
Leakage Detection in Waterpipes Networks using

Acoustic Sensors and Identifying Codes

Francesco De Pellegrini and Roberto Riggio

CREATE-NET

Via alla Cascata 56/D Povo, 38123

Trento - Italy

Email: {fdepellegrini,rriggio}@create-net.org

Abstract—In future smart cities a grand challenge will be
to sensorize large urban infrastructures at a feasible cost. In
this paper we tackle the case of efficient leakage detection in
water distribution systems. Deploying leakage detectors can cut
operational costs for water utility providers. But, the cost for
deploying them with sufficient granularity poses an high entrance
barrier due to the scale of such infrastructures. We propose an
algorithmic framework to efficiently deploy sensors in order to
perform leakage/fault localization over large scale lattice–shaped
networks. The novelty of our solution, combining covering sets
and identifying codes is that it initially covers the network with
low resolution, and thus fewer sensors. The set of sensors can
then be extended in a way to progressively improve the resolution
by which leakages are located. The proposed solution is validated
through extensive numerical experiments.

Index Terms—Leakage detection, waterpipes networks, sensor
placement, covering, identifying codes.

I. INTRODUCTION

The usage of sensors promises major savings in the opera-

tional costs for many industrial and urban infrastructures. In

this paper, we focus on the specific case of the metropolitan

water distribution systems (WDS). In such systems, the in-

frastructure’s aging process cause ever increasing operational

costs. Water pipes are in fact constantly under pressure, with

seasonal variations that may as well depend on the demand.

Overall, the effect is the constant aging of the pipes and the

formation of leakages in the infrastructure.

However, repairing the leakage is not always the most

convenient strategy. To do so, in fact, the exact position of

a leakage has first to be determined. Unfortunately, utility

providers often know only the aggregated water demand of a

certain district. Thus, one can not distinguish a water leak from

ordinary customers’ demands. In order to discriminate such

events, real–time water meters at the customer ends should

be deployed. Such a solution raises many technical issues for

wiring and powering such devices and is not viable nowadays.

The current practice to detect the leakages is to measure the

Minimum Night flow (MNF) [1]. Since the demand is typically

negligible at that time, the water consumed during night hours

provides an upper bound to the leakages in a certain district.

Major breaches trigger major variations of MNFs and are thus

relatively easy to locate, e.g., due to surface flooding.

This work has been partially supported by the European project OUT-
SMART FP7-2011-ICT-FI- 285038.

Less severe leakages, conversely, may be difficult to spot

and thus pose to the utility provider the dilemma whether

to search and repair the leakage, or to delay the repair and

continue serving the customers facing a constant increased

cost due to pressure overprovisiong in the waterpipes.

A customary technique to identify the position of a leakage

in a water pipe is performed by placing two synchronized

acoustic correlators at the end points of the leaking pipe.

Such devices allow the maintenance crew to precisely identify

the position of the leakage. To make such an operation

economically viable, though, one should restrict the area of

intervention as much as possible, i.e., to identify a small subset

of waterpipes, that can be potential hosts for leakages.

In this paper we propose a technique for the localization

of leakages which aims at minimizing the set of candidate

waterpipes. We leverage on a class of noise loggers capable,

once placed at wells or at junctions of water pipes, to identify

the presence of a leakage within a certain range. The problem

thus becomes the following: given a certain number of sensors,

we want to deploy them is such a way to minimize the number

of pipes that are candidate to host a leakage. To do so, we

formulate leakage detection as a covering problem on a graph

where edges are the water pipes and nodes are junctions:

the sensor deployment must detect the noise generated by a

leakage located in any point of the network. In the ideal case,

we want to precisely identify uniquely the pipe, e.g., the edge

of the graph, that hosts a leakage.

Moreover, we want the solution to be incremental: we

wish to start with a bootstrap coverage configuration where

if any leakage exists, it will be detected. But, we can add

progressively sensors until a configuration which minimize

the number of candidate pipes hosting the leakage, i.e. an

identifying set of sensors, is obtained. The rationale is dictated

by economic considerations: the initial deployment would be

less accurate, but would permit to sanitize the network with

few sensors. Then, after the network is sanitized, the provider

could progressively deploy more sensors which could identify

new leakages with greater confidence. Finally, it is worth

noticing that such problem is indeed relevant for other type of

piped distribution infrastructures, e.g. oil, gas or electricity.

978-1-4244-9529-0/13/$31.00 ©2013 IEEE

9th IEEE International Workshop on Sensor Networks and Systems for Pervasive Computing 2013, San Diego (22 March 2013)

572

RELATED WORKS

The way we solve the problem is by identifying vertices

in graphs: such codes were proposed in the seminal work of

Karpovsky et al. [2]. Variants of the identification problem

include the case when one node covers more than one edge.

The case when the distance of the identifying code is larger

than one was introduced first in [3].

Traditional link–based monitoring schemes for computers

networks require that a dedicated monitoring facility is avail-

able at each link; this requires O(|E|) monitors, where |E| is
the number of links in the network. M-trail is an active path

probing solution proposed in [4] localizing single failures in a

computer network in more scalable fashion. In [5], a solution

based on several m-trails per routing entity solves optimally

fault localization for lattice networks. In general, trail-based

approaches, such as companion m-trees [6] and m-cycles [7]

apply well for communication infrastructure, but they do not

apply to passive infrastructures such as waterpipes networks.

In [8] the authors optimize the placement of sensors in

municipal water networks to detect the injection of con-

taminants. An integer programming formulation is proposed;

simulations demonstrate that the resulting sensor configuration

is relatively insensitive to uncertainties in the data used for

prediction. Similarly, authors of [9] developed multi-objective

optimization for water distribution systems: they minimize for

the expected water volume contaminated and the expected

detection time and maximizing for the detection likelihood.

Optimization is performed using a genetic algorithm.

Our goal, is different compared to those works, i.e., we

aim at minimizing the number of water pipes to be manually

probed in case of leakages.

The rest of the paper is structured as follows. The leak-

age detection problem together with the network model is

introduced in Sec. II. Section III formulates the problem. An

iterative puncturing algorithm which minimizes the number of

sensors required to identify leakages is introduced in Sec. IV.

Section V tackles the incremental identification problem, while

Sec. VI presents numerical results. Finally, Sec. VII draws

the conclusions pointing out some interesting future research

directions.

II. LEAKAGE DETECTION IN PIPELINES

The requirements for this work are dictated by the water

leakage sensing technologies currently available on the market.

We are considering a particular class of sensors suitable for

large scale deployment called acoustic loggers: such sensors

are deployed at junctions or wells along waterpipes to detect

the noise generated by water leakages. Acoustic loggers pe-

riodically measure the noise level on the waterpipe and the

analysis of this data allows the logger to detect the presence

of a leakage. The event of leakage detection is transmitted to

the network manager using various networking technologies;

M2M commercial devices such as the Primayer Phocus.SMS1

deliver an SMS over the cellular network. The alarm can

1Online resources available at: http://www.primayer.co.uk/

Factor Meaning and confidence Noise Strength

2 Leak noise – confindent/very confident. ≥ 41dB
1 Possibly leak noise + other noise 31 - 41 dB
0 No leak noise ≤ 30dB

TABLE I: Noise strength scale.

include the noise strength and the confidence factor, the latter

represents the likelihood that a leak is actually present within

the coverage radius of the sensor (see Table I).

The waterpipe network is represented as an euclidean undi-

rected graph, i.e., a graph G = (V,E) with N vertices which

represent either a waterpipe junction or a well, and M edges

e1, . . . , eM where vertices lie on a plane; we consider the

origin of the plane fixed and refer to any point of the plane as

the position vector. vi ∈ V will indicate both the vertex label

of the i-th node and its position. In particular, we are interested
in points that correspond to certain positions along edges of

G, which we denote briefly as xi ∈ ej to say that xi lies on

edge ej . Such positions will be denoted X = {x1, . . . , xL}:
as it will be clear in the following, X represents the training

set for our XCODE algorithm (see Sec.V).

We can define ℓ(xi, vj) = |xi − vj | as the (geometric)

distance of xj from vj along the edges of graph G. Element

xj ∈ X produces a signature at node vi according to a

characteristic function, i.e., h(·). Given ℓ′ = ℓ(xi, vj), the

value h(ℓ′) represents the strength registered at vj of a leakage
signal emitted at xi. In our study we assume that the signal

characteristic of a leakage h(ℓ) is a decreasing threshold

function of the distance ℓ.

h(ℓ) = ak, ℓ ∈ [tk−1, tk), k = 1, . . . ,K (1)

where tresholds 0 = t0 ≤ t1 ≤ . . . ≤ tK and h(t) = 0 for

t ≥ tK . Expression (1) generalizes the noise strength scale

reported in Table I. In our study we refer to the case where

K = 2 for simplicity’s sake. Moreover we confine our model

to the case when h(·) does not depend on the materials and

junctions encountered along the path by the traveling sound

wave. We leave those aspects as part of future work.

Define C ⊆ V , C = {vj1 , . . . , vjL}. Consider xi ∈ X:

and let ℓijr = ℓ(xi, vjr): hence it is possible to define the

|X| codewords of length L: cxi
= (h(ℓij1), . . . , h(ℓijL)), i =

1, . . . , |X|. C(C) is the set of codewords for (G,X).
With standard coding terminology, the distance of code-

words h1 and h2 is the number of positions where they differ,

i.e., d(c1, c2) :=
∑N

i=1
((c1)i 6= (c2)i). Denote C a [n,m, d]

if it is composed of words of length n (namely, the code

length), has m codewords and the code distance is d, where
code distance d(C) = min{d(ci, cj), ci 6= cj ∈ C}
We say that C is an X-identifying set for (G,X) if code

C = C(C) has distance d ≥ 1.
Also, 0 ∈ C(C) since the empty syndrome is always a

legitimate codeword (no leakage detected).

The i-punctured code C∗i is defined as the code that is

obtained removing the i-th component from all codewords.

The punctured code has length which is shortened by one

compared to the original length.

573

1000 1200 1400 1600

1000

1100

1200

1300

Distance [m]

D
is

ta
n
c
e
 [
m

]
v1 v2

v3 v4 v5

x1

x2 x3 x4

x5 x6

C(C)=

















0 1 2 0 2
0 2 1 0 2
0 2 2 0 1
0 1 2 0 1
0 2 1 0 1
0 1 2 0 1

















→ x1

→ x2

→ x3

→ x4

→ x5

→ x6

Fig. 1: An example of a code built for graph G and set X given by
mid-edge points; t1 = 500 m and t2 = 800 m.

Puncturing a code in its i-th corresponds to replace the

i-th component by the value 0 in the original code: in our

framework this corresponds to removing a sensor from posi-

tion xi; we refer to this representation since it has immediate

correspondence to the position of the sensors.

In the next example we illustrate a technique to build a X-

identifying set by iterative puncturing, which extends the case

considered in [3].

Example. A simple example is reported in Fig. 1. The graph

G is made of 5 nodes, and 6 edges, Set X is the set of mid

edge points, i.e., given edge e = ve1ve2 , xe = (ve1 + ve2)/2.
Two–thresholds function h is defined by thresholds t1 = 500
m and t2 = 800 m. We start from C = {1, 2, 3, 4, 5}: for that
code, it is easy to see that the distance of the code is d = 1.
However, we can remove components 1 and 4, and consider

the code which is obtained puncturing the original code on

components 1 and 5. The X-identifying code C = {2, 3, 5}
corresponds to the punctured code reported above.

III. PROBLEM STATEMENT

In our context, minimizing the length of the codewords

means deploying a minimal number of sensors.

X-Identifying Code: “Given an Euclidean graph G, set X
of points lying on edges of G, and characteristic function h,
determine an identifying set C such that |C| is minimized”
In general, the complexity of constructing optimal identify-

ing codes for arbitrary graphs is known to be NP–complete

[10]. Since X = V is a particular case of our problem, it

follows that the X-Identifying Code is at least as hard as the

Identifying Code problem:

Theorem 1: The X-Identifying Code problem is NP-hard.

Following the same approach in [3], instead of looking

for an optimal solution, a greedy algorithm to construct

irreducible identifying codes: the deletion of any codeword

results in a code that is no longer an identifying code; thus,

the proposed algorithm always converges to a local minimum.

The minimum size of an X-identifying code can be lower

bounded as 1 + ⌈logq |X|⌉ since that is the number of q-ary
symbols required to encode an alphabet of |X| elements; here

q = K + 1.

IV. ITERATIVE PUNCTURING ALGORITHM

The iterative puncturing procedure, reported in Fig. 2, is

a greedy algorithm to reduce the length of a code: in our

case, zeroing the i-th punctured component corresponds to

C=X-ID-CODE(G,X , a)

X ← REDUCE(X)
C← V , C ← C(C)
for i = 1, . . . , N ,
C ← C∗[i]
if |C| = |X| and d∗ ≥ 1

C← C \ {v[i]}
endfor
return C

Fig. 2: The X-ID-CODE algorithm generates identifying code C for
an arbitrary graph and set X .

eliminate sensor i. We obtain an iterative puncturing algorithm

that produces an X-identifying code: at each step it preserves

the initial code distance and it ensures that the number of

codewords does not decrease.

The pucturing of a code is characterized by the following.

Lemma 1: Let C be a [n,m, d] code:

(i) If d > 1, C∗i is a [n−1,m, d∗] code where d∗ = d−1 if C
has two codewords that differ only in the i-th coordinate

and d = d∗ otherwise

(ii) When d = 1, C∗ is a [N−1,M, 1] code if there are no two
codewords that differ only in the i-th coordinate, whereas

if there are r codewords that differ only for components

i, [N − 1,M − r, d∗], where d∗ > 1.

Our aim here is to operate iterative puncturing such in a

way to ensure that M∗ = M and d∗ ≥ 1 at each step. Denote

[·] a permutation of (1, . . . , N).
Theorem 2: At every step, the distance of the code gener-

ated by X-ID-CODE does not increase.

Proof: Since the X-ID-CODE algorithm is working with

iterative puncturing, from Thm. 1, if d(C) > 1, the distance

d(C) decreases at most of one unit at each step. The only case

when the distance of the code can increase is when d(C) = 1
and r > 1 codewords differ only for the puctured component

i. However, the check |C| = |X| does not allow the removal

of the codeword.

Remark 1: The above property states that either set V is a

X-identifying set, or no X-identifying code exists. If it is so,

X-ID-CODE maintains the code distance larger than 1 at each

iteration, which in turn guarantees that the output set C is a

X-identifying set. Counterexamples exist for the case when

C(V) is not identifying, i.e., d(C(V)) = 0. In our context,

nevertheless, we aim at restricting the set of identified edges:

whenever d(C(V)) = 0, a simple procedure we identify all

codewords of C(V) that have distance 0 among them and

consider reduced set accordingly; we denote this procedure

X ←REDUCE(X).

V. INCREMENTALLY IDENTIFYING SETS

The application of the previous concepts to WDSs requires

the placement of noise detectors to identify the presence of

leakages at positions corresponding to the set X . However, we

should require that C is a covering for any possible position

574

C, ∆C = XCODE(G,X ,a)

C← V , D← V , C ← C(C)
X ← REDUCE(X)
if C(C) is not edge-covering

return C = ∆C = ∅ (no edge-covering code exists)
for i = 1, . . . , N ,

if C(C) is edge-covering
D← D \ v[i]
C ← C∗[i]
if |C| = |X| and d∗ ≥ 1

C← C \ v[i]
endfor
∆D← C \ D
return D, ∆D

Fig. 3: The XCODE algorithm training setX: output is edge covering
set D and set of nodes ∆D such that C = D ∪∆D.

of a leakage, i.e., for every xi ∈ ej there exists cj ∈ C such

that h(ℓij) 6= 0: this corresponds to being able to detect the

presence of a leakage in the waterpipe network. Thus, we

require that C is a edge-covering set. A trivial necessary and

sufficient condition for an edge-covering set to exist is that

h(dij/2) > 0 for every link ij and we will assume that it is

always satisfied. This requires that sensors must be capable

of covering at least half the length of the longest pipe in the

network (if this is not the case, additional nodes, i.e. new

wells can be deployed to host sensors along such pipes). We

can then propose the algorithm reported in Fig. 3 to obtain

edge-covering set D that can be enriched such in a way to

become an identifying set C. In other words, ∆D = C \ D
can be used to incrementally extend D in order to obtain an

X-identifying set.

Once the X-identifying set has been obtained, we aim at

measuring the performance of a noisy detection, i.e., when

the received codeword corresponding to a certain edge is y
are affected by errors, namely a displacement with respect to

the training set X . By means of minimum distance decoding,

we would determine codewords of set Y = argmin
c∈C
{d(y, c)}

In this context, our aim is to minimize the number of candidate

edges that can host a leakage: to this respect our approach is

incremental in that the more elements of ∆D we add to set

D, the smaller the set of candidate set of edges can be made.

VI. NUMERICAL RESULTS

In this section we describe the simulation environment

followed by the numerical evaluation. We assess the tradeoffs

between number of nodes of the graph, i.e., the maximum

number of positions that can host a sensor, the sensors

coverage characteristics and number of sensor nodes actually

deployed. Moreover we analyze the impact of the leakage

position over pipes on our leakage detection algorithm. Finally,

we consider the problem of providing a boostrap edge covering

set capable of detecting leakages on the waterpipes and we

show how the XCODE solution can perform progressively more

accurate leakage identification by adding new sensors to the

initial set.

A. Simulation Environment

Simulation have been performed using Matlab using three

reference waterpipes network topologies: grid, pruned grid,

and pruned distorted grid; pruning is operated using a random

edge deletion probability of 0.5. The reference topologies used
here are meant to mimic some properties of waterpipe net-

works which are typically planar graphs with degree not larger

than 4 and median dgree 2. For each type of topology, we

consider three instances characterized by a different number

of nodes, in particular 10 × 10, 20 × 20, and 30 × 30 grids

have been used.

For the distorted grid and the pruned distorted grid a library

of 1000 random topologies has been used. Waterpipes’ length

was set to 300m for the grid and the pruned grid while it was

uniformly distributed between 100m and 500m for the pruned

distorted grid topology. Figure 4 reports an example of each of

the three types of topologies adopted. All the results reported

hereafter are the average of 1000 runs.

In our study we assume that the power of the noise gener-

ated by a leakage attenuates along pipes as R(ℓ) = 60max(1−
ℓ

1000
, 0): thresholds t1 and t2 correspond to reference power

levels RHigh = R(t1) and RLow = R(t2).

B. Performance metrics.

In order to measure the performances of our algorithm we

used the following metrics:

a) number of sensors. The number of sensors required to

identify a single leakage. Results are given for different values

of the signature function’s parameters h1 and h2. In particular

we considered the following scenarios:

• t1 = t2 = D where D ∈ [300, 1000) m with increments

of 100 meters;

• t2 = 833m, t1 such that R(t1) ∈ [11, 59) dB with

increments of 3 dB.

• t1 = 500m, t2 = 833m, which corresponds to an

RHigh = 30 dB and RLow = 10 dB;

b) sensitivity to leakage position: XCODE algorithm is trained

by a certain reference X set: in our experiments the set of mid-

edge points. Thus we evaluate the robustness of the algorithm

over a fine grid of position to be identified; we simulated the

presence of a single leakage on each edge and by computing

the number of edges that are thus classified as faulty. Leakages

are placed over 100 positions uniformly spaced over each edge.

Results are given for different leakage placements relative to

the reference training case, i.e., the center of the edge.

C. Results

Figure 5 reports on the average number of sensors required

to identify leakages, i.e., to produce a code of distance 1, for
various types of topologies; it is evaluated versus the sensor

coverage. As seen there, the number of sensors required to

identify a leakage depends on the number of nodes, i.e. the

junctions, and on the sensor coverage. In particular, we find

575

0 1000 2000 3000
0

1000

2000

3000

Distance [m]

D
is

ta
n
c
e
 [
m

]

(a) 10× 10 Grid.

0 1000 2000 3000
0

1000

2000

3000

Distance [m]

D
is

ta
n
c
e
 [
m

]

(b) 10× 10 Pruned grid.

0 1000 2000 3000
0

1000

2000

3000

Distance [m]

D
is

ta
n
c
e
 [
m

]

(c) 10× 10 Pruned distorted grid.

Fig. 4: Reference waterpipes topologies used for our numerical evaluation.

200 400 600 800 1000
300

400

500

600

700

800

Coverage (m)

N
u
m

b
e
r

o
f
s
e
n
s
o
rs

(a) 30× 30 Grid.

200 400 600 800 1000
400

500

600

700

Coverage (m)
N

u
m

b
e
r

o
f
s
e
n
s
o
rs

(b) 30× 30 Pruned Grid.

200 400 600 800 1000

500

550

600

650

700

750

Coverage (m)

N
u
m

b
e
r

o
f
s
e
n
s
o
rs

(c) 30×30 Pruned Distorted Grid.

Fig. 5: Average number sensors required to identify leakages in various topologies Vs. sensor coverage.

that using sensors with a coverage equal to the double of

the average pipe’s length minimizes the number of sensors

required to identify leakages on the network. This can be as-

cribed to the fact that using a two threshold characteristic, such

configuration tends to increase the diversity in the signature

corresponding to the training set X .

Figure 6 reports the average number sensors required to

identify leakages in various topologies for different sensitivity

values. In particular we kept the RLow sensitivity, i.e. the

strength below which every signal is classified as background

noise, fixed to 10 dB which corresponds to a coverage distance

of 833 meters, while we changed the RHigh sensitivity be-

tween 11 and 59 dB which corresponds to a coverage distance

of, respectively, 816 and 16 meters. The x-axis on the picture

reports directly the sensor coverage.

We observe that, on the Grid topology the number of sen-

sors required to identify leakages on the network is maximum

when the RHigh is either very high, i.e. low coverage, or

when it is approaching the RLow value, i.e. h1 = h2 which

means that a the generated code becomes binary instead of

ternary. This behavior is easily explained by the the syndromes

corresponding to every leakage have reduced diversity in

those cases, i.e., sensor coverage is too large and too small,

respectively, compared to the network typical edge length. No

particular pattern can be found for the Pruned grid and for

the Pruned distorted grid topologies.

Figure 7 reports the average number of edges identified as

faulty for randomly occurring single leakages. Notice that, the

identifying code has been computed for leakages placed in

the middle of each edge. Each point in the graph reports the

average number of edges that are classified as faulty when

a single leakage is placed at different position on the edge.

The 95% confidence interval is reported as error bar. Again, a

value close to the average length of the edges seems to deliver

the best performance: in the ideal case (0.5) only one edge is

classified as faulty. However, it is worth noticing that, even in

the worst case scenario, i.e. when a leakage is placed at the

endpoints of an edge, we can significantly reduce the number

of edges that are potentially hosts for a leakage.

D. Leakage coverage with incremental identification

In this section we describe the performance of the covering

algorithm XCODE. It is worth stressing that X-ID-CODE finds

first an identifying set C, i.e. a set of sensors inducing a code

with distance 1 associated to the set X; then XCODE prunes

the identifying set C to obtain edge covering set D such that a

point lying on any edge in the network is covered by at least

one sensor. Clearly, the edge-covering set D is not guaranteed

to uniquely identify set X . Table II reports on the number

of sensors required to identify leakages and to just cover all

the edges for various topologies; 95% confidence intervals are

reported in brackets. As seen there the covering set D = C−
∆C, which just cover all the edges in the network has roughly

half the sensors required to identify leakages, i.e., 2|∆C| ≃
|C|. Table II reports the fraction of the edges that are classified

as affected by a leakage when only the covering set is used.

As seen there, the edge-covering set can identify the leakage

only in 60% of cases; however, we observe that only 10% of

errors ascribe the fault to more than two waterpipes.

Figure 8 reports on the average number of errors, i.e. the

number of edges misclassified as hosting a leakage when

an actual leakage occurs in a neighboring edge, when an

increasing number of sensors belonging to ∆D is added to

the bootstrap deployment D. As it can be seen, a linear

relationship exists between the number of sensor deployed

and the detection accuracy. Such behavior is beneficial for

the water provider that can first bootstrap a large scale effort

to sanitize the network using the set D and then incrementally

upgrade system to obtain single leakage detection once all the

∆D positions have been covered.

576

200 400 600 800

300

350

400

Sensor sensitivity (High)

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f
s
e
n
s
o
rs

(a) 30× 30 Grid.

200 400 600 800

400

450

500

550

600

Sensor sensitivity (High)

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f
s
e
n
s
o
rs

(b) 30× 30 Pruned Grid.

200 400 600 800

400

450

500

550

600

Sensor sensitivity (High)

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f
s
e
n
s
o
rs

(c) 30×30 Pruned Distorted Grid.

Fig. 6: Average number sensors required to identify leakages in various topologies Vs. sensor sensitivity h1.

0 0.5 1
1

1.1

1.2

1.3

1.4

1.5

Relative leakage position

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f

e
rr

o
rs

(a) 30× 30 Grid.

0 0.5 1
1

1.5

2

Relative leakage position

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f

e
rr

o
rs

(b) 30× 30 Pruned Grid.

0 0.5 1
1

1.2

1.4

1.6

1.8

2

Relative leakage position

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f

e
rr

o
rs

(c) 30×30 Pruned Distorted Grid.

Fig. 7: Average number of edges identified as faulty Vs relative position of a leakage on the edges.

Topology Identifying Covering Number of
identifyed
edges

1 2 3+

Grid 10x10 36.1 (1.3) 21 (0.72) 68 22 8

Grid 20x20 137.4 (2.3) 81.7 (1.5) 71 23 5

Grid 30x30 306.5 (3) 184.4 (2.1) 76 19 4

Pruned Grid 10x10 44.9 (0.94) 26.2 (1) 59 24 16

Pruned Grid 20x20 191.9 (3.1) 117.6 (3) 68 19 11

Pruned Grid 30x30 425.3 (3.2) 261.2 (3) 68 21 10

Dist. Pruned Grid 10x10 44.4 (1.2) 25.7 (0.66) 61 24 13

Dist. Pruned Grid 20x20 188.6 (3.5) 116.6 (2.3) 70 20 8

Dist. Pruned Grid 30x30 423.2 (2.4) 263.8 (2.7) 71 20 8

TABLE II: Identifying Vs. Covering performance: Number of sensors
and detection errors. Confidence intervals in brackets.

0 50 100
1

1.1

1.2

1.3

1.4

1.5

Identifying sensors used [%]

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f
e
rr

o
rs

Grid
Pruned grid
Pruned distorted grid

Fig. 8: Number of links identified Vs increasing number of sensors.

VII. CONCLUSIONS

In this paper we presented a framework for the placement

of sensors on a lattice type of infrastructure for monitoring

purposes: our reference case is that of waterpipe networks.

Target is to deploy a minimum number of acoustic sensors

such in a way to detect the presence of leakages and deter-

mine which pipe to repair. Our solution enables a two step

deployment strategy, where one would perform a network

covering deployment first, in order to sanitize the network,

and then improve the resolution by incrementally deploying

the complete the set of sensors to form an identifying set.

In future work we will include in our model the presence of

heterogeneous materials along pipes (metal, plastic) and we

will validate the results on the production waterpipe network

of Dolomiti Energia S.p.A. in Trento.

ACKNOWLEDGMENTS

The authors would like to acknowledge the fruitful dis-

cussions with Matteo Frisinghelli of Dolomiti Energia on the

leakage detection problem.

REFERENCES

[1] V. J. Garcia and E. Cabrera, “The minimum night flow method revisited,”
in Annual Water Distribution Systems Analysis Symposium, 2006.

[2] M. G. Karpovsky, K. Chakrabarty, and L. B. Levitin, “A new class of
codes for identification of vertices in graphs,” IEEE Transactions on

Information Theory, vol. 44, no. 2, pp. 599–611, March 1998.
[3] S. Ray, R. Ungrangsi, F. D. Pellegrini, A. Trachtenberg, and D. Starobin-

ski, “Robust location detection in emergency sensor networks,” in Proc.

IEEE INFOCOM, San Francisco, CA, USA, 2003.
[4] B. Wu, P.-H. Ho, and K. L. Yeung, “Monitoring trail: A new paradigm

for fast link failure localization in wdm mesh networks,” in Proc. of

IEEE GLOBECOM, Zurich, Switzerland, 2008.
[5] J. Tapolcai, L. Rónyai, and P.-H. Ho, “Optimal solutions for single

fault localization in two dimensional lattice networks,” in Proc. of IEEE

INFOCOM, San Diego, California, USA, 2010.
[6] S. S. Ahuja, S. Ramasubramanian, and M. M. Krunz, “Single-link failure

detection in all-optical networks using monitoring cycles and paths,”
IEEE/ACM Trans. Netw., vol. 17, no. 4, pp. 1080–1093, Aug. 2009.

[7] H. Zeng, C. Huang, and A. Vukovic, “A novel fault detection and
localization scheme for mesh all-optical networks based on monitoring-
cycles,” Photonic Network Communications, vol. 11, pp. 277–286, 2006.

[8] J. Berry, W. E. Hart, C. A. Phillips, J. G. Uber, and J.-P. Watson,
“Sensor Placement in Municipal Water Networks with Temporal Inte-
ger Programming Models,” Journal of Water Resources Planning and

Management, vol. 132, no. 4, pp. 218+, 2006.
[9] Z. Y. Wu and T. Walski, “Multi-objective optimization of sensor place-

ment in water distribution systems,” in Proc. of ASCE Water Distribution

Systems Analysis Symposium, 2006.
[10] N. S. V. Rao, “Computational complexity issues in operative diagnosis

of Graph-Based systems,” IEEE Transactions on Computers, vol. 42,
no. 4, pp. 447–457, April 1993.

577

