
JANUS: A Framework for Distributed Management
of Wireless Mesh Networks

Roberto Riggio, Nicola Scalabrino, Daniele Miorandi, and Imrich Chlamtac
CREATE-NET

Via dei Solteri 38, 38100,Trento,Italy
Email: name.surname@create-net.org

Abstract— Wireless Mesh Networks (WMNs) are emerging as
a potentially attractive access architecture for metropolitan-scale
networks. While research on WMNs has been up to a large
extent confined to the study of efficient routing protocols, there
is a clear need to envision new network management tools, able
to sufficiently exploit the peculiarities of WMNs. In particular, a
new generation of middleware tools for network monitoring and
profiling must be introduced in order to speed up development
and testing of novel protocol architectures. Currently, manage-
ment functionalities are developed using conventional central-
ized approaches. The distributed and self-organizing nature of
WMNs suggest a transition from network monitoring to network
sensing. In this work, we propose JANUS, a novel framework
for distributed monitoring of WMNs. We describe the JANUS
architecture, present a possible implementation based on open-
source software and report some experimental measurements
carried out on a small-scale testbed.

Index Terms— wireless mesh networks, network management,
distributed hash table, overlay networks, publish-subscribe sys-
tems

I. I NTRODUCTION

Wireless Mesh Networks (WMNs) are emerging as a po-
tentially attractive access architecture for metropolitan-scale
networks. WMNs [1], [2] rely on a multihop wireless back-
bone for delivering high-speed services to end-users without
the need for deploying a fixed infrastructure. With respect to
conventional star-shaped access network architectures, WMNs
offer advantages in terms of enhanced robustness (in that
no single point of failure is present and redundant links are
encompassed) and flexibility (without the need for deploying
cables, connectivity may be provided only where and when
needed/economically attractive). With respect to conventional
ad hoc networks [3], WMNs differ for (i) thegoal, in that
they are being intended as access architecture, not stand-alone
systems (ii) theheterogeneity of the devices, in that there
might be dedicated devices (with more powerful radio systems,
multi-band capabilities, etc.) acting as pure wireless routers.
As an example, we may consider a wireless interconnection
of hot spots, providing enhanced coverage without the need
of having all of them wired to the Internet.

While research of WMNs has been up to a large extent
confined to the study of efficient routing protocols, there isa
clear need to envision new network management tools, able to

This work was partially supported by MIUR within the framework of the
WING project (grant number RBIN04M292). On line resources available at
http://www.wing-project.com/.

sufficiently exploit the peculiarities of WMNs. In this context,
moving from a strictly layered protocol design in favor of
a cross-layer architecture is a promising research direction.
However, it is worth noting that, once the layering is broken,
any architectural choice must be carefully analyzed in order
to avoid undesirable system behaviors [4]. A new generation
of middleware tools for network monitoring and profiling
must then be developed in order to speed up development
and testing of novel protocols and architectures. Nowadays,
in network management, a set of tools, applications and
devices are used in order to monitor and maintain networks.
This includes performing functions such as initial network
planning, frequency allocation, predetermined traffic routing
to support load balancing, fault management, security manage-
ment, performance management, bandwidth management, and
accounting. Current management functionalities are developed
using a strongly centralized approach. However, the distributed
and self-organizing nature of WMNs suggest a transition
from network management (in terms of manual tweaking)
to network sensing (in terms of distributed and automated
fault detection and/or performance analysis). The advantages
provided by such an approach are twofold: (i) network op-
erators can gain an increased insight into network behavior
and resource utilization, to optimize system dimensioningand
performance (ii) the research community is provided with a
powerful tool for the rapid prototyping of innovative solutions.

In this work, we propose JANUS, a novel monitoring frame-
work designed with the goal of addressing the peculiarities
of WMNs. The proposed approach exploits the functionalities
provided by Pastry [5], a peer-to-peer overlay network, in
order to make network information, collected at different
layers of the stack, available to all nodes in the system. Such
information can be used for monitoring purposes as well as
to adapt the behavior of the node depending on the particular
operating conditions (e.g., traffic type, channel perturbations,
network status, node selfishness and/or maliciousness, among
the others). In this paper, we describe the JANUS architecture,
present its implementation details and report some experi-
mental measurements carried out on a small-scale testbed
deployed at the CREATE-NET premises. The experimental
measurements are aimed at characterizing the impact of the
traffic generated by JANUS on both best-effort elastic traffic
as well as VoIP applications. All the developed software has



been released under the BSD License1.
The remainder of this paper is organized as follows. Sec-

tion II presents and discusses some related works. In Sec. III,
we overview the state-of-the-art in WMNs and describe some
of the main Pastry features. Section IV describes the archi-
tecture of the JANUS module. The detailed implementation
is illustrated in Sec. V. Section VI describes the experimental
setup of our small-scale testbed. Section VII concludes the
paper pointing out directions for future work.

II. RELATED WORK

A large number of protocols exists to support network
and network devices management. Common protocols include
SNMP [6], ICMP [7], and netconf [8]. The MOME project [9]
is maintaining a database of more that 400 measurement tools.
However most network management architectures are based on
common concepts and architectures. In this context, all nodes
in the network run a process gathering information about the
node’s state. When a problem is recognized, such process is
designed to send alerts to some management entities. Upon
receiving these alerts, management entities are programmed to
react by taking some actions (e.g., operator notification, event
logging, system shutdown, etc.). Management entities alsocan
poll end-stations to check the values of certain variables.

The Simple Network Management Protocol (SNMP) is an
application layer protocol developed in order to standardize
the exchange of management information between network
devices enabling effective network management. In SNMP
each managed node owns a Management Information Base
(MIB). A MIB is a collection of information that is organized
hierarchically. MIBs are accessed using SNMP. Our approach
is a step toward the definition of a mesh-wide knowledge base
that can be exploited by nodes in order to adapt their behavior
(e.g. for identifying malicious and/or not cooperative nodes).

In [10] DAMON, a Distributed Architecture for Monitoring
Mobile Networks, is introduced. DAMON relies on agents
within the network to actively monitor network behavior and
send this information to data repositories. DAMON’s generic
architecture supports the monitoring of any protocol, device,
or network parameter. The prototype presented in the paper
is exploited for collecting statistics about data traffic and
the AODV routing protocol. VISUM [11] is a distributed
framework for monitoring wireless networks. Data, collected
by agents distributed over several host, is collected at a
centralized repository and can be exploited by a visualization
tool for real-time monitoring. The novelty of our approach
lies in the fully distributed paradigm enabling decentralized
control, self-organization, and scalability.

In MobileMAN [12], information collected at different
layers of the networking stack are shared in a common local
memory structure and exploited to adapt the behavior of
the node depending on the particular circumstance the node
operates in. Such an approach satisfies the layer separation
principle, i.e., protocols belonging to different layers can be

1http://www.wing-project.org/

Fig. 1. An example of a two-tier wireless mesh network architecture.

added/removed from the protocol stack without modifying the
protocols operating at the other layers. Moreover, it is full
compatible with standards, since it does not change the core
functionalities of each layer maintaining all the advantages of
a modular architecture.

III. T ECHNICAL BACKGROUND

A. Wireless Mesh Networks

A Wireless Mesh Network consists of several nodes (pos-
sibly employing multiple radio interfaces [13]) interconnected
via wireless links to the Internet through one or multiple
gateway(s). Communications take place by means of multihop-
ping, in that the nodes in the network cooperate to forward
packets (by means of store-and-forward operations) to/from
the Internet and from/to the end node.

Nodes in a WMN can play two different logical roles, i.e.,
mesh clients and mesh routers [1]. Mesh clients can be the
source/destination of connections, while mesh routers arein
charge of forwarding packets to and from the Internet. Multi-
tier architectures can be envisaged [2], with mesh routers
providing multihop backhaul connectivity to the Internet,
while the clients act just as sources/destinations of Internet
connections. Such a kind or architecture is sketched in Fig.1.
It is worth stressing that, from our standpoint, WMNs are to
be thought asaccess network architectures, and not as stand-
alone “ad hoc” systems.

B. Pastry & Scribe

Peer-to-Peer overlay networks can be classified into two
classes: unstructured peer-to-peer networks and structured
ones. The core of such distinction lies in the way the data
is assigned to each node. Unstructured peer-to-peer systems,
such as Gnutella [14], do not assign responsibility for datato
specific nodes. Data look-up is performed trough flooding or
random walks. In the former approach the query is propagated
to all the neighbors, in the latter approach the forwarders
are chosen randomly. Both approach are characterized by a
high network load. Moreover they cannot ensure both query
termination and data location.

On the opposite, structured peer-to-peer networks organize
themselves using a controlled topology. Both data distribution
and lookup algorithms are based on a Distributed Hash Table
(DHT) data structure. DHTs are a class of decentralized



systems that distribute a set of keys among participating nodes,
and efficiently route messages to the owner of any given key.
The first achievement of such an architecture is that the node
that is responsible for a key can always be found. DHT-
based peer-to-peer networks include CAN [15], Chord [16],
Pastry [5], Tapestry [17] and Kadmelia [18]. On the other
hand, structured peer-to-peer networks are not able to support
keyword based searches since they are designed for exact
match queries. Moreover the strictly controlled topology incur
into an high overhead for repair operation for high churn rates.

Pastry is a self-organizing structured peer-to-peer overlay
network. Each node participating the Pastry network in iden-
tified by a unique 128-bitnodeId. The nodeId set is
uniformly distributed. Such a feature is typically achieved by
hashing the node’s IP address. The approach used by Pastry
for routing messages is based on address prefixes and is a
variation of hypercube routing [19]. The routing algorithm
works by resolving a single digit at time from left to right.
Basically at each step a node forwards the message to a node
whosenodeId shares with the key a prefix that is at least
one digit longer than the the prefix that the key shares with
the current node. If such a node cannot be found the message
is delivered to the node with the closestnodeId. The Pastry
design assure that such a routing can be accomplished in less
than log2bN steps, whereN is the number of nodes andb is
a configuration parameter with typical value of4.

Scribe [20] is a scalable group communication system
allowing participants to subscribe to a topic and to publish
messages. Scribe exploit Pastry in order to build an efficient
multicast tree for the distribution of events to a topic. Any
Scribe node is allowed to create a new topic making it
available for subscription to the other nodes. A credential-
based system is used for controlling the publication of message
for a specific topic.

IV. T HE JANUS MODULE

We start by describing the components of the SNMP man-
agement framework. An SNMP-managed network consists of
four key components:

• Managed devices. A managed device is a network node
that contains an SNMP agent and that resides on a man-
aged network. Managed devices collect and store man-
agement information and make this information available
to NMSs using SNMP. Managed devices can be routers,
switches, hosts, etc.

• Agents. An agent is a network-management software
module that resides in a managed device. An agent
has local knowledge of management information and
translates that information into a form compatible with
SNMP.

• Network Management Systems (NMSs). A NMS is in
charge for monitoring and controlling managed devices.
In a SNMP deployment, the NMS is responsible for
polling and receiving traps from the Agents as well as for
changing the values of variables stored within managed
devices.

Fig. 2. JANUS Architecture.

• Management Information Base (MIB). A Management
Information Base (MIB) is a collection of information
that is organized hierarchically. MIBs are accessed using
a network-management protocol such as SNMP.

The building blocks of JANUS and their relationships are
sketched in Fig. 2. The JANUS architecture can be considered
as a distributed version of the SNMP management framework,
and consists of four components:

• Mesh Node.The Mesh Node (from now onManaged
device) is a network node participating the WMN that
runs a JANUS Agent. The node can be either a mesh
node or a mesh router.

• JANUS Agent.The JANUS Agent (from now onAgent)
is a software process that runs on a managed device. An
Agent has a local knowledge of the network and provides
management information to theJANUS Clientby keeping
track of the various aspect of the managed device. As for
example an Agent can track TCP connections running
across the managed device’s outgoing links. The Client
can then query each link and gather the status of each
TCP connection. Agents can also send traps to the Client
in order to asynchronously notify some events. It is
worth noting the relevant information are gathered by an
implementation specific module inside the Agent that can
interact with the host operating system.

• Mesh Knowledge Base (MKB).All the Agents share a
list of objects that they can monitor. An object is a
particular aspect of the managed device (e.g. the status
of each interfaces, the link cache, . . . ). The MKB is
a database of all the objects that an Agent can track.
Managed objects are organized hierarchically in a tree-
like structure. Figure 3 shows the objects tree that is
currently supported by the JANUS framework.

• JANUS Client.The JANUS Client (from now onClient)
is a software process running on each managed device, it
can be considered as the distributed version of the NMS.

At initialization time each Client tries to connect to a boot-
strap host in order to subscribe a Scribe topic. If no bootstrap
host is found the Client starts a new Scribe topic. Please note
that the bootstrap host is required only at initialization time.
EachClient periodically queries theAgent in order to gather



Fig. 3. MKB Objects tree.

Fig. 4. A detailed view of the interaction between Agent and Client.

the managed objects. Gathered objects are used for updating
the MKB and then published on the Scribe ring. When objects
are delivered the Client takes care of merging them with the
local MKB (during the bootstrap phase the MKB is initialized
with the locally collected objects). A detailed view of the
interactions between each JANUS components is shown in
Fig. 4.

V. I MPLEMENTATION DETAILS

JANUS is implemented in the form of a Java application
built on top of Scribe. FreePastry is used as reference platform.
FreePastry [21] is an open-source implementation of Pastry’s
API from Rice University, which comprises, among the other,
a Scribe implementation.

A. Mesh Node

Mesh connectivity is realized using the Microsoft Mesh
Connectivity Layer (MCL) [22]. The MCL is a loadable
Microsoft Windows driver. It implements an interposition layer
between layer 2 (the link layer) and layer 3 (the network
layer) of the standard ISO/OSI model. It is sometimes referred
to as layer 2.5 (see Fig. 5). To the higher layers, MCL
appears to be just another Ethernet link, albeit a virtual
one. To the lower layers, MCL appears to be just another
protocol running over the physical link. MCL routes using
a modified version of DSR [23] called Link Quality Source
Routing (LQSR) [13]. LQSR assigns a weight to each link.
This weight is the expected amount of time it would take to
successfully transmit a packet of some fixed size over that
link. In addition, the channel, the bandwidth, and the loss

Fig. 5. Microsoft’s MCL architecture.

rate are determined for every possible link. This information
is sent to all the nodes. Based on this information, LQSR
uses a routing metric called Weighted Cumulative Expected
Transmission Time (WCETT) [24], a variant of the Expected
Transmission Time (ETT) metric [25], to define the best path
for the transmission of data from a given source to a given
destination.

B. JANUS Agent

Each node participating the WMN runs an instance of the
JANUS Agent. The Agent is implemented in the form of a
software process waiting for incoming connection on the port
1167. In the current implementation traps from the Agent
to the Client are not supported. Links status is obtained by
querying the link cache using themcl.exeutility that comes
with MCL. This utility runs from the command-line and can be
used to install, configure, and analyze MCL virtual adapters.
A sample output of this command is shown in Fig. 6.

VA 1 Link Cache, 2 nodes of 4, Timeout 0s
ec-a0-b9-dc-76-c5: Hops 0 DMetric 0 CMetric 0 Prev -1

From 2 To 1/1c-12-78-6c-83-c0
TimeStamp -3s Usage 11 Metric 0.17-909Kbps-1 (11.15ms)
Queue Drops 0 Failures 0 fraction 0
ETX:
TotSentProbes 11 LastProb 0.000
PktPair:
PairsSent 1 RepliesRcvd 1
LastPktPair 9.57ms CurrMin 9.57ms
NumValid 1 NumInvalid 0

1c-12-78-6c-83-c0: Hops 1 DMetric 11.15ms CMetric 11.15ms Prev 0
From 1 To 2/ec-a0-b9-dc-76-c5

TimeStamp 0s Usage 11 Metric 0.16-11Mbps-1 (1.11ms)
RepliesSent 1
TotRcvdProbes 15 FwdDeliv 13 RevDeliv 15

Fig. 6. Node’s Link Cache as reported by themcl.exeutility.

<?XML version="1.0"?>
<JANUS>

<Routing>
<LQSR>

<LinkCache>
<LinkState>
<Src>ec-a0-b9-dc-76-c5</Src>
<Dst>1c-12-78-6c-83-c0</Dst>
<Metric>

<ETX>0.17</ETX>
<Bandwidth>909Kbps</Bandwidth>

</Metric>
</LinkState>

</LinkCache>
<LQSR>

</Routing>
</JANUS>

Fig. 7. Node’s Link Cache as represented in the MKB.



The output of this command is then parsed by the
Platform Specific Module in order build a structured
version (see Fig. 7) of the link cache content that can be then
exploited by theListener in order to respond to the Client’s
queries. The link cache itself is basically a list of “known”
nodes, including the link metrics between those nodes. Each
link cache entry can be described by the following tuple:

LS = 〈SA, DA, M〉,

whereSA is the source node’s address,DA is the destina-
tion node’s address, andM is the link metric, being

M = 〈ETX, B〉

where:

• ETX is the Expected Transmission Count (ETX) [25]
and measures the expected number of transmissions,
including retransmissions, needed to send a unicast packet
across a link.

• B is the link bandwidth.

Given a packet of sizeS sent over a link with raw data rate
B, the ETT metric can be computed as follows:

ETT = ETX ∗
S

B
.

C. Mesh Knowledge Base

The MKB organizes all managed objects in a tree-like
structure (see Fig. 3) represented by means of an XML
document [26]. Such XML document is accessed using its
DOM (Document Object Model) [27] representation. DOM
provides an object oriented application programming interface
that allows parsing HTML or XML into a well defined
tree structure and operating on its contents. The MKB is
navigated by the Client using Xpath [28] expressions. XPath
is a language for addressing XML documents and can be
considered as a small query language. As for example the
subtree containing the link cache is identified by the following
XPath statement:

/JANUS/Routing/LQSR/LinkCache

which selects LinkCache elements that are children of LQSR
elements that are children of the Routing element that forms
the outermost element of the XML document. XPath syntax
is designed to mimic file path syntax.

D. JANUS Client

The ScribeClient module of the Client takes care of
polling the Agent on port 1167 using XPath statements. The
Agent replies with the MKB objects tree that correspond to
the incoming query. The gathered objects are then published
on the subscribed Scribe topic. TheListener is a software
process waiting for incoming connection on port1169. It can
be exploited by an external application for querying the node’s
MKB.

Fig. 8. Testbed planimetry.

VI. EXPERIMENTAL SETUP

We implemented a version of JANUS on a small-scale
WMN testbed developed at the CREATE-NET premises. We
first tested JANUS for controlling the topology of the network
(including indication of link strength). Then we carried out
some experiments to infer the impact of the traffic generatedby
JANUS on both elastic data traffic as well as VoIP connections.
The aim was to understand whether the JANUS architecture
was lightweight enough to allow its use in running WMN
deployments.

A. Network Configuration

JANUS has been exploited for monitoring the topology of
a 6-nodes wireless testbed deployed in a typical office envi-
ronment implementing a single-tier structure. Testbed’s nodes
are all Dell notebook model D600/D610/D810 equipped with a
1.86 GHz Intel Pentium M processor with 512 MB of memory.
All nodes run Microsoft Windows XP Professional. Each node
has a single Intel 2915ABG or a Dell 1470 Wireless adapter
with RTC/CTS disabled. The testbed planimetry is illustrated
in Fig. 8. Node number one acts as gateway providing Internet
connectivity to the WMN. All measurement are run using IPv4
with statically assigned addresses and IEEE 802.11 operating
in “g” mode. In order to increase the reliability of our results,
we have exploited NetStumbler [29]. NetStumbler is a tool
that allows to detect the presence of interference caused by
other 802.11 devices. The operating channel for the WMN
has been chosen according to this analysis.

The connection made available by theListener module
running in each Client is exploited by a web server running
on node number one in order to build a real-time map of the
network topology. More specifically the web server queries the
Listener for the Link Cache. The resulting XML document
is then translated in a format compatible with GeoPlot [30].
GeoPlot is a java applet that creates a geographical image
of a data set. Basically, GeoPlot plots a set of nodes and a
set of lines that connect these nodes on an image specified by
the user. Figure 9 shows an example of such a map. While the
information provided by the current implementation of JANUS



Fig. 9. JANUS: Snapshot of the network topology for the 6-nodes WMN
testbed.

VoIP (G.729.3)

Rate (Packets/sec) 33
Payload length (Bytes) 30

TABLE I

PARAMETERS CHARACTERIZING THE FLOWS USED FOR ANALYZING THE

OVERHEAD INTRODUCED BYJANUS

are limited to links status, its generic architecture potentially
supports the monitoring of a wide set of network protocols
and devices.

B. Multimedia Traffic Patterns

In order to evaluate the overhead introduced by JANUS
we analyzed the performance of the mesh using both real
time and best effort traffic. The real time traffic has been
modeled as a single UDP packet flow representing a voice
stream encoded using the G.729.3 codec [31], a worldwide
used speech codec for VoIP applications, with each packet
containing three voice samples and without Voice Activity
Detection. On the other hand, best effort traffic (in our case
persistent TCP connections) is modeled considering a TCP
socket working in saturation regime. The parameters for VoIP
flows are reported in Table I. In order to collect reliable
measure of delays, before each experiment we synchronized
each node with a common reference using NTP [32].

The experimentation had been performed using synthetic
traffic generated by means of the Distributed Internet Traffic
Generator (D-ITG) [33], a freely available software tool. D-
ITG can generate and inject different traffic patterns over
TCP and/or UDP sockets. The traffic is then collected at the
receiver side where suitable tools can provide a great variety
of statistical analysis. By means of D-ITG it is possible to
simulate many traffic scenarios originated by a large number
of users and network devices, whereas other traffic generators
have limited capabilities in terms of performance and range
of source models.

C. Performance Measurements

In this section we report the outcomes of some experimental
tests run with the equipment and settings described in Sec. VI-
A. As said before, the aim of such experiments is to gain
insight into the performance impairments experienced by both
elastic and multimedia traffic in the presence of JANUS. The
tests reported refer to downlink traffic only, i.e., traffic coming
from the Internet, entering the mesh through the gateway
and destined to nodes of the WMN. The nodes are activated
according to the numbering in Fig. 8, so that whenN flows
are active hosts2, 3, . . . , N + 1 are downloading from host1.

In the case of best effort traffic we will exploit the mean per-
connection throughput as performance metric. The results are
reported in Fig. 10(a). In the case of a homogeneous network,
we would expect a1

n
pattern,n being the number of active

connections; the results reported show a similar behavior.In
general, the traffic generated by JANUS turns out to have a
minor impact of the performance of elastic (TCP-controlled)
traffic. In one situation (with4 active connections), we even
measured a performance improvement with respect to the case
where JANUS is not active. We conjecture that this could be
done to a sudden change in the environmental conditions,
which led to results (for the case with JANUS) not fully
reliable for such case. We can therefore conclude that JANUS
does not affect much elastic traffic.

We also considered the performance under VoIP-like traffic,
in order to assess the impact of JANUS on the packet delay and
packet loss ratio, the most important performance metric for
characterizing the performance of real-time applications. The
VoIP traffic was modeled according to the parameters detailed
in Sec. VI-B. The results for the average delay are reported in
Fig. 10(b). In this case, we can see that the load generated by
JANUS increases the average packet delay by approximately
15−20 ms. Also in this situation, the case with4 connections
returned unreliable values (the average delay with JANUS was
lower than that measured on the network without it). This
suggests that a careful tuning of connection admission control
may be necessary if JANUS is to be employed on WMNs
running delay-sensitive applications.

Similar conclusions may be drawn from the packet loss
ratios, reported in Fig. 10(c). Also in this case (again, apart
for the scenario with4 active connections) the use of JANUS
entails an increase in the packet loss ratio. Such increase is
limited for the cases of1, 2 and 3 connections, while it is
considerable (of the order of15%) for the scenario with5
connections. We conjecture that this may be due to the fact
that the network has been operated close to the stability limit.

VII. C ONCLUSIONS

WMNs are emerging as a promising architecture for build-
ing metropolitan-scale access networks. In this paper we have
proposed JANUS, a distributed monitoring architecture for
wireless mesh networks, based on a structured peer-to-peer
overlay network. We proposed an implementation, based on
open-source software, and presented experimental measure-
ments, showing the impact of the traffic load generated by



0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
0

1

2

3

4

5

6

7

8

9

10

11

Number of concurrent flows

A
ve

ra
ge

 th
ro

ug
hp

ut
 (

M
bi

t/s
)

 

 
w/o Janus
w/ Janus

(a) TCP average throughput versus number of con-
current flows w/o and w/ the JANUS system.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
0

10

20

30

40

50

60

70

80

90

100

110

Number of concurrent flows

A
ve

ra
ge

 d
el

ay
s 

(m
s)

 

 
w/o Janus
w/ Janus

(b) Average delays versus number of concurrent
flows w/o and w/ the JANUS system.

1 2 3 4 5
0

2

4

6

8

10

12

14

16

18

20

Number of concurrent flows

P
ac

ke
t l

os
s 

(%
)

 

 
w/o Janus
w/ Janus

(c) Packet loss for six concurrent Multimedia Flows
w/o and w/ the JANUS system.

Fig. 10. Outcome of the measurements campaign exploiting both best effort and real time traffic patterns.

JANUS on both elastic as well as time-sensitive applications. It
turns out that the traffic generated by JANUS has little impact
on TCP-controlled traffic; on the other hand the increase
in average packet delay experienced by VoIP connections
suggests the necessity of a careful tuning of admission control
strategies for multimedia flows.

As future work, we are planning to extend the JANUS
framework in order to monitor other networking aspects.
At the same time, we would also like to extend the pro-
totype’s capabilities by supporting incremental updates and
by differentiating the messages according to their temporal
characteristics.

REFERENCES

[1] I. Akyildiz, X. Wang, and W. Wang, “Wireless mesh networks: a survey,”
Elsevier Computer Networks, vol. 47, no. 4, pp. 445 – 487, Mar. 2005.

[2] R. Bruno, M. Conti, and E. Gregori, “Mesh Networks: Commodity
Multihop Ad Hoc Networks,”IEEE Communications Magazine, vol. 43,
no. 3, pp. 123 – 131, Mar. 2005.

[3] I. Chlamtac, M. Conti, and J. Liu, “Mobile ad hoc networking: imper-
atives and challenges,”Elsevier Ad Hoc Networks, vol. 1, no. 1, pp. 13
– 64, Jan. 2003.

[4] V. Kawadia and P. R. Kumar, “A cautionary perspective on cross-layer
design,” IEEE Wireless Communication Magazine, vol. 12, no. 1, pp. 3
– 11, Feb. 2005.

[5] A. Rowstron and P. Druschel, “Pastry: Scalable, distributed object
location and routing for large-scale peer-to-peer systems,” in Proc. of
IFIP/ACM International Conference on Distributed SystemsPlatforms,
Heidelberg, Germany, 2001.

[6] IETF, “A simple network management protocol.” [Online]. Available:
http://www.ietf.org/rfc/rfc1157.txt

[7] ——, “Internet control message protocol.” [Online]. Available:
http://www.ietf.org/rfc/rfc0792.txt

[8] ——, “Netconf configuration protocol.” [Online]. Available:
http://www.ietf.org/internet-drafts/draft-ietf-netconf-prot-12.txt

[9] “MOME Project.” [Online]. Available: http://www.ist-mome.org/
[10] K. Ramachandran, E. M. Belding-Royer, and K. C. Almeroth, “DA-

MON: A distributed architecture for monitoring multi-hop mobile net-
works,” in Proc. of IEEE SECON, Santa Clara, California, USA, 2004.

[11] C. C. Ho, K. N. Ramachandran, K. C. Almeroth, and E. M. Belding-
Royer, “A scalable framework for wireless network monitoring,” in Proc.
of WMASH, Philadelphia, Pennsylvania, USA, 2004.

[12] M. Conti, S. Giordano, G. Maselli, and G. Turi, “Mobileman: Mobile
metropolitan ad hoc networks,” inProc. of Eight International IFIP-TC6
Conference, Venice, Italy, 2003.

[13] R. Draves, J. Padhye, and B. Zill, “Routing in Multi-Radio, Multi-Hop
Wireless Mesh Networks,” inProc. of ACM MOBICOM, Philadelphia,
Pennsylvania, USA, 2004.

[14] E. Adar and B. Huberman, “Free riding on gnutella,” Xerox PARC,
Tech. Rep., 2000.

[15] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A
scalable content-addressable network,” inProc. of ACM SIGCOMM, San
Diego, CA, USA, 2001.

[16] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek,
F. Dabek, and H. Balakrishnan, “Chord: A scalable peer-to-peer lookup
protocol for internet applications,”IEEE/ACM Transactions on Network-
ing, vol. 11, no. 1, pp. 17 – 32, Feb. 2003.

[17] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and
J. Kubiatowicz, “Tapestry: A resilient global-scale overlay for service
deployment,” IEEE Journal on Selected Areas in Communications,
vol. 22, no. 1, pp. 41 – 53, Jan. 2004.

[18] P. Maymounkov and D. Mazieres, “Kademlia: A peer-to-peer informa-
tion system based on the XOR metric,” inProc. of IPTPS02, Cambridge,
MA, USA, 2002.

[19] C. G. Plaxton, R. Rajaraman, and A. W. Richa, “Accessingnearby copies
of replicated objects in a distributed environment,” inProc. of ACM
SPAA, Newport, USA, 1997.

[20] M. Castro, P. Druschel, A. Kermarrec, and A. Rowstron, “Scribe: A
large-scale and decentralised application-level multicast infrastructure,”
IEEE Journal on Selected Areas in Communication, vol. 20, no. 8, pp.
1489 – 1499, Oct. 2002.

[21] Rice University, “Freepastry.” [Online]. Available:
http://freepastry.org/FreePastry/

[22] Microsoft, “MCL.” [Online]. Available:
http://research.microsoft.com/mesh/

[23] IETF, “The Dynamic Source Routing Protocol for Mobile Ad Hoc
Networks (DSR).” [Online]. Available: http://www.ietf.org/internet-
drafts/draft-ietf-manet-dsr-10.txt

[24] R. Draves, J. Padhye, and B. Zill, “Comparison of Routing Metrics
for Static Multi-Hop Wireless Networks,” inProc. of ACM SIGCOMM,
Portland, Oregon, USA, 2004.

[25] D. S. J. D. Couto, D. Aguayo, J. Bicket, and R. Morris, “A high-
throughput path metric for multi-hop wireless routing,” inProc. of ACM
MobiCom, San Diego, California, USA, 2003.

[26] W3C, “Extensible Markup Language (XML) 1.0 (Fourth edition).”
[Online]. Available: http://www.w3.org/TR/xml/

[27] ——, “Document Object model (DOM) Level 3 Core Specification
Version 1.0.” [Online]. Available: http://www.w3.org/TR/2004/REC-
DOM-Level-3-Core-20040407/

[28] ——, “XML Path Language (xpath) Version 1.0.” [Online].Available:
http://www.w3.org/TR/xpath/

[29] “NetStumbler.” [Online]. Available: http://netstumbler.com/
[30] CAIDA, “Geoplot.” [Online]. Available:

http://www.caida.org/tools/visualization/geoplot/
[31] “ITU-T Recommendation G.729 Annex B, A silence compression

scheme for G.729 optimized for terminals conforming to Recommenda-
tion V.70,” Nov. 1996.

[32] “Simple Network Time Protocol (SNTP) Version 4.” [Online].
Available: http://www.apps.ietf.org/rfc/rfc2030.html

[33] “D-ITG, Distributed Internet Traffic Generator.” [Online]. Available:
http://www.grid.unina.it/software/ITG/


