
Programming Software–Defined Wireless Networks
Roberto Riggio∗, Karina Mabell Gomez,∗, Tinku Rasheed∗,

Julius Schulz–Zander†, Slawomir Kuklinski‡, Mahesh K. Marina§
∗CREATE-NET, Trento, Italy; Email: rriggio@create-net.org, kgomez@create-net.org, trasheed@create-net.org

†TU–Berlin, Berlin, Germany; Email: julius@inet.tu-berlin.de
‡Orange Polska, Warsaw, Poland; Email: slawomir.kuklinski@orange.com
§The University of Edinburgh, Edinburgh, UK; Email: mahesh@ed.ac.uk

Abstract—Programming a mobile network requires to account
for multiple complex operations, such as allocating radio re-
sources and monitoring interference. Nevertheless, the current
Software–Defined Networking ecosystem provides little support
for mobile networks in term of radio data–plane abstractions,
controllers, and programming primitives. Starting from the
consideration that WiFi is becoming an integral part of the
5G architecture, we present a set of programming abstractions
modeling three fundamental aspects of a WiFi network, namely
state management of wireless clients, resource provisioning, and
network state collection. The proposed abstractions hide away
the implementation details of the underlying wireless technology
providing programmers with expressive tools to control the state
of the network. We also describe a proof–of–concept implementa-
tion of a Software–Defined Radio Access Network controller for
WiFi networks and a Python–based Software Development Kit
leveraging the proposed abstractions. The resulting platform can
be effectively leveraged in order to implement typical control
tasks such as mobility management and traffic engineering as
well as applications and services such as multicast video delivery
and/or dynamic content caching.

I. INTRODUCTION

Mobile networks are currently at a cross road. The dramatic
adoption by end–users of smart–phones and tablets is fuel-
ing an increasing demand for mobile data access. Operators
are coping with this trend by: (i) deploying denser cellular
infrastructures; (ii) increasing the available bandwidth; and
(iii) exploring massive MIMO solutions. WiFi is also being
leveraged in order to relieve the cellular network from at
least part of the burden generated by modern data–hungry
mobile applications and services; in this sense, WiFi based
access networks can be seen as an integral part of the next-
generation mobile RANs. Notice that, the raw capacity of the
wireless channel is not the actual bottleneck: LTE can deliver
up to 300 Mb/s, the recent 802.11ac WiFi amendment can
provide up to 1.5 Gb/s, and LTE–Advanced will exceed 600
Mb/s for a single user1. The real pitfalls lie in the increased
interference between cells and in the signaling. The latter issue
is particularly relevant in LTE and LTE–Advanced networks
that, being designed with sparse networks in mind, heavily rely
on inter base stations (BSes) signaling for their operations.

Likewise, the transition from an homogeneous Radio Access
Network (RAN) composed of BSes that belong to the same

1Rates for LTE/LTE–A are relative to class 5 UEs with 4 MIMO
streams [1], while for WiFi we refer to 802.11ac stations supporting 80 MHz
channels and 4 MIMO streams [2].

type and power class to an heterogeneous RAN where low–
power nodes (pico–, femto–cell) overlap in coverage with the
macro–cell is raising several resource management challenges.
This ever increasing network complexity is driving operators
toward a virtualization of network functionality which calls
for a paradigm shift from a hardware–based approach where a
certain function, e.g. Mobility Management is implemented by
a dedicated box, to a software–based approach where the same
functions are provided by high volume servers and switches.

However, albeit several attempts at applying similar con-
cepts to cellular [3], [4], [5] and to WiFi [6], [7] RANs
can already be found, few or none programming abstractions
specifically tailored for wireless networks in general and for
mobile RANs in particular have been proposed. In a true SDN
philosophy, programmers shall be exposed with just enough
information about the state of the network to implement
the task at hand and shall be able to focus on defining
the expected behavior of the network rather than dealing
with technology–dependent implementation details. The latter
requirement is fundamental if features and services are to be
ported seamlessly across different link–layer technologies.

In this work we take a step in this direction by focusing
on the programming abstractions needed for managing WiFi
networks. The proposed abstractions tackle wireless client
state management, resource provisioning, and network state
collection. In the rest of the paper we will show how these
abstractions completely cover the three fundamental elements
that compose a network control loop, namely: collecting the
network state, specifying the network behavior, and updat-
ing the network configuration. We realized the abstractions
in a proof–of–concept Software–Defined RAN (SD–RAN)
Controller and in a Python–based Software Development Kit
(SDK). The platform allows developers to implement fea-
tures such as mobility management and traffic engineering
as Network App running on top of the SD–RAN Controller.
Moreover, the Software–Defined principles on which the plat-
form is based allow also for advanced network virtualization
functionality paving the way to virtual operator scenarios and
end–to–end service delivery.

Although our discussion will focus mainly on WiFi due
to the fact that the proof–of–concept currently supports only
this technology, we will show how this is just a particular
case and that the proposed abstractions can actually serve the
requirements of current and future cellular technologies.

The next section introduces the three programming abstrac-
tions proposed in this work together with the rationale behind
their design. The SD–RAN Controller implementation details
together with an overview of the main SDK features are
provided in Sec. III. Section IV reports on the scalability of
the proposed abstractions as implemented in our SDK. Finally,
we discuss the related work in Sec. V and then we draw our
conclusions in Sec. VI.

II. WIRELESS NETWORKS ABSTRACTIONS

Programming mobile RANs requires identifying how net-
work resources are exposed (and represented) to software
modules written by developers and how software modules can
affect the network state. Although, OpenFlow [8] provides a
practical forwarding abstraction for flow–switched networks,
it has been argued that programming current networks using
OpenFlow is equivalent to program applications in assembler,
i.e. the interface is too low–level and exposes the programmers
with too many implementation details. As a result in the last
years we have witnessed a mushrooming of efforts aiming at
providing developers with higher level interfaces toward their
SDN [9], [10], [11], [12], [13], [14], [15].

The works above, however, aim at enabling programmability
in wired networks and typically rely on OpenFlow as data–
plane control API. Conversely, in this work we specifically
set to investigate which kind of abstractions can be effectively
used to implement control and coordination tasks in mobile
RANs. As a matter of fact, a straightforward extension of
current programming techniques would fail to capture the
peculiarities of the radio environment. In particular, the flow
abstraction on which OpenFlow relies does not account for: (i)
the stochastic nature of wireless links (which are not equivalent
to ports in Ethernet switches); (ii) the resource allocation
granularity (the flow abstraction is too coarse for mobile
networks); and (iii) the significant heterogeneity in the link
and radio layer technologies (state management for network
elements can differ significantly across currently deployed
RAN technologies).

The proposed abstractions address the three fundamen-
tal elements that compose a network control loop, namely,
collecting the current state of the network (Network Sta-
tus), implementing control and management tasks (Network
Specification) and disseminating the new configuration to the
network elements (Network Reconfiguration). Let us analyze
the requirements that each of the above elements impose on
the abstractions:

• Network Status. The abstractions shall allow networks
developers to gather the status of the network using high–
level querying primitives. Such information shall include
network statistics and topology changes. The network
programmer shall not be exposed to the system–level
details of polling network elements, aggregating statistics,
and detecting network events.

• Network Specification. The abstractions shall allow de-
velopers to leverage the view of the network state that
best suits the task at hand. Multiple software modules

WiFi AP

Backhaul

WiFi AP

Wireless Termination PointsMobile Terminals

Network Virtualization Layer
(e.g. FlowVisor)

Traffic
Engineering

Mobility
Management

Slice 1: Corp

SD-RAN Controller

API: REST, Python

Controller 1
(e.g. Floodlight)

Controller 2
(e.g. POX)

Controller 2 APIController 1 API

Slice 2: Guests

Dynamic Caching

Slice N

App

eNodeB

Fig. 1: The reference network architecture.

may be in charge of defining different aspects of the net-
work such as fault management, load balancing, mobility
management.

• Network Reconfiguration. The abstractions shall allow
programmers to describe the desired behavior of the net-
work leaving to the underlying run–time system the task
of implementing it by configuring the individual network
elements. Similarly, programmers shall not be exposed
with technology–dependent implementation details such
as state management.

Figure 1 sketches the reference network architecture and in-
troduces the terminology used throughout the paper. We name
Wireless Termination Points (WTPs), the physical devices
that form the RAN providing User Equipments (UEs) with
wireless connectivity. WTPs basically coincide with Access
Points (APs) in a WiFi network or eNodeBs (eNBs) in an LTE
network. A secure channel connects the WTPs to a remote
SD–RAN Controller. Network Apps run on top of the SD–
RAN Controller in their own slice of resources and exploit the
programming primitives trough either a RESTful interface or a
native Python API (bindings for other programming languages
can be easily added). Notice that the slicing methodology,
albeit supported by our platform, is not described in this work
due to space constraints. Finally, although OpenFlow is a
candidate technology, the abstractions proposed in our work
do not rely on it and are effectively backhaul agnostic.

In the next subsections we will introduce three key abstrac-
tions for mobile RANs, namely the Light Virtual Access Point
(LVAP) abstraction, the Resource Pool abstraction, and the
Interference Map abstraction. Figure 2 depicts the relationship
between LVAP, Resource Pool, and Interference Map using an
UML class–diagram. Borrowing from the 3GPP terminology,
a Resource Block represents the minimum chunk of wireless
resources that can be assigned to a wireless client while the
LVAP represents the state of a UE scheduled on a set of
Resource Blocks. Similarly, both the LVAPs and the WTPs
support a set of Resource Blocks, named Resource Pool.
Finally, a relationship exists between each pair LVAP/Resource
Block modeling the link quality between the two entities in

Resource Block

LVAP

RSSI/CQI

WTP

+ChannelCenterFrequency
+ChannelBandwidth
+SpatialStream
+Timeslot
+BlackListed

assignedTo

supports

supports

1..*

1..*

1..*

1..*

1..*

Resource Pool

Fig. 2: The abstractions class–diagram.

terms of, for example, RSSI. This latter relationship constitute
the Interference Map.

A. The Light Virtual Access Point

Different link layer technologies, or as a matter of fact
even different releases of the same technology, can differ
significantly in how UEs state is handled. For example authen-
tication mechanisms changed significantly over the lifespan of
the IEEE 802.11 family of standards. Similar consideration
can be made with regards to QoE (802.11e) or fast handover
(802.11r). Nevertheless exposing the programmer with the
implementation details of the technology being used, such
as association/authentication procedures, would severely limit
the adoption of a certain Network App. On the contrary what
we want to achieve is true Network App portability from one
RAN to another, e.g. from a WiFi network to an heterogeneous
WiFi/LTE deployment.

The LVAP abstraction builds on top of [6] which provides
a high–level interface through which the state of a wireless
terminal can be manipulated. The implementation of such an
interface is required to handle all the technology–dependent
details such as association, authentication, handover, and re-
source scheduling. In particular, a UE attempting to join the
network, will trigger the creation of a new LVAP. Such LVAP
has an ID that is specific to the newly associated UE (in a WiFi
network the LVAP can be thought as a Virtual AP with its own
BSSID). As a result each WTP (or better one or more Resource
Blocks supported by the WTP, see next section) will host as
many LVAPs as the number of UEs currently communicating
with it. Removing an LVAP from a WTP and instantiating it
on another WTP effectively results in a handover.

B. The Resource Pool

Programming mobile RANs mandates for a way to expose
the programmer with a consistent view of the network re-
sources. The fundamentals of wireless communications ba-
sically calls for two main family of strategies to allocate
resources in a wireless network: scheduled access and random
access. In the former case, resources for a wireless link are
allocated in the time, frequency, and space2 domain. In the
latter case, a common random access scheme for medium

2Notice that, for spread spectrum–based technologies, such as UMTS, also
the code space shall be considered.

access is used by all participating wireless clients in order
to reduce collisions. WiFi belongs to the latter family and
exploits CSMA/CA as random access scheme.

The increasing demand for mobile data access is mandating
the deployment of denser and heterogeneous RANs composed
of macro–cells, small-cell (often overlapping in space with the
macro–cell), and WiFi hotspots. The Resource Pool abstraction
goes beyond the concept of cell and exposes the programmer
with the collective resources in time, frequency, and space that
are available in the whole RAN. The minimum allocation unit
in the Resource Pool is the Resource Block and is identified
by a frequency band, a time interval, a spatial stream, and the
WTP at which it is available. The Resource Pool is exposed to
the programmer through a set P where each Resource Block
b ∈ P is a 3–tuple 〈f, t, s〉, where f is the frequency band,
t is the time slot, and s is the spatial stream. A frequency
band is a 2–tuple 〈c, b〉 where c and b are, respectively, the
center frequency and the bandwidth. Notice that the proposed
model does not forbids the same Resource Block to be assigned
to multiple LVAPs in that this could in general result in a
valid resource allocation scheme if, for example, the LVAPs
are sufficiently separated in space or if suitable ICIC (Inter–
Cell Interference Coordination) schemes are employed.

For example, the Resource Pool made available by a legacy
802.11g AP tuned on channel 1 would be represented by
the tuple ((1, 20),∞, 1). Where 1 is the channel, 20 is the
bandwidth (in MHz) and 1 is the single spatial stream sup-
ported. Similarly an 802.11n AP supporting 2 spatial streams
and 40 MHz–wide channels would be represented by the
tuple ((36, HT40),∞, 1), ((36, HT40),∞, 2). Notice that no
time dimension is provided or, more precisely, the Resource
Blocks are allocated for all the time modeling the fact that in
WiFi networks random access is used as the access scheme.
Finally, Resource Blocks can also be blacklisted preventing
applications from using them. This could be, for example, the
case of highly interfered blocks in an LTE network.

The same formulation is also exploited to model the re-
source requests coming from the UEs or more precisely
from the LVAPs mapping those UEs. For example, an LVAP
resource request could be represented by the following tuple
((1, 20),∞, 1). This allows us to express resource allocation
problems as an intersection between the Resource Blocks
available in the network and the Resource Blocks supported
by a client. Information on the link quality experience by the
requesting LVAP on the matching Resource Blocks can be used
to further filter the set of candidate Resource Blocks according
to application–level parameters. A non–empty set of Resource
Blocks signifies that a valid solution for the resource allocation
problem has been found. Conversely an empty set represents
a case where a valid resource allocation could not be found.

Notice that, the final Resource Blocks set could be composed
of multiple Resource Blocks possibly scheduled at different
WTPs and on different frequency bands/timeslots. The support
for such scenario depends on the actual implementation of the
LVAP interface. For example, in a WiFi network, an LVAP
mapping an 802.11n client supporting two spatial streams will

Network (P1) LVAP (P2) Intersection

W1((6, HT20),∞, 1)
W1((6, HT20),∞, 2)
W1((6, 20),∞, 1)
W2((1, HT20),∞, 1)
W2((1, HT20),∞, 2)
W3((1, 20),∞, 1)

L1((1, HT20),∞, 1)
L1((1, HT20),∞, 2)
L1((1, 20),∞, 1)

W2((1, HT20),∞, 1)
W2((1, HT20),∞, 2)
W3((1, 20),∞, 1)

TABLE I: Network and LVAP Resource Pools.

accept up to two Resource Blocks from the same WTP and
on the same channel. Conversely, in the more general case
of an LTE–A based network, an LVAP will accept multiple
Resource Blocks possibly scheduled at different BSes and
on different frequencies modeling the technique known as
Cooperative Multi–Point, or CoMP [16]. Thus the Resource
Pool entails advantages for handling the interference, reducing
energy consumption and performing effective scheduling and
load–balancing. Moreover providing the network developer
with a global view of the network resources simplifies the
implementation of tasks such as interference mitigation and
topology control as well as energy saving or cell zooming.

A simple resource allocation scenario for a WiFi network is
summarized in Table I where P1 is the network Resource Pool
and P2 is the Resource Pool supported by an LVAP. In this case
it is easy to seen that the intersection P1∩P2 produces a non–
empty set composed of three Resource Blocks scheduled at two
different WTPs (W1,W2). The limitations of the actual link
layer technology, i.e. WiFi, does not allow the control logic to
schedule the LVAP on both WTPs. As a result the final resource
allocation decision shall be taken according to the channel
quality experienced by the LVAP on the matching Resource
Blocks and/or on the specific application–level requirements.

Notice that operations such as Resource Block scheduling
as well as rate adaption cannot be decoupled from the WTP
and moved to the remote SD–RAN Controller in that they
are characterized by strict latency requirements. As a result
we envision such operations to be left within the scope of
the single WTPs leaving the SD–RAN Controller in charge of
slowly changing resource management operations.

C. The Interference Map

Links in a mobile RAN are highly volatile, fading and
multi–path can severely affect the channel SNIR and must
be taken into consideration, together with the requirements
coming from the application layer in order to define a proper
resource allocation scheme. For example, disaster recovery
scenarios may prefer to allocate a minimum amount of re-
sources to all the clients even if this results in a poor utilization
of the medium. On the other hand commercial deployments
aims at the best network utilization even if this could result
in poor performance for the users at the edges of the cell.

The Interference Map abstraction provides network pro-
grammers with a full view of the network state in terms of
channel quality between Resource Blocks and LVAPs. The
Interference Map essentially consist in a (typically) sparse
matrix R where each entry R(m, l) is the channel quality

between the Resource Block m and the LVAP l. In WiFI
networks this information can be achieved trough passive
measurements on the received traffic as well as by leveraging
dedicated hardware such as the spectrum scanners commonly
found in recent WiFi chipsets. Conversely in an LTE/LTE–A
network, UEs can be asked to perform active channel quality
measurements on a set of Resource Blocks using standard
indicators, such as the CQI in the downlink and the Sounding
Reference Signals (SRSs) in the uplink.

As matter of fact, from the perspective of serving UEs, it is
not important to which infrastructural WTP they are attached
but what communication QoS they can obtain which, at the
physical layer, essentially translates into bandwidth and SNIR.
The Interference Map allows the control logic to reason about
the channel quality experienced by the various LVAPs and to
assign resources accordingly.

III. IMPLEMENTATION DETAILS

To verify the flexibility of the proposed abstractions, we
designed and implemented: (i) an SD–RAN controller, (ii)
a programmable WiFi data–plane, and (iii) a Python–based
SDK. This section briefly summarizes each component. More
information on the software platform can be found online3.
The platform has been successfully used to replicate the
technological demonstrations presented in [17], [18].

A. SD–RAN Controller

The SD–RAN controller implementation leverages the Tor-
nado Web Server as the web framework [19]. The main reason
for choosing Tornado is its non–blocking network I/O which
allows to continue serving incoming requests while the others
are being processed. Here follows some of the main features
of the SD–RAN controller.
- Slicing: Multiple logical virtual networks, or Pools, can
be instantiated on top of the SD–RAN Controller. Each Pool
is characterized by its own SSID and a set of WTPs. Each
Network App can be instantiated within one or multiple Pools
and can only affect the state of LVAPs that are associated
to that Pool. Similarly, users can opt–in a certain Pool by
associating to its SSID.
- Soft State: The only persistent information stored at the
controller are the UEs’ authentication method (currently only
ACLs are supported) and the list of currently defined Pools.
LVAP’s state is kept within the network in a distributed fashion
and is synchronized when the WTP connects to the SD–RAN
Controller. As a result the SD–RAN Controller can be hot–
swapped with another instance without affecting the active
clients. Moreover, the network itself can still function in its
last known state even if the controller becomes unavailable.
- Modular Architecture: With the exception of the logging
subsystem, every other task supported by the controller is
implemented as a plug–in (i.e., a Python module) that can be
loaded at runtime. Examples of such plug–in are the modules
implementing the data–path control protocol, the RESTful web
interface and the mobility/load–balancing applications.

3Available at: http://empower.create-net.org

B. Wireless Termination Points

Each WTP consists of two components: one Open-
vSwitch [20] instance managing the communication over the
wired backhaul; and one Click modular router [21] instance
implementing a WiFi AP’s data–path. Click is a framework
for writing multi–purpose packet processing engines and is
being used to implement just the WTPs/UEs frame exchange
while all the decision logic is implemented at the SD–RAN
controller. Click is also used to implement the packet coun-
ters and the RSSI triggers described in the next subsection.
Communications between Click and the SD–RAN controller
take place over a persistent TCP connection. The Click in-
stance can run over standard WiFi devices, in particular our
deployment exploited a mix of PCEngines ALIX (x86) and
Gateworks Cambria (ARM) embedded platforms all running
the OpenWRT operating system (Chaos Calmer r42609).

C. Software Development Kit

A Python–based SDK mapping the abstractions introduced
in Sec. II to Python constructs is also made available to
application developers (see Table II). In this section we shall
briefly summarize, using some practical examples, some of the
SDK’s most interesting features. Notice that since the SDK is
specifically tailored for the WiFI technology, Resource Blocks
are identified by just the 2–tuple 〈f, b〉.

The LVAP is exposed to the programmer through a Python
object mapping the properties to functions. These properties
are: (i) the Resource Block(s) on which the LVAP is currently
scheduled, (ii) the list of Resource Blocks supported by the
LVAP, and (iii) the counters tracking the incoming/outgoing
traffic. Such an interface allows programmers to fetch the
Resource Block(s) a certain LVAP is currently scheduled at, by
accessing the corresponding field of an LVAP object. Similarly,
performing a handover is as simple as assigning an LVAP a
new list of Resource Blocks to the same field.
- Resource Management: The following Python routine
assigns an LVAP to a random Resource Block whose RSSI
to the LVAP is greater than or equal to −65 dB:

def handover (lvap , wtps) :
””” Handover t h e LVAP t o a WTP wi th
an RSSI h i g h e r t h a t −65dB . ”””

I n i t i a l i z e t h e Resource Pool
poo l = R e s o u r c e P o o l ()

Update t h e Resource Pool w i t h a l l
t h e a v a i l a b l e R e s o u r s e B l o c k s
f o r wtp in wtps :

poo l = poo l | wtp . s u p p o r t s

S e l e c t match ing Resource B l o c k s
matches = poo l & l v a p . s u p p o r t s

F i l t e r Resource B l o c k s by RSSI
v a l i d = [b l o c k f o r b l o c k in matches

i f b l o c k . r s s i [l v a p] >= −65]

Per form t h e handover
new block = v a l i d . pop () i f v a l i d e l s e None
l v a p . a s s i g n e d t o = new block

The method above accepts as input two parameters, an
LVAP object (lvap) and a list of WTP objects (wtps).
The method initializes the network Resource Pool with the
Resource Blocks available at every WTP. Then, an intersection
between the network Resource Pool and the LVAP Resource
Pool is computed. The resulting set is then traversed in order
to filter–out the Resource Block whose RSSI to the LVAP is
below a certain threshold (−65dB in this example). Finally,
one random Resource Block matching the above condition is
assigned to the LVAP. Notice that, for the sake of simplicity,
error handling is omitted in this example. For example, if the
valid Resource Block set is empty it is up to the application
to decide to either lower the RSSI threshold or to handover
the LVAP to best available WTP regardless of the link quality.
Finally, it is worth stressing that, the one reported above is
just an example aiming at showing the basic capabilities of the
SDK and that the programmer has the flexibility to seek for
an optimal configuration considering criteria like throughput,
fairness, reliability etc.
- Querying: The packets counters allow programmers to track
the traffic exchanged by a certain LVAP and to use binning in
order to aggregate such information by frame length (useful
in wireless network due to the fact the short packets incur in
an heavier transmission overhead). For example:
C = p a c k e t s c o u n t (b i n s =[512 , 1472 , 8 1 9 2] ,

l v a p = ’ 1 1 : 2 2 : 3 3 : 4 4 : 5 5 : 6 6 ’ ,
e v e r y =5000 ,
s s i d = ’ Gu es t s ’)

The statement above instructs the controller to track the
packets transmitted and received by a certain LVAP and to
aggregate the information into the specified bins. The WTP
currently hosting the LVAP is polled every 5000ms. It is also
possible to issue a single query by specifying −1 as polling
period. The counters’ current state can be accessed with:
>>>C . t x s a m p l e s
[6 0 , 10 , 0]

Meaning that the LVAP transmitted 60, 10, and 0 packets
smaller or equal to respectively 500, 1460, and 8192 bytes.
Similarly, bytes_count allows to track the bytes transmit-
ted and received by the LVAP.
-Interference Tracking: The Interference Map allows the
developers to schedule LVAPs in the Resource Blocks that best
satisfy their traffic requirements. Moreover, Network App can
react to changes in the network conditions by setting callbacks
that are triggered when the measured RSSI for a given set of
LVAPs verifies a specified condition. For example:
T = r s s i (l v a p s = ’ 1 1 : 2 2 : 3 3 : 4 4 : 5 5 : 6 6 ’ ,

r e l a t i o n = ’LT ’ ,
v a l u e =−70,
s s i d = ’ Gu es t s ’)

T . c a l l b a c k = s e l f . c a l l b a c k

The callback above is triggered the first time the RSSI of the
specified LVAP goes above −70 dB at any WTP in network.
After the trigger has fired the first time and as long as the
RSSI remains greater than −70 dB, the callback method is
not called again by the same WTP, however the same callback

Abstractions Python Construct Example

Resource Block ResourceBlock block = ResourceBlock(lvap, 1, ’L20’, False)

(object) block = ResourceBlock(wtp, 1, ’L20’, False)

Resource Pool ResourcePool wtp.supports = ResourcePool()

(extends set) wtp.supports.add(block)

Union (∪) | pool = wtp1.supports | wtp2.supports

Intersection (∩) & matches = lvap.supports & pool

Filtering (∀) List valid = [block for block in matches

Comprehensions if block.rssi[lvap] >= -65]

Assignment (←) = lvap.assigned_to = valid

TABLE II: Programming abstractions in the Python–based SDK.

can be triggered by multiple WTPs. In order to detect RSSIs
that are going below the −70 dB threshold another trigger
must be created. LVAPs are matched by logical AND, thus
specifying FF:FF:FF:FF:FF:FF as LVAP will trigger the
callback when the RSSI of any LVAP at any WTP is higher
than −70 dBm.

D. Use Case: Mobility Management

In this section we describe a simple Mobility Manager
which leverages the SDK’s RSSI tracking primitives in order
to detect when the link quality experienced by a UE is
deteriorating and thus a handover must be triggered. Moreover,
the Mobility Manager periodically checks if a better handover
opportunity exists even if the channel quality experience by
the LVAPs is still acceptable. The complete Mobility Manager
code is reported below.

c l a s s Mobi l i t yManage r (BasePoolWorker) :

def i n i t (s e l f , pool , p e r i o d) :

BasePoolWorker . i n i t (s e l f , pool , p e r i o d)

R e g i s t e r an RSSI t r i g g e r f o r a l l LVAPs
s e l f . r s s i = s e l f . r s s i (l v a p s = ’ f f : f f : f f : f f : f f : f f ’ ,

r e l a t i o n = ’LT ’ ,
v a l u e =−70,
c a l l b a c k = s e l f . l o w r s s i)

def l o w r s s i (s e l f , lvap , wtp , t r i g g e r , r s s i) :
””” C a l l b a c k on low RSSi . ”””
handover (lvap , s e l f . wtps ())

def l oop (s e l f) :
””” P e r i o d i c j o b . ”””
f o r l v a p in s e l f . l v a p s () :

handover (lvap , s e l f . wtps ())

def l a u n c h (pool , p e r i o d =None) :
””” I n i t i a l i z e t h e module . ”””

re turn Mobi l i t yManage r (pool , p e r i o d)

The Network App above is essentially a Python module
that can be loaded/unloaded at run–time without affecting the
network operations. Each module is required to implement a
launch method called when the Network App is loaded in
order to perform initialization tasks. Notice that an optional
shutdown method, called when a module is unloaded, can
also be defined in order to perform clean–ups tasks. The

parameters accepted by the launch method depend on the
actual Network App. In this case just two parameters must be
specified, namely the Pool on which the module shall operate
and the control loop interval.

As it can be seen, the Mobility Manager consists of a single
Python class instantiated during the module initialization. The
class implements just two methods: (i) the loop method which
periodically checks if an LVAP shall be handed–over to another
WTP; and (ii) the callback method which is invoked when
the RSSI between a pair of LVAP/WTP is going below a
certain threshold (−70dB in this example). In such a case the
handover routine is invoked. Finally, an RSSI trigger matching
all LVAPs in the network in created bt the class constructor.

Notice that, in order to reduce the verbosity, error han-
dling, logging code, and modules import statements have been
omitted. Moreover, this Mobility Manager does not take into
account the actual traffic generated by the UEs and as result
could overload some WTPs. A more refined implementation
would also implement load balancing functionality spreading
the traffic across the network.

IV. EVALUATION

In this section we will show how the proposed programming
abstractions can significantly improve network performance in
an enterprise WLAN. Moreover we will provide a preliminary
assessment of the platform overall scalability. It is worth notic-
ing that, however, the main goal of this work is to investigate
the fundamental requirements and trade–offs in programming a
Software–Defined RAN and that, as a consequence, the current
implementation is not intended to deliver scale nor optimal
performance. The evaluation setup is composed of a single
wireless client (a DELL D630 laptop) and two WTPs based
on the PCEngines ALIX embedded platform and running
the latest version of the OpenWRT operating system (Chaos
Calmer r42609). Performance tests are conducted with the
wireless NICs operating in 11a mode and tuned on a channel
not shared with any other WiFi network. Iperf [22] is used in
order to generate synthetic traffic.

A. Resource Management

In order to assess the scalability and the effectiveness of
the LVAP abstraction we implemented a simple Network App
which periodically handover the wireless client between the
two WTPs. The WTPs are 5m apart and the wireless client is

WTP

5m

WiFi Client
WTP

Fig. 3: Network setup for the resource management scenario.

equidistant from the two WTPs. The network setup is sketched
in Fig. 3. Notice that, in addition to the SD–RAN Controller
presented in this work, also an OpenFlow controller, namely
Floodlight, has been used in order to pre–configure the WTP
forwarding tables before each handover.

As baseline scenario we consider a standard WiFi network
where client mobility is emulated by progressively reducing
the transmission power of the serving AP. We remind the
reader that, in a standard WiFi network, handovers are trig-
gered by the wireless clients and the network has no way of
controlling wireless clients’ mobility. As a result, a WiFi client
that sees a progressively decreasing RSSI, will, at some point,
handover to another AP (if available). Such process however
is not deterministic and, as we will see, can take a variable
amount of time.

The traffic is generated at the wireless client toward a
fixed node which shares the backhaul with the two WTPs and
consists in a single UDP flow with constant payload size (1472
bytes) and constant bitrate (5, or 25 Mb/s). Figure 4 shows
the distribution of the goodput at the receiver’s side when the
client is performing a handover every 10s in both the baseline
and the LVAP–based scenarios. The figure is the result of a
600s–long measurement with goodput samples taken every 1s.
As it can be seen, in the baseline scenario almost 20% and 40%
of the samples are below the target bitrate for, respectively, the
5 and the 25 Mb/s flows.

Figure 5 shows the instantaneous bitrate in both the baseline
and the SDN scenario for 5 Mb/s flow. As it can be seen, the
non–deterministic and uncoordinated nature of the standard
WiFi handover can lead to a significant throughput degrada-
tion. In particular during our measurements we noticed that,
when a client fails to re–associate with the new AP during an
handover a full network scan followed by the DHCP exchange
is triggered. This procedure can take up to 1-2 seconds to
complete. Notice also that, being triggered by the client, this
procedure can effectively lead to scenarios where the clients
is bouncing between two APs. On the other hand, the LVAP
abstractions allows for completely seamless handovers.

We also tested the LVAP–based handover performance with
TCP traffic. In this case the client generates a saturated TCP
flow toward the remote host. Figure 6 shows the throughput
at the receiver’s side for an increasing handover rate from 1
handover every two seconds up to 10 handovers per seconds.
As it can be seen, the link capacity is not significantly affected
by the handover rate. Results are the average of 10 runs.
Each run was 600–seconds long. 95% confidence intervals are
shown as error–bars.

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

x = Throughput [Mb/s]

F
(x

)

Empirical CDF

WiFi Legacy
LVAP–based

(a) 5 Mb/s flow.

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

x = Throughput [Mb/s]

F
(x

)

Empirical CDF

WiFi Legacy
LVAP–based

(b) 25 Mb/s flow.

Fig. 4: Distribution of the goodput at the receiver’s side when
the client is performing a handover every 10s.

0 100 200 300 400 500 600
0

1

2

3

4

5

Time [s]

T
h

ro
u

g
h

p
u

t
[M

b
/s

]

(a) WiFi Legacy.

0 100 200 300 400 500 600
0

1

2

3

4

5

Time [s]

T
h

ro
u

g
h

p
u

t
[M

b
/s

]

(b) LVAP–based handover.

Fig. 5: Instantaneous the goodput at the receiver’s side when
the client is performing a handover every 10s.

B. Querying

In order to demonstrate the scalability of the querying
subsystem we implemented a sample application which peri-
odically request an LVAP uplink and downlink statistics. The
polling period is increased from 1 request every two seconds
to 10 requests per second. Figure 7a shows the throughput
attained by the wireless client under an increasing polling rate.

0.5 1 2 5 10
19

19.5

20

20.5

21

21.5

22

Handover Rate [handover/s]

T
h

ro
u

g
h

p
u

t
[M

b
/s

]

Fig. 6: Wireless client throughput Vs. an increasing handover
rate using the LVAP–based handover. The client is generating
a saturated TCP stream toward a remote host. The client
throughput is not affected by the handover rate.

0.5 1 2 5 10
18.5

19

19.5

20

20.5

21

21.5

Stats Request [req/s]

T
h
ro

u
g
h
p
u
t
[M

b
/s

]

(a) Throughput.

0.5 1 2 5 10
0

100

200

300

400

500

Stats Request [req/s]

S
ig

n
a
lli

n
g
 b

a
n
d
w

id
th

 [
k
b
/s

]

(b) Signaling channel bandwidth.

Fig. 7: Scalability of the statistics subsystem. The client is
generating a saturated TCP stream toward a remote host. The
client throughput is not affected by the polling frequency (a)
while the required signaling bandwidth scales with the square
of the polling rate (b).

As it can be seen the client throughput is only marginally
affected by statistics requests. This result is obtained through
the use of shredded counters at the WTP and non–blocking
I/O between WTPs and controller. Figure 7b, on the other
hand, shows the average bandwidth used for the signaling
channel under an increasing polling rate. Albeit the bandwidth
increases with the square of the polling rate, the actual value
does not exceed 500 kb/s even in the most extreme case of 10
requests per second. Notice that this traffic is typically carried
over the wired link interconnecting the WTP with the SD–
RAN Controller. As a result even a 1 Gb/s Ethernet connection
could easily accommodate up to 2000 LVAPs.

C. Interference Tracking

Tracking a client RSSI across the network in real–time
can be significantly expensive [23]. Moreover, if very generic
triggers are defined at the application layer, i.e. triggers that
match any address in the the network, the lookup time per
fame would scale as c2n, where c is the number of wireless
clients per WTP and n is the number of WTPs in the network
(c queries to check for each of the cn clients in the network).
Since performing this matching over the frame fast–path is not
realistic, WTPs keep track of the RSSI of last frame received
from each neighbor. An exponentiation moving average is used
in order to take into account old measurements. This neighbors
table is traversed periodically in order to check for matches
over the defined triggers. Only if a match is found a trigger
to the controller is generated.

V. RELATED WORKS

In this section, the most relevant works that investigate SDN
applied to wireless networks are summarized.
- Wireless LAN: In [24], Murty et al. present a software
architecture to address the problem of extensibility in wireless
LANs, by defining a set of APIs for clients and APs to be
managed by a centralized controller. The controller can control
the network’s behavior based on a global network view and
enact a rich set of policies. Odin [6] is an SDN framework
for controlling and managing enterprise WLANs. Odin allows
network applications and services to be deployed as Networks
Apps on top of a centralized controller.
- Mobile Networks: In [25], [26] the authors argue that SDN
can simplify the design and management of mobile networks,
while enabling new services. This work is extended in [4],
where SoftCell, a scalable architecture that supports fine–
grained policies for mobile devices in cellular core networks, is
presented. Cloud–RAN (C–RAN) [5] aims at making deploy-
ment of 5G systems cheaper, faster and more flexible. C–RAN
is composed by a system of distributed antennas connected
using high bandwidth links to servers responsible for their
baseband processing. A distributed hierarchical architecture
for heterogeneous RANs based on OpenFlow is presented
in [27]. Similarly, in [28] an OpenFlow–based control plane for
LTE/EPC is presented. SoftRAN [3] proposes a fundamental
refactoring of the cellular RAN by introducing a big base
station abstraction mapping the resources of all BSes in a
certain area.

Although the above works demonstrates continuing interest
at addressing the complexity of future mobile networks using
SDN principles, none of them put the focus on providing
programmers with high–level interface to control the next–
generation mobile RANs. Some of these works tackles the
challenges from the architectural perspective [25], [26], other
aims at a refactoring of the RAN/EPC [5], [27], [28]. Some
attempts at providing a more high–level view of the network
can be found [4], [6] however these works either address the
challenges at the EPC or they focus only on wireless clients
state management.

Closest by goals and principles to our work is SoftRAN [3]
in which the authors introduce the big base station abstractions
in order to address the challenges raised by densification of
the cellular RAN. But they do not elaborate on the primitives
to be exposed to the programmers, the focus of our work.
Finally, several recent works have put their focus on applying
high–level programming primitives and techniques to SDN [9],
[10], [11], [12], [13], [14], [15]. Their target however is to
enable programmability in wired networks typically relying
on OpenFlow as data–plane control API. In contrast our aim
in this work is focused on modeling the most critical aspects
of a WiFi–based RAN, namely wireless client state manage-
ment, resource allocation, and interference management and
at exposing them to the network programmer through a set of
technology agnostic programming primitives.

VI. CONCLUSIONS

Starting from the consideration that the current SD–RAN
ecosystem in terms of controllers, data–plane abstractions, and
programming interfaces lacks the tools to properly control and
manage heterogeneous and dense mobile RANs, we proposed
a set of programming primitives aiming at providing the
developers with expressive tools to control the state of the
network while hiding away the implementation details of the
underlying technology.

The proposed abstractions catch the three fundamental
elements that compose a network control loop, namely col-
lecting the network status, specifying the desired behavior
and disseminating the new configuration. Our architecture
specifically accounts for the stochastic nature of the wireless
links and for the significant heterogeneity in term of radio layer
technologies that characterize modern RANs. This essentially
translates into separating policies, i.e. how to select the optimal
transmission rate, from mechanisms, i.e. the knobs to be turned
in order to obtain the desired behavior, and to putting the
former in the hands of the network programmers who are
not necessarily network experts while leaving the latter to
equipment vendors.

A proof–of–concept SD–RAN Controller targeting WiFi–
based RANs and a Python–based SDK have also been de-
veloped to asses the flexibility of the proposed abstractions. A
preliminary evaluation campaign has shown that the proposed
abstractions can actually be implemented in scalable fashion.
As future work we plan to validate the abstractions in a
cellular scenario. Moreover we intend also to progress on the
representation of the network and on investigating the limits
boundaries between control and management in mobile RANs.

REFERENCES

[1] S. Sesia, I. Toufik, and M. Baker, LTE, The UMTS Long Term Evolution:
From Theory to Practice, ser. Wiley InterScience. Wiley, 2009.

[2] L. Verma, M. Fakharzadeh, and S. Choi, “WiFi on steroids: 802.11AC
and 802.11AD,” Wireless Communications, IEEE, vol. 20, no. 6, pp.
30–35, December 2013.

[3] A. Gudipati, D. Perry, L. E. Li, and S. Katti, “SoftRAN: software defined
radio access network,” in Proc. of ACM HotSDN, 2013.

[4] X. Jin, L. Li, L. Vanbever, and J. Rexford, “SoftCell: scalable and
flexible cellular core network architecture,” in Proc. of ACM CoNEXT,
2013.

[5] M. HadZialic, B. Dosenovic, M. Dzaferagic, and J. Musovic, “Cloud-
RAN: innovative radio access network architecture,” in Proc. of IEEE
ELMAR, 2013.

[6] L. Suresh, J. Schulz-Zander, R. Merz, A. Feldmann, and T. Vazao,
“Towards programmable enterprise WLANS with Odin,” in Proc. of
ACM HotSDN, 2012.

[7] G. Bianchi, P. Gallo, D. Garlisi, F. Giuliano, F. Gringoli, and I. Tin-
nirello, “MAClets: active MAC protocols over hard-coded devices,” in
Proc. ACM CoNEXT ’12.

[8] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: enabling innovation
in campus networks,” SIGCOMM Comput., vol. 38, no. 2, pp. 69–74,
Mar. 2008.

[9] T. L. Hinrichs, N. S. Gude, M. Casado, J. C. Mitchell, and S. Shenker,
“Practical declarative network management,” in Proc. of ACM WREN,
2009.

[10] C. Monsanto, J. Reich, N. Foster, J. Rexford, and D. Walker, “Compos-
ing software-defined networks,” in Proc. of USENIX NSDI, 2013.

[11] A. Voellmy and P. Hudak, “Nettle: Taking the sting out of programming
network routers,” in Proc. of ACM PADL, 2011.

[12] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford,
A. Story, and D. Walker, “Frenetic: A network programming language,”
SIGPLAN Not., vol. 46, no. 9, pp. 279–291, Sep. 2011.

[13] A. Voellmy, H. Kim, and N. Feamster, “Procera: A language for high-
level reactive network control,” in Proc. of ACM HotSDN, 2012.

[14] A. K. Nayak, A. Reimers, N. Feamster, and R. Clark, “Resonance:
Dynamic access control for enterprise networks,” in Proc. of ACM
WREN, 2009.

[15] C. Monsanto, N. Foster, R. Harrison, and D. Walker, “A compiler and
run-time system for network programming languages,” in Proc. of ACM
POPL, 2012.

[16] D. Lee, H. Seo, B. Clerckx, E. Hardouin, D. Mazzarese, S. Nagata,
and K. Sayana, “Coordinated multipoint transmission and reception in
lte-advanced: deployment scenarios and operational challenges,” Com-
munications Magazine, IEEE, vol. 50, no. 2, pp. 148–155, 2012.

[17] P. L. Suresh, J. Schulz-Zander, R. Merz, and A. Feldmann, “Demo: pro-
gramming enterprise WLANs with odin.” in Proc. of ACM SIGCOMM,
2012.

[18] R. Riggio, C. Sengul, L. S. J. Schulz-Zander, and A. Feldmannx, “Thor:
Energy programmable wifi networks,” in Proc. of IEEE INFOCOM,
2013.

[19] “Tornado Web Server.” [Online]. Available: http://www.tornadoweb.org/
[20] B. Pfaff, J. Pettit, K. Amidon, M. Casado, T. Koponen, and S. Shenker,

“Extending networking into the virtualization layer.” in Prof. of ACM
Hotnets, 2009.

[21] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The
click modular router,” ACM Trans. Comput. Syst., vol. 18, no. 3, pp.
263–297, Aug. 2000.

[22] “Iperf.” [Online]. Available: http://iperf.sourceforge.net/
[23] S. Rayanchu, V. Shrivastava, S. Banerjee, and R. Chandra, “Fluid:

Improving throughputs in enterprise wireless lans through flexible chan-
nelization,” in Proc. of ACM MobiCom, 2011.

[24] R. Murty, J. Padhye, A. Wolman, and M. Welsh, “Dyson: An architecture
for extensible wireless lans,” in Proc. USENIX ATC ’10.

[25] L. Li, Z. Mao, and J. Rexford, “Toward software-defined cellular
networks,” in Proc. of EWSDN, Oct 2012, pp. 7–12.

[26] H. Ali-Ahmad, C. Cicconetti, A. de la Oliva, M. Draxler, R. Gupta,
V. Mancuso, L. Roullet, and V. Sciancalepore, “CROWD: an SDN
approach for DenseNets,” in Proc. of EWSDN, Oct 2013, pp. 25–31.

[27] G. Sun, G. Liu, H. Zhang, and W. Tan, “Architecture on mobility
management in openflow-based radio access networks,” in Proc. of IEEE
GHTCE, 2013.

[28] S. Ben Hadj Said, M. Sama, K. Guillouard, L. Suciu, G. Simon,
X. Lagrange, and J.-M. Bonnin, “New control plane in 3GPP LTE/EPC
architecture for on-demand connectivity service,” in Proc. of IEEE
CloudNet, 2013.

