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Abstract—Software Defined Networking (SDN) and Network

Function Virtualization (NFV) are making their way into the

research agenda of all the major players in the networking

domain. Parallely, testbeds and experimental facilities are widely

regarded as the fundamental step–stone to future “clean slate”

networking. However, designing and building experimental facil-

ities can hardly be considered a trivial step for either researchers

and practitioners. Scale, flexibility, and ease of use are just some

of the challenges faced by a testbed designer. These considerations

are at the base of efforts such as GENI in USA, AKARI

in Japan, FEDERICA, NOVI and OFELIA in Europe which

provide federated and open facilities for the Future Internet

research agenda. Albeit the importance of such facilities is

unquestioned, today there is still a dearth of testbed exploiting

SDN and NFV concepts in the wireless networking domain. In

this paper we present EmPOWER an experimental testbed which

aims at filling this gap by offering an open platform on top of

which novel concepts can be tested at scale. The EmPOWER

testbed is composed by 30 nodes and is currently used by both

undergraduate and graduate students at the University of Trento

and by the research staff at CREATE-NET.

Index Terms—Software Defined Networking, Network Func-

tion Virtualization, WiFi, Testbeds, Open–source

I. INTRODUCTION

SDN and NFV are two of the most promising concepts that

are set to bring innovation in the ossified networking land-

scape. Current SDN efforts start from the consideration that,

by providing full visibility of the network from a logically–

centralized controller, it is possible to simplify network con-

trol and management tasks [1]. Nevertheless, the so called

“north–bound” API exposed by today’s controllers is still very

primitive hindering the development of modular and flexible

network applications: As a matter of fact, if with OpenFlow a

practical and concrete forwarding abstraction has been found,

considerable efforts are still required toward the definition

of new programming models. In this regard, several SDN

proponents argue in favor of high level declarative languages in

order to specify the desired behavior of the network leaving to

the underlying Network Operating System, or NOS, its actual

implementation. Such vision is summarized by the seminal

speech by Scott Shenker: “The Future of Networking, and

the Past of Protocols”. High–level languages [2], such as:

Frenetic [3], Pyretic [4], Procera [1], The Flow Management

Language [5], and Nettle [6], aim exactly at providing such

level of abstraction.

SDN and NFV are in the research agenda of all the major

projects and initiative in the broad Future Internet domain.

Examples are GENI in USA, AKARI in Japan, FEDERICA,

NOVI and OFELIA in Europe. Several open facilities such

as Norbit (NICTA), w-iLab.t (iMinds), NITOS (UTH), Net-

mode (NTUA), SmartSantander (UC), and FuSeCo (FOKUS)

already focus on wireless technologies. Some of these testbeds

(Norbit, NITOS, Netmode) focus on research and experimen-

tation on the WiFi domain allowing experimenters to gain full

access of a variable number of open WiFi Access Points (APs)

where custom software can be installed. Other facilities, such

as w-iLab.t and SmartSantander, aim at providing support for

experimentation in the IoT domain. Finally, FuSeCo delivers

a research facility, integrating OpenIMS and a 3GPP Evolved

Packet Core prototype platform. However, albeit the relevance

of such facilities is beyond doubt, at the moment there is a

dearth of fully virtualized experimental facilities exploiting

NFV concepts in the Wireless Networking domain in general

and for WiFi-based networks in particular. Moreover, the

current OpenFlow ecosystem in term of controller, slicing plat-

forms, and software/hardware switches, provides little support

for the WiFi domain.

In this paper we present EmPOWER a novel open experi-

mental testbed which aims at filling the gap in the experimental

facilities offering for SDN&NFV research and experimenta-

tion. The EmPOWER testbed is composed by 30 nodes and is

currently used by both undergraduate and graduate students at

the University of Trento and by the research staff at CREATE-

NET. Experiments can take full control of a slice of the

network which is kept isolated (at a logical level) from the

other slices. Traffic can come from either users that decide to

opt–in a certain experiment or by mirroring the traffic of a pro-

duction. Moreover, the experimenter can monitor in real–time

and with the desired resolution the actual energy consumption

at either device or slice level using the Energino open energy

consumption monitoring and management toolkit [7], [8].

The remainder of this paper is structured as follows. The ba-

sic requirements that drove EmPOWER’s design are discussed

in Sec. II. Section III presents the EmPOWER architecture. A

particular use case focusing on energy efficiency is presented

in Sec.IV. Finally, we draw the conclusions highlighting

limitations and future work in Sec. V.



II. REQUIREMENTS

Implementing an effective SDN platform supporting ad-

vanced virtualization concepts and running on top of commod-

ity WiFi devices raises several challenges. In this section we

survey three of such challenges dealing with the conceptual

slicing and programming model to be supported, with the

collection of the actual state of the network, and finally with

actual sharing of the facility resources among experimenters.

A. Slicing and programming model

The platform shall support high–level programming primi-

tives with regard to the control of the network. Such primitive

shall be powerful enough to relieve the experimenter from

the implementation details specific to the WiFi standard, i.e.

association/deassociation mechanisms, control frame exchange

and status management. The feature is deemed of capital im-

portance if the policies devised by the experimenters are to be

ported to other wireless environments such as LTE–A. More-

over, the platform shall not impose additional requirements on

the WiFi clients. This means that, unless the experimenter is

planning to deploy custom WiFi clients, the platform shall not

mandate for either software and/or hardware modification to

the WiFi clients. Finally, the slicing mechanism shall put the

experimenter in control of a portion of the network (AP and

switches). An opt–in mechanism shall be available for users

that want to use a certain slice for their traffic.

B. Querying the status of the network

The platform shall provide the experimenter with a rich

set of primitive to query the status of the network. Such

primitives shall be as much general as possible in order to

support a broad spectrum of use cases. OpenFlow switches

already allow collecting statistics related to ports and flows

in the network in terms of number and size of the packets.

A wireless deployment shall support statistics related to the

wireless medium including, for example, RSSI, frame loss

ratio, per–MCS (Modulation Coding Scheme) statistics, etc.

Given the momentum generated by current research activities

on energy efficient networking, the platform shall provide the

experimenter with real–time energy consumption information

with high temporal precision and small granularity. Such

information shall be provided both at the device and at the

sliver level, i.e. the platform shall report both the energy

consumption of an AP as well as the energy consumption of

a specific slice.

C. Federation Architecture

The instantiation of a virtual networks on top of the platform

should be performed through either a web–based control

framework or an equivalent command line interface which

should allow an easy reservation of network resources, either

nodes or links. Ideally, a user should be allowed to select

the APs and the switches he/she intends to use during the

experiment and then the system should instantiate the network

Fig. 1: The EmPOWER system architecture.

in a transparent way to the user. Suitable traffic generation and

collection tools shall also be available.

III. THE EmPOWER PLATFORM

A. System Architecture

The system architecture, sketched in Fig. 1, consists of a

single Master and multiple Agents running on each AP. The

Master, implemented on top of an OpenFlow controller, has

a global view of the network in terms of clients, flows, and

infrastructure. The Agents allow multiple clients to be treated

as a set of logically isolated clients connected to different ports

of a switch. Network application run on top of the controller

and can exploit either the embedded Floodlight REST interface

or an intermediate interpreter, e.g. Pyretic [4]. Each network

application effectively runs in an isolated slice controlling all

or just a subset of the available APs.

The EmPOWER testbed is built around open and freely

available toolkits: OpenVSwitch and the Click Modular Router

for the datapath; Floodlight as the controller and Arduino as

the power manager. Network applications, i.e. slices can either

exploit the Floodlight REST interface or can be built on top of

other SDN frameworks. The Pyretic interpreter is also being

integrated in the framework in order to allow experimenters

to take advantage of this composable programming language.

The EmPOWER framework builds on a light vir-

tual AP (LVAP) abstraction [9] which decouples associ-

ation/authentication from the physical connection between

clients and AP. With LVAPs every client that tries to associate

to the WLAN receives a unique BSSID, i.e. every client

is given the illusion of having a dedicated AP. Similarly,

each physical AP hosts an LVAP for each connected client.



Therefore, migrating an LVAP between two physical APs,

effectively results in client handover without requiring any

re-association and re-authentication. The agent running within

each APs is implemented using the Click Modular Router [10].

Finally, Energino1 is an Arduino add–on, which allows mea-

suring the energy consumption of a device. The measurement

circuit is composed of a voltage sensor (based on a voltage

divider), and a current sensor (based on the Hall effect). The

powering off is done using a mechanical relay. The maximum

sampling rate for measurements is about 10.000 samples/s.

Voltage and current measurements are periodically sent to the

Energy Manager for statistical purposes. Fluctuations in the

values read from the analog inputs are filtered out by con-

tinuously polling the voltage and the current sensors between

update periods and by dispatching the average values. For ex-

ample, if the sampling period is set to 1s, both the voltage and

the current readings will be the average of ≈ 5000 samples.

Finally, Energino acts also as chassis manager allowing the

testbed administrator to power on/off any node in the network

using an HTTP RESTful interface.

While, Energino allows the experimenter to measure the

overall power consumption of the AP, it does not provide any

info about the actual impact in terms of energy consumption

of a slice on the testbed. In order to address this challenge

we extended to acts as virtual power meter allowing the

experimenter to gain insight into the energy efficiency of

his/her network application. In order to do so, a set of power

consumption models already developed by the proposers [11],

[7] have been embedded into the control framework allowing

it to isolate the actual contribution of each slice to the

overall consumption of each AP. Energy consumption model

take as input measurable network statistics, such as packet

transmitted/received over a certain interface, CPU usage, etc.

Such statistics are fed to a centralized entity which is in charge

of estimating the energy consumption on a per–slice basis.

Results are then made available to the experimenter over the

controller north–bound interface.

The system exploits a “logically centralized” architecture

in order to provide experimenters and network applications

developers with a set of powerful programming abstractions

to control the behavior of the network. Applications can,

for example, register events associated with the actual net-

work conditions and receive updates when such conditions

change, e.g. a client moving away from an AP and closer

to another. Such primitives can be used to devise and im-

plement novel resource allocation and/or mobility manage-

ment schemes without having to deal with all the WiFi–

dependent implementation details, such as directly handling

the IEEE 802.11 state machine or devising workarounds to

the limitations of the IEEE 802.11 standard that do not allow

the infrastructure to control clients’ handovers. Moreover,

the availability of a real–time energy monitoring platform

1Online resources available at: http://www.energino-project.org/

Fig. 2: The EmPOWER network architecture..

will provide experimenters with empirical evidence about the

energy consumption performances of their solutions.

B. Network Architecture

The EmPOWER testbed architecture is sketched in Fig. 2.

Each programmable Access Point is equipped with two Eth-

ernet ports. One of them is connected to the control and man-

agement network. This allows experimenters collect network

statistics and to perform administrative tasks without affecting

the actual user traffic that flows trough the second Ethernet

interfaces. VLANs are used at the switch in order to keep

control and data traffic separated. The EmPOWER testbed is

currently equipped with the following devices:

• 30 programmable APs based on PCEngines ALIX 2D2

(500MHz x86 CPU, 256MB of RAM) platform and

equipped with two Mikrotik R52Hn IEEE 802.11 in-

terfaces (a/b/g/n). The AP exploits OpenWRT 12.09 as

operating system. Each AP runs and instance of Open-

VSwitch version 1.9 together with an instance of the

Click Modular Router.

• 30 Energino power meters. Each Energino is monitoring

the power consumption of the AP it is attached to

with a sampling period as low as 100 usec and with a

resolution of 10mW. Statistics are exported in a format

compatible with IoT platforms such as Xively. A REST

interface for integration with additional monitoring and

management systems is available. Energino acts also as

“chassis manager” allowing the testbed manager to power

on/off APs remotely.

• 2 Pronto 3295 switches supporting the OpenFlow version

1.0 protocol with 48 Fast Ethernet interfaces.



Each node is equipped with two Ethernet ports. One of them

is connected to the control network allowing the controller to

collect statistics without affecting the experiment. The second

interface is connected to the OpenFlow switch and is used

for running the actual experiment’s traffic. Finally, another

network collects the energy consumption statistics generated

by the Energino devices. It is worth noticing that, unlike other

WiFi testbeds, EmPOWER does not allow the experimenter to

upload a custom OS on each AP but rather provides a set of

APIs trough which the experimenter can control the behavior

of the AP from a centralized controller.

The server runs the latest available software for Floodlight

and FlowVisor. It is worth stressing that in the EmPOWER

architecture new services and algorithms are deployed in

the form of Network Applications on top of the Floodlight

controller and exploiting its native REST interface. Additional

interpreters, such as Pyrethic, are being ported to the platform.

Each application is logically isolated from the others and

has complete control over its slice, however physical level

parameters such as the operating frequency for the hotspot are

not. Nevertheless the application can control parameters such

as Modulation and Coding Scheme and Transmission Power

on a per–frame basis (if required by the experiment).

IV. ENERGY PROGRAMMABLE WIFI NETWORKS

In this section we shall describe in details a particular use

case that make full use of the features made available from the

EmPOWER testbed starting from the SDN framework for WiFi

to the Energino energy monitoring and management toolkit.

A recent report from CEET (Center for Energy Efficient

Telecommunications, University of Sydney) stated that by

2015 the wireless access infrastructure will account for 90%

of the entire energy footprint of the Wireless Cloud domain,

which includes also datacenters and distribution networks [12].

WiFi hotspots are increasingly deployed to relieve cellular

networks from the burden generated by data-hungry mobile

applications. Such deployments generally cater for the worst

case scenario, which leads to a sub-optimal usage of resources

when little or no traffic is present. Real improvements in

this context can only be delivered with true programmability

of network functionalities which in time will allow better

resource management, seamless handover between different

technologies, and always best connected services. Recently,

energy efficiency has also emerged as one of the evaluation

metric for new networking solutions.

Hence, it is necessary to gracefully adjust the network to

the current demand, improving both energy consumption and

traffic pollution. Using the EmPOWER testbed, a researcher

can test novel energy aware mobility management schemes

over a realistic infrastructure. In this regard the EmPOWER

testbed provides support both in the sensing part allowing

the experimenter to subscribe a series of event such as RSSI

of a client at one or more APs, energy consumption at

device and network level (per–slice). The facility provides the

Fig. 3: The EmPOWER system architecture particularized for

energy programmable WiFi networks use case.

experimenter with set of APIs to both query the actual state

of the network and to implements handover policies.

This use case, which has already been demonstrated by

the authors in [8], aims at demonstrating that EmPOWER

can exploited to implement real–time energy consumption

monitoring and management solutions aiming at reducing

the actual energy consumption of WiFi infrastructures. The

argument here is that, in WiFi networks,the extent of energy

savings is limited by the actual client distribution (i.e., even if

a single client device is attached to an AP, then the AP needs

to stay on). This limitation can be traced back to the IEEE

802.11 standard that places all the (re)association initiation

to the clients. However, the EmPOWER testbed allows the

controller to dynamically handover WiFi clients between APs

and to selectively shutdown the part of the network that is not

deemed necessary.

Figure 3 sketches this use case implementation as two

separated network applications running on top of EmPOWER.

The system exploits a joint mobility and energy management

solution. In particular the Energy Manager is responsible of

energy management in the network. The decisions that lead to

client handovers are handled by the Mobility Manager.

The reference network model for this use case is sketched

in Fig. 4. APs are partitioned into clusters with a single Master

(represented in blue) and multiple Slaves (represented in either

gray or red). Masters are manually chosen at deployment time

to provide full coverage and must remain always active. Slaves

are deployed for providing additional capacity, and can be

selectively turned on/off by the Energy Manager.

In this experiment, APs can support multiple operating

modes. Possible events and corresponding transitions between

modes are implemented as a finite state machine (FSM) by

the Energy Manager. For this use case, we focus on two

main operating modes. In the Online mode, an AP and all

its wireless interfaces are on. In the Offline mode, the entire

AP is turned off and only the Energino is powered. It is worth

noticing that, due to the shared nature of the infrastructure,

experimenter are not allowed to actually turn APs on/off.

Nevertheless APs can be put in a virtual power down mode

where no traffic is sent to the slice controller and where the

power meter reports a null energy consumption.

We define Wn ∈ N
+ as the number of clients that must

be present in the AP n’s cluster so that the AP must remain

active. Based on the FSM, a Slave AP n belonging to a cluster



Fig. 4: Reference network model for the Energy Programmable

WiFi Network use case. A minimum set of APs (Masters, in

blue) providing full coverage must remain always on, while

the remaining APs (Slaves, in red or gray) are at disposal of

the Energy Manager.

with less than Wn clients and that has been inactive for at least

Tidle seconds is transitioned to the Offline state. Here, inactive

means that no LVAPs is hosted by the AP, i.e. no client is

connected to the AP. If there are more than Wn clients in the

cluster and if the AP has been offline for at least Toffline
seconds then the AP is brought back to Online mode. Notice

that, Wn is statically defined for each AP at deployment time

and that Wn = 0 only for Master APs.

This FSM provides a simple example, but it can be extended

to support other operating modes according to the APs’

capabilities, e.g., single or dual band, support for HT–rates.

For example, if an AP has two interfaces, one can be tuned

on the 2.4 GHz band and the other tuned on the 5 GHz

band. Different operating modes can be created by turning on

and off different the interfaces depending on, for instance, the

existence of clients supporting the 5GHz band in the cluster.

Clients joining the network are handed over by the Mobility

Manager to the AP that provides the best performance in terms

of Signal–to–noise ratio (SNR). However, in order to trade–off

performance with energy consumption, the Mobility Manager

is allowed to handover clients to APs with lower SNR if their

Wn is smaller. The rationale is that, by consolidating clients

around APs with a small Wn, the Energy Manager will be

allowed to turn off APs with bigger Wn. More precisely, if

S(n) is the SNR between the client and the AP n, N is the

number of clients in the cluster, and 0 ≤ δ ≤ 1 is a tuning

parameter specifying how much performance degradation are

we willing to accept w.r.t. the best SNR Ŝ, we define the

optimal AP n̂ as follows:

n̂ = argmin
n∈ψ

(Wn), ψ = {n ∈ V |Wn ≤ N, S(n) ≥ δ · Ŝ}

where we assumed that V is the set of |V | APs in a cluster

(including the Master AP. Notice that, since Wn = 0 only for

Master APs, the Mobility Manager will always try to handover

clients to a cluster’s Master AP if its SNR is acceptable.

Notice that albeit simplistic in nature, this use case shows

the potential of the EmPOWER framework as practical plat-

form for research and experimentation in the Wireless SDN

domain. The actual implementation of the described energy

management solution consists in ≈ 120 lines of java code

and could be simplified even further by introducing more

sophisticate domain–specific programming languages.

V. CONCLUSIONS AND FUTURE WORK

The paper articulated the design of a novel open testbed

aimed at offering an experimental facility for furthering

SDN&NFV research and experimentation. Implementing an

effective SDN platform supporting advanced virtualization

concepts and running on top of commodity WiFi devices is a

significant challenge which we address in this paper with the

EmPOWER experimental testbed. The EmPOWER framework

builds on top an SDN framework for WiFi networks combining

OpenFlow with an open energy consumption monitoring and

management toolkit. The facility is currently being extended to

include programmable wireless base stations (LTE eNodeBs)

to deploy and test heterogeneous scenarios and to experiment

with programmable cellular networks.

REFERENCES

[1] A. Voellmy, H. Kim, and N. Feamster, “Procera: a language for high-

level reactive network control,” in Proceedings of the first workshop on

Hot topics in software defined networks. ACM, 2012, pp. 43–48.

[2] N. Foster, A. Guha, M. Reitblatt, A. Story, M. J. Freedman, N. P. Katta,

C. Monsanto, J. Reich, J. Rexford, C. Schlesinger et al., “Languages for

software-defined networks,” Communications Magazine, IEEE, vol. 51,

no. 2, pp. 128–134, 2013.

[3] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford,

A. Story, and D. Walker, “Frenetic: A network programming language,”

ACM SIGPLAN Notices, vol. 46, no. 9, pp. 279–291, 2011.

[4] C. Monsanto, J. Reich, N. Foster, J. Rexford, and D. Walker, “Compos-

ing software defined networks,” in Proc. of USENIX NSDI, 2013.

[5] T. L. Hinrichs, N. S. Gude, M. Casado, J. C. Mitchell, and S. Shenker,

“Practical declarative network management,” in Proceedings of the 1st

ACM workshop on Research on enterprise networking. ACM, 2009,

pp. 1–10.

[6] A. Voellmy and P. Hudak, “Nettle: Taking the sting out of program-

ming network routers,” in Practical Aspects of Declarative Languages.

Springer, 2011, pp. 235–249.

[7] K. M. Gomez and Roberto Riggio and Tinku Rasheed and Daniele

Miorandi and Fabrizio Granelli, “Energino: An hardware and software

solution for energy consumption monitoring,” in WinMee, 2012.

[8] Roberto Riggio and Cigdem Sengul and Lalith Suresh and Julius

Schulz–Zander and Anja Feldmann, “Thor: Energy programmable wifi

networks,” in Proc. of IEEE INFOCOM, 2013.

[9] L. Suresh et al., “Towards programmable enterprise wlans with odin,”

in Proc. of ACM HotSDN, 2012.

[10] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The

click modular router,” ACM Transactions on Computer Systems (TOCS),

vol. 18, no. 3, pp. 263–297, 2000.

[11] Roberto Riggio and Douglas J.Leith, “A measurement-based model of

energy consumption in femtocells,” in IEEE Wireless Days, 2012.

[12] CEET, “The Power of Wireless Cloud: An analysis of the energy

consumption of wireless cloud,” Centre for Energy-Efficient Telecom-

munications, Tech. Rep., April 2013.


