is mainly due to the aforementioned
overconsumption, unnecessary delay reduction and the lack
of flexibility when allocating resources. Moreover, the
number of rejected SFCs reflects the number of potential
SLA violations. Indeed, relaxing the end-to-end delay
threshold constraint will increase the number of accepted
SFCs (for both models) but will at the same time, increase
SLA violations. In other words, respecting SLA
requirements depends on how the consumption of resources
is managed. FRAM allows to recover up to 60% of the
rejected SFCs.

Fig 6. AVERAGE EXECUTION TIME COMPARISON

Fig 7. NETWORK DENSITY IMPACT

Fig 6 depicts the average execution time of both solutions
for the set of accepted SFC requests. We notice that the
execution time increases significantly for both models when
dealing with large components (C4 and C3 for SRAM and
C4 for FRAM). However, FRAM presents a better
performances compared to SRAM solution. For small SFCs
both models show similar behavior but the performance gap
widens between them when we increase the number of PNs
(larger topology) and use larger SFCs (C3 and C4).

Fig 7 illustrates the impact of network density on the
performances of both SRAM and FRAM. Results show that
SRAM is more affected when increasing the density of the
network than FRAM, especially in the case of large SFCs
such as C3 and C4. However, for small SFCs (C1 and C2)
the execution time increases almost linearly with network
density and both models have nearly the same performance.

0

20

40

60

80

100

5 10 15 20

R
E

S
O

U
R

C
E

S
 C

U
N

S
U

M
P

T
IO

N
 (

%
)

SFC REQUESTS

SRAM

FRAM

0

20

40

60

80

100

5 10 15 25

A
C

C
E

P
T

E
D

 S
F

C
 R

A
T

E
 (

%
)

SFC REQUESTS

SRAM FRAM

0

50

100

150

200

250

300

350

0.1 0.5 0.9

E
X

E
C

U
T

IO
N

 T
IM

E
 (

m
s

)

NETWORK DENSITY

SRAM C1 FRAM C1

SRAM C2 FRAM C2

SRAM C3 FRAM C3

SRAM C4 FRAM C4

0

5

10

15

20

25

30

35

40

5 15 25 35

E
X

E
C

U
T

IO
N

 T
IM

E
 (

s
)

NODES

SRAM C1 FRAM C1

SRAM C2 FRAM C2

SRAM C3 FRAM C3

SRAM C4 FRAM C4

The density effect on execution time for SRAM is because
the MILP that is forced to add possible links in order to find
a placement and chaining solution for a given SFC while
FRAM seeks a possible placement solution in nodes only
thanks to its ability to adjust SFC resource requirements in
order to map it efficiently in a more flexible manner.

Fig 8. EXECUTION TIME VS CLASS OF SERVICE

Fig 9. EXECUTION TIME VS SFC NUMBER

Fig 8 shows the performance of SRAM and FRAM using
5 SFC requests for each class of service and SFCs with
various topological structures. We note that the execution
time of both models is sensitive to these two parameters.
For example, mapping large SFCs such as C4 generates a
significant execution time compared to the other variants.
Also, placing services with a high delay requirement such
as CS and SS, needs an additional time to be achieved
compared to services with lower requirements like BS. This
extra time is caused by the necessity to find a solution that
meets the end-to-end delay threshold. However, the effect

of the aforementioned parameters is less apparent in the
case of FRAM. This, is mainly due to its ability to gather
VNFs composing a SFC on a single PN without having to
look for solutions using PLs.

Fig 9 shows the performance in terms of execution time
of SRAM and FRAM using SFCs with various topological
structures while increasing the number of SFC requests. We
distinguish two patterns. In the first, both models have
almost the same performance, the execution time evolves
linearly and remains reasonable even for 20 requests (less
than 275 ms for FRAM and less than 650 ms for SRAM).
In the second pattern, the execution time reaches quickly
the time limit of 60s especially for SRAM when using C3
and C4 chains. While the execution time of FRAM evolves
linearly when using C4 chains and reaches 40s for 20
requests.

The evaluation of the execution time is motivated by the
fact that this metric is vital especially for when designing of
an online placement algorithm. In addition, valuable
insights and lessons can be drawn on how a SFC should be
structured to facilitate and accelerate its deployment.
However, in our work the key performance indicators
remain the end-to-end delay, the resource consumption and
the SFC acceptance rate.

VI. CONCLUSION

NFV is a promising technology as part of network
softwarization movement that provides cost-effective
mechanism to deploy, operate and maintain network
services. In this context, service providers have to address
various challenges brought about by the virtualized nature of
the network infrastructure while meeting performance
expectations in terms of user application requirements.

In this paper, we studied the PC-VNF problem for
different applications, particularly focusing on guaranteeing
the end-to-end delay requirements. We proposed a Mixed-
Integer Quadratically Constrained program (MIQCP)
formulation called Flexible Resources Allocation Model
(FRAM) that takes into account the Linear Dependency that
exists between the amount of resources allocated to a VNF
and its processing delay. For comparison purposes, we
developed a baseline model that represents existing
approaches based on a Strict Resource Allocation approach
(SRAM) which ignores the aforementioned dependency.

FRAM results show a better resource utilization
compared to SRAM, with a reduction of up to 40% resource
consumption and a higher rate of accepted SFC requests by
successfully mapping 15 to 60 % of the rejected requests in
the baseline approach.

As perspectives for future work, we plan to introduce
resources differentiation for both computing and networking
resources and to investigate further the relationship between
QoS differentiation and performances of SFC. A flexible
resource allocation approach will clearly promote the
implementation of VNFs in a more parallelizable fashion.
Moreover, we aim to devise an alternative heuristic solution
for our MIQCP model to handle larger instances of the PC-
VNF problem.

0

10

20

30

40

50

60

70

80

90

CS SS BS

E
X

E
C

U
T

IO
N

 T
IM

E
 (

m
s

)

CLASS OF SERVICE

SRAM C1 FRAM C1

SRAM C2 FRAM C2

SRAM C3 FRAM C3

SRAM C4 FRAM C4

0

10

20

30

40

50

60

5 10 15 20

E
X

E
C

U
T

IO
N

 T
IM

E
 (

s
)

SFC REQUESTS

SRAM C1 FRAM C1

SRAM C2 FRAM C2

SRAM C3 FRAM C3

SRAM C4 FRAM C4

REFERENCES

[1] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De
Turck, and R. Boutaba, “Network Function
Virtualization: State-of-the-Art and research
challenges”, In IEEE Communications Surveys &
Tutorials, 2015.

[2] B. Addis, D. Belabed, M. Bouet, S. Secci, “VNFs
Placement and Routing Optimization”. In Proceedings
of IEEE Cloud Networking Conference
(CLOUDNET), 2015.

[3] ETSI Industry Specification Group (ISG) NFV, “ETSI
GS NFV 003 V1.2.1: Network Functions
Virtualization (NFV): Terminology for Main Concepts
in NFV”, 2014.

[4] P. Quinn and T. Nadeau, “Service Function Chaining
Problem Statement,” Active Internet-Draft, IETF
Secretariat, Internet-Draft draft-ietf-sfc-problem-
statement-05, 2014.

[5] S. Mehraghdam, M. Keller, and H. Karl, “Specifying
and Placing Chains of VNFs”, In Proc. IEEE 3rd Int.
Conf. CloudNet, 2014.

[6] Bari, M. F., Chowdhury, S. R., Ahmed, R., and
Boutaba, R. “On Orchestrating VNFs.” Network and
Service Management (CNSM), 2015 11th International
Conference on. IEEE, 2015.

[7] Luizelli MC, Bays LR, Buriol L, Barcellos MP,
Gaspary LP. "Piecing Together the NFV Provisioning
Puzzle: Efficient Placement and Chaining of VNFs”. In
IFIP/IEEE Integrated Network Management
Symposium, 2015.

[8] R. Riggio, A. Bradai, T. Rasheed, J. Schulz-Zander, S.
Kuklinski, and T. Ahmed, “VNFs Orchestration in
Wireless Networks,” In Proc. of IEEE CNSM, 2015.

[9] J.Bisschop,. AIMMS optimization modeling. Lulu.
com, 2006.

[10] M. Barshan, H. Moens, S. Latre, and F. De Turck,
“Algorithms for efficient data management of
component-based applications in cloud environments”,
in Proc. of IEEE NOMS, 2014

[11] Amdahl, Gene M. "Validity of the single processor
approach to achieving large scale computing
capabilities." Proceedings of the April 18-20, 1967,
spring joint computer conference. ACM, 1967.

[12] Gustafson, John L. "Reevaluating Amdahl's
law." Communications of the ACM 31.5, 1988.

[13] McCool, Michael D., Arch D. Robison, and James
Reinders. Structured parallel programming: patterns
for efficient computation. Elsevier, 2012.

[14] A. Baumgartner, V. S. Reddy, and T. Bauschert,
“Mobile core network virtualization: A model for
combined virtual core network function placement and
topology optimization,” in 1st IEEE Conference on
Network Softwarization (NETSOFT). IEEE, 2015.

[15] T. Taleb, M. Bagaa, and A. Ksentini. "User mobility-
aware virtual network function placement for virtual
5G network infrastructure." IEEE International
Communications Conference, 2015.

[16] Choi, B. Y., Moon, S., Zhang, Z. L., Papagiannaki, K.,
& Diot, C, “Analysis of point-to-point packet delay in
an operational network”. Computer networks, 2007.

[17] Nash, John F. "Equilibrium points in n-person
games." Proceedings of the national academy of
sciences 36.1,1950.

