
X-MANO: An Open-Source Platform for

Cross–domain Management and Orchestration

Antonio Francescon∗, Giovanni Baggio∗, Riccardo Fedrizzi∗, Enrico Orsini†, Roberto Riggio∗

∗FBK CREATE-NET, Trento, Italy; Email: {rriggio,rfedrizzi,afrancescon,g.baggio}@fbk.eu
†Intecs, Milan, Italy; Email: enrico.orsini@intecs.it

Abstract—In the recent years several proprietary as well as

open–source frameworks for network service orchestration have

emerged. Similarly a significant body of literature has been

produced investigating both the theoretical and practical aspects

of network service orchestration. Nevertheless, currently avail-

able frameworks for network service orchestration are designed

under the assumption that they can have full control over the

resources being orchestrated. Such assumption does not hold any

more when there is the need to pool both physical and virtual

resources across different technological and administrative do-

mains in order to deploy a service. In such a scenario, the

different infrastructure providers may be reluctant to provide

full access to their resources to a third party. In this paper we

present X–MANO, a cross–domain network service orchestration

framework. X–MANO is effectively deployment–agnostic and can

be used in hierarchical, peer–to–peer and cascading (or recursive)

configuration. We validate X–MANO through a proof–of–concept

implementation over a multi–domain testbed. Finally, we release

all the code under a permissive APACHE 2.0 license making it

available to researchers and practitioners.

Index Terms—Network Management, Network Function Virtu-

alisation, Multi-domain orchestration, Multi–technology orches-

tration, Proof–of–concept.

I. INTRODUCTION

Software Defined Networking (SDN) and network Func-

tion Virtualization (NFV) are two of the most promising

concepts that are set to bring innovation in the ossified

networking landscape. As a matter of fact, both technologies

are already heavily used by telecommunications operators to

deliver services at a fraction of the cost it would take to run

them using dedicated appliances. Nevertheless, future network

services [1], [2] already call for a pooling of resources across

multiple Infrastructure Providers (InPs).

Multi–domain network service orchestration requires to

compose resources (both physical and virtual) across differ-

ent InPs. However, in order to preserve confidentiality, the

different InPs must be allowed to orchestrate their part of the

network service according to their own internal administrative

policies without having to disclose confidential information,

such as traffic matrices and internal topology, to the other InPs

involved in the service [3], [4], [5]. As a result, existing NFV

Management and Orchestration (MANO) frameworks [6], [7]

that assume global network knowledge are not applicable to

the multi–domain network service orchestration scenario.

In this paper we introduce X–MANO, the first open–source

multi–domain NFV network service orchestrator. X–MANO

allows to deploy network services across different administra-

tive as well as technological domains. X–MANO consists of

a confidentially–preserving interface for inter–domain federa-

tion and a set of primitives enabling cross–domain network

service life–cycle programmability. Said primitives tackle all

the aspects of cross–domain network service provisioning

including on–boarding, scaling, and termination. We validate

the proposed federation interface and programming abstrac-

tions by implementing them in a Proof–Of–Concept (PoC)

prototype and by using it to deploy a video transcoding

service in a multi–domain environment. Finally, we release the

X–MANO implementation under a permissive APACHE 2.0

license making it available to researchers and practitioners1.

The rest of the paper is organized as follows. In Sec. II

we present the related work. The X–MANO architecture and

interfaces are described in Sec. III. Our reference implemen-

tation of the X–MANO interfaces and its functional validation

are presented in, respectively, Sec. IV and in Sec. V. Finally,

we draw our conclusions in Sec. VI.

II. RELATED WORK

The functionalities for the virtual resource management and

network service orchestration have been standardized by ETSI

in [8]. Several software implementations have been developed

following the ETSI reference framework and are available

under an open–source license.

In the T-NOVA project [9], an NFV orchestrator plat-

form, called TeNOR, has been developed. The purpose of

TeNOR [10] is to provide and orchestration platform for the

automated provision, configuration, monitoring and optimisa-

tion of network services over virtualised infrastructures.

Another software tool for NFV orchestration is Open Ba-

ton [6] which is an ETSI NFV compliant Network Func-

tion Virtualisation Orchestrator (NFVO). Open Baton has the

objective of providing a compliant implementation of the

ETSI NFV specification. Open Baton is easily extensible,

1On line resources available at: https://github.com/5g-empower/x-mano978-1-5090-6008-5/17/$31.00 c© 2017 IEEE

integrates with OpenStack, and provides a plug-in mechanism

for supporting additional virtual infrastructure managers.

Open Platform for NFV (OPNFV) [7] is a recently started

project initiated by the Linux Foundation. Its goal is speeding

up the NFV adoption through the implementation of an

integrated and open reference platform for NFV orchestration.

It aims at creating an open ecosystem for network service de-

velopers. OPNFV has an important participation of industrial

players and is based on the ETSI NFV reference model.

Finally, Open Source Mano (OSM) [11] is another open

source project that provides a practical implementation of

the ETSI reference NFV architecture. OpenMano has been

released by Telefonica Labs under an APACHE 2.0 license.

The orchestration of network services across multiple do-

mains raises new challenges which in time impose techno-

logical constraints, and domain–specific constraints, such as

confidentiality of the available resources. On the other hand

the frameworks mentioned above have been designed for the

orchestration of a single domain in which full access of the

resources is granted to the NFVO and are thus not suitable

for a multi–domain network service orchestration use case.

Indeed, ETSI recently released a report on architectural options

taking into account multiple administrative domains [12].

Blueplanet, a division of Ciena, developed a framework for

multi–domain service orchestration [13]. Building upon open

APIs and model–driven templates, the Blueplanet solution

integrates with third–party SDN controllers, element/network

management systems, and orchestration platforms. However,

being a commercial product, this solution hardly meets the

needs of the research community.

To the best of our knowledge, X–MANO is the first initiative

to design and implement a complete, open, framework for

multi–domain network service orchestration.

III. X–MANO COMPONENTS AND INTERFACES

A. Overview

In this section we will introduce the main X–MANO

components and interfaces. It is worth noticing that, the

X–MANO framework defines only the interfaces for cross–

domain orchestration as a result the components described in

this section are to be intended as purely logical leaving space

for them to be implemented in different ways. As shown in

Fig. 1, the X–MANO architecture consists of three logical

entities: the Federation Manager (FM), the Federation Agent

(FA), and Domain Orchestrator/Manager (DOM).

Figure 1 also illustrates several cross–domain network ser-

vice orchestration architectures that are supported by the X–

MANO framework. This includes hierarchical, cascading, and

peer–to–peer architectures. In the latter case (peer–to–peer) the

same Federation Manager behaves as master and slave at the

same time, depending on request’s origin point. In Sec. IV

we will describe a proof–of–concept implementation of said

interfaces in a realworld prototype.

B. Federation Manager (FM)

The FM is in charge of exposing the resources and the

network services available in the federated domains. Resource

availability is advertised by each FA to the FM using a VNF

Manifest, i.e. a file providing the description, the identifiers,

and the monitoring capabilities of the VNFs available in each

federated domain. Users compose their multi–domain network

services exploiting the resources advertised in the VNF Man-

ifests. The FM is then in charge of splitting the multi–domain

network service into many single–domain network services

and to push them toward the DOMs trough the appropriate

FA. Notice how, in this way, each domain is aware only of a

portion of the entire network service.

The FM exposes two interfaces: the Federation Interface

(F–If) and the Virtual Domain Interface (VD–If). The former

enables communication toward the FA while the latter allows

the FM to act like a DOM hiding the complexity of all the

underlying federated domains and allowing to expose them as

a single domain. The first immediate consequence offered by

this approach is the possibility to recursively nest an FM under

the control of another FM effectively enabling the creation of

Federation of Federators. This approach allows to control the

way VNFs and network services are advertised. For example,

based on commercial agreements, only a selection of the VNFs

available in a given domain can be exposed to another FM po-

tentially with restrictions over their configuration parameters.

C. Federation Agent (FA)

The FA is in charge of retrieving all the information related

to VNFs and network services available within one domain

and of exposing them to the FM. It is also responsible

for translating the requests coming from a FM into DOM–

compliant requests and returning to the FM the responses

generated by the DOMs. Each FA supports a northbound and a

southbound interface. The former is the F–If, while the latter

can be either the DOM northbound interface (D–If), whose

implementation is domain–specific, or a VD–If.

D. Domain Orchestrator/Manager (DOM)

An entity in charge of all management activities in a given

domain. Even if the X–MANO design has been inspired by

the ETSI MANO architecture, no constraints are imposed on

the D–If except that it must support basic VNF and network

service life–cycle management operations (creation, chaining,

and deletion). The DOM must also support monitoring capa-

bilities over the instantiated VNFs.

E. Customer Portal

The Customer Portal, is the web frontend of the FM

allowing users to interact in an easier way with the federation

system and presenting to the users all the needed information

in a complete and usable way. The Customer Portal can be

split in two different submodules: the REST server and the

D1 D2

FAX.1 FAX.2

FMX

FAX.Y

FAK.X

D3 D4

FAY.3 FAY.4

FMY

FAY.X

FAK.Y

FMK

Federation X
hierarchical

Federation Y
hierarchical

Federation X+Y
peer-to-peer

Federation K
hierarchical

VD-If

D-If

F-If

IDC

LEGEND

DOM2DOM1 DOM4DOM3

Fig. 1. Example of the different architectures supported by the X–MANO framework. Domains D1, D2, D3, and D4 have some Inter-Domain Connections

(IDC) established between them. Each domain has its own DOM managing its local resources. D1 and D2 are federated by FMX via Federation Agents

FAX.1 and FA X.2, respectively. Similarly, D3 and D4 are federated by FMY via FAY.3 and FAY.4, respectively. FMX and FMY federate each other via

FAX.Y and FAY.X , forming a peer–to–peer federation, whilst FMK federates them both in a hierarchical fashion via FAK.X and FAK.Y , respectively.

front–end graphical user interface (GUI). The first one uses the

FM northbound API to operate and retrieve information. The

latter is a GUI accessible through any modern web browser.

The interface between the GUI and the FM is implemented as

a REST interface. The benefits of this approach are that the

FM is not GUI dependent, in the sense that any client that can

consume a REST service can interact with the FM.

The GUI is implemented in Java using the Google

GWT framework which translates Java code into optimized

JavaScript code. The GUI is composed of five private areas,

or panels, and one login page. Not all the five panels are

accessible to all the users. For example the settings panel is

accessible only to administrators allowing them to perform

management operations like creation and deactivation of users.

The login panel is the only panel accessible by a non–logged

user and allows users to authenticate with the system. After

login, a user directly accesses the overview panel which is

used to provide a view of the user’s deployed resources. The

catalogue panel contains the VNF catalogues providing the

user with a view on the deployable resources. The network

service management panel contains all the running network

service instances belonging to a particular user. The panel also

allows users to launch and manage network service instances.

Finally, a statistics panel is available in order to visualize and

possibly export the collected monitoring information.

IV. IMPLEMENTATION DETAILS

To demonstrate the usefulness of the X–MANO framework

in real–world settings, we developed a proof–of–concept im-

plementation of both a FM and a FA and we used them to de-

ploy and configure a multi–domain video transcoding network

service. In this section, we will provide some implementation

details about our prototype while in the next section we will

report on its performance evaluation.

A. Federation Manager

The FM is developed in Python and consists of different

components. The User Account Manager is in charge of

authorization, accounting, and authorization. The Network

Service Manager is in charge of running the state machine

for the network service life–cycle management. The FM uses

MongoDB for storing information related to users, multi–

domain network service descriptors, and VNF Manifests. The

multi–domain network service descriptors are stored in YAML

format while the VNF Manifests are stored in JSON format.

B. Federation Agent

The FA is a domain–specific component. In our prototype

the FA is implemented in Python and interacts with the

Open Baton REST interface to deploy and configure network

services. Moreover, the FA stores the VNF Manifests to be

advertised to the FM, and retrieves the monitoring information

exposed by the domain trough Zabbix [16].

C. X–MANO Interfaces

The interface F–If between FM and FA is implemented

using the RabbitMQ scalable message queuing system. Rab-

bitMQ has been chosen because it allows asynchronous

bidirectional communication among parties, and because it

provides a configurable message broker. Moreover, RabbitMQ

exposes a powerful API and has a detailed documentation.

Conversely, the VD–If interface has been implemented using

the Tornado Web Framework [14]. The main reason for choos-

ing Tornado is its non–blocking network I/O which allows

to continue serving incoming requests while the others are

being processed. Notice how the D–If is dependent on each

DOM implementation which is, in our case, Open Baton. For

this reason, the D–If is the REST interface exposed by Open

Baton. However, when supported by the DOM, asynchronous

interfaces should be preferred.

D. Interconnection of domains

VNF chaining is usually performed using domain–specific

techniques. The most common solution for VNF chaining is

layer–2 encapsulation, also known as VLAN tagging. How-

ever, this approach is not suitable for chaining VNFs across

the public Internet since VLAN tagging only works within

the same broadcast domain. Another solutions is based on IP

tunnelling using for example PPTP, L2TP, L2TP/IPsec, SSTP,

or OpenVPN. However, not all the above solutions are suitable

for all the federated domains due to security, performance, and

compatibility considerations.

Consequently, it appears evident that no standard solutions

can be forecast for the realisation of the interconnection of two

domains. In order to circumvent this problem we allow each

pair of domains to autonomously select an interconnection

technology. Once a tunnel has been established, each domain

advertises the tunnel endpoints as two VNFs that can be used

in order to perform VNF chaining.

V. EVALUATION

The goal of this section is to provide evidence on the

operations of our X–MANO implementation. The aim is to

show that the X–MANO is able to deploy network services

with a negligible overhead and without imposing limitations

on the underlying domains. In this section we first describe the

use case under consideration, then we discuss the evaluation

methodology and the performance metrics. Finally we report

on the outcomes of the measurements campaign.

A. Video Transcoding Network Service

The network service used in this paper implements a video

streaming/transcoding application and is composed by one

streaming VNF and one or two transcoding VNFs running

on different domains. Both the streaming and the transcod-

ing VNFs have been implemented using the VideoLAN ap-

plication [15]. Figure 2 depicts the multi–domain network

service deployment life–cycle. The deployment consists of

three stages. During the INIT stage the resources on the two

domains are allocated. In the INIT1 stage the information

related to the multi–domain VNFs chaining are collected by

the FM. Finally, during the INIT2 stages the video streamer

and video transcoder VNFs are started.

The FM enters in the first stage automatically when the

network service is launched, while before entering the other

stages additional conditions must be verified. Listing 1 reports

the section of the multi–domain network service descrip-

tor where the conditions for entering the INIT2 stage are

defined. Notice how the FM checks if the VNF chaining

has been completed in both domains before transitioning to

the stage INIT1 (conditions domain1 chain completed and

domain2 chain completed).

By looking at the timeline in Fig. 2, it is easy to notice

that the first two stages (INIT and INIT1) involve operations

that are run in parallel. While the last stage (INIT2) involves

operations that must be executed sequentially. This is due to

the fact that the video transcoder VNF has to wait for the video

streamer to have started before it can start. This behaviour is

confirmed in the multi–domain network service descriptor in

the Listing 1, where the start streaming and start transcoding

actions are placed in consecutive steps.

It is worth to notice how the FM solved an important issue

related to the multi–domain network service orchestration

namely the lack of information of the video transcoder about

the IP address of the video streamer. The solution is in the

multi–domain network service descriptor and in particular in

get source ready step which retrieves the IP address of the

video streamer and stores it in a shared variable. This value is

then used as an argument of the start the transcoder step. Since

the IP retrieval and the video stream initialisation operations

do not depend one on another, they are placed in the same

step, allowing their parallel execution.

B. Evaluation Methodology

Our testbed consists of two separate OpenStack deploy-

ments. For each domain, Open Baton has been selected as

DOM. A FA is deployed within each domain and Zabbix

is used for retrieving real–time measurements which are col-

lected by the FA and reported to the FM.

For evaluating the proposed work, we first defined different

use cases that allowed us to perform a comparison among

different federation conditions (including the single–domain

case). In particular, we setup the same network service in

T r i g g e r s :

trigger and steps for stage "INIT2"

- name: on c h a i n i n g f i n a l i z e d

c o n d i t i o n :

and:

- name: domain1 c h a i n e d

m e t r i c 1 :

t y p e : d a t a s t o r e t y p e . boo l

v a l u e : [doma in1 cha in comple t ed]

m e t r i c 2 :

t y p e : d a t a s t o r e t y p e . boo l

v a l u e : True

o p e r a t o r : ’==’

- name: domain2 c h a i n e d

m e t r i c 1 :

t y p e : d a t a s t o r e t y p e . boo l

v a l u e : [doma in2 cha in comple t ed]

m e t r i c 2 :

t y p e : d a t a s t o r e t y p e . boo l

v a l u e : True

o p e r a t o r : ’==’

− name: domain1 c h a i n e d

s t e p s :

- name: g e t s o u r c e r e a d y

t y p e : s t e p s . v n f s a c t i o n s s t e p

v n f s a c t i o n s :

- name: v i d e o s o u r c e

a c t i o n s :

- name: g e t i p

params:

- name: i fname

v a l u e : dom1 gre

r e t u r n v a l u e : i p

- name: s t a r t s t r e a m i n g

params:

- name: v i d e o f i l e

v a l u e : BigBuckBunny 320x180 . mp4

... other params

- name: s t a r t t h e t r a n s c o d e r

t y p e : s t e p s . v n f s a c t i o n s s t e p

v n f s a c t i o n s :

- name: v i d e o t r a n s c o d e r

a c t i o n s :

- name: s t a r t t r a n s c o d i n g

params:

- name: s o u r c e i p

v a l u e : [i p]

... other params

- name: t u r n mdnsr a c t i v e

e l a b o r a t i o n s :

- t y p e : s t e p s . e l a b o r a t i o n . FMfunct ion

name: CHANGE STATUS

params:

- name: m d n s s t a t u s

v a l u e : a c t i v e

Listing 1. Portion of the multidomain video transcodign NSD.

X–MANO implementation under a permissive APACHE 2.0

license making it available to researchers and practitioners.

ACKNOWLEDGEMENT

Research leading to the results presented in this paper

has received funding from the European Union’s H2020 Re-

search and Innovation Programme under the Grant Agreement

H2020-ICT-644843 (VITAL).

SD SD−X MD SD SD−X MD
50

55

60

65

70

75

80

85

T
im

e
 [

s
]

2 VNFs 3 VNFs

(a) Entire setup.

MD MD
0

1

2

3

4

5

T
im

e
 [

s
]

2 VNFs 3 VNFs

(b) Inter-domain chaining.

Fig. 3. Network service setup time.

REFERENCES

[1] R. Ferrús, H. Koumaras, O. Sallent, G. Agapiou, T. Rasheed, M.-A.

Kourtis, C. Boustie, P. Glard, and T. Ahmed, “SDN/NFV-enabled satel-

lite communications networks: Opportunities, scenarios and challenges,”

Physical Communication, vol. 18, Part 2, pp. 95 – 112, 2016.

[2] T. Taleb, A. Ksentini, and R. Jantti, “Anything as a Service for 5G

Mobile Systems,” IEEE Network, vol. 30, no. 6, pp. 84–91, November

2016.

[3] C. Bernardos, L. Contreras, and I. Vaishnavi, “Multi-domain net-

work virtualization,” Working Draft, Internet-Draft draft-bernardos-

nfvrg-multidomain-01, October 2016.

[4] T. Mano, T. Inoue, D. Ikarashi, K. Hamada, K. Mizutani, and O. Akashi,

“Efficient virtual network optimization across multiple domains without

revealing private information,” IEEE Transactions on Network and

Service Management, vol. 13, no. 3, pp. 477–488, Sept 2016.

[5] M. Chowdhury, F. Samuel, and R. Boutaba, “Polyvine: policy-based

virtual network embedding across multiple domains,” in Proc. of ACM

VISA, New Delhi, India, 2010.

[6] “Open Baton.” [Online]. Available: https://openbaton.github.io/

[7] “OPNFV: Open Platform for Network Function Virtualization.”

[Online]. Available: https://www.opnfv.org/

[8] European Telecommunications Standards Institute (ETSI), Network

Functions Virtualisation (NFV); Management and Orchestration, Std.

ETSI GS NFV-MAN 001, December 2014.

[9] FP7 T-Nova Project. [Online]. Available: http://www.t-nova.eu/

[10] “TeNOR NFV Orchestrator.” [Online]. Available: https://github.com/T-

NOVA/TeNOR

[11] “Open Source Mano.” [Online]. Available: https://osm.etsi.org/

[12] European Telecommunications Standards Institute (ETSI), Network

Functions Virtualisation (NFV); Management and Orchestration; Report

on Architectural Options, Std. ETSI GS NFV-IFA 009, July 2016.

[13] “Blueplanet, Multi-domain service orchestration.” [Online].

Available: http://www.blueplanet.com/products/multi-domain-service-

orchestration.html

[14] “Tornado Web Server.” [Online]. Available: http://www.tornadoweb.org/

[15] “VLC Media Player.” [Online]. Available:

http://www.videolan.org/vlc/index.html

[16] “The Enterprise-class Monitoring Solution for Everyone.” [Online].

Available: http://www.zabbix.com/

