
Wi–Not: Exploiting Radio Diversity in
Software–Defined 802.11–based WLANs

Estefanı́a Coronado∗, Davit Harutyunyan‡, Roberto Riggio‡, José Villalón∗ and Antonio Garrido∗
∗High-Performance Networks and Architectures (RAAP). University of Castilla–La Mancha, Albacete, Spain

Email: {Estefania.Coronado, JoseMiguel.Villalon, Antonio.Garrido}@uclm.es
‡FBK CREATE-NET, Trento, Italy

Email: d.harutyunyan,rriggio@fbk.eu

Abstract—The increasing demand for live streaming and for
remote sensing applications is bringing renewed interest on
uplink performances in Wi–Fi networks. Radio diversity can
improve the performance of such applications by opportunisti-
cally receiving mobile users’ traffic at multiple attachment points.
However, radio diversity techniques can not be used in standard
Wi–Fi networks due to backwards compatibility problems. In
this paper we present Wi–Not, a novel SDN–based solution for
exploiting radio diversity in software–defined WLANs. Wi–Not
allows mobile terminals to be associated to multiple Wi–Fi APs
in the uplink direction improving frame delivery probability
in uplink–constrained applications. Wi–Not does not require
changes to the mobile terminals and can be easily deployed with
minimal changes to the network infrastructure. An experimental
evaluation carried out over a real–world testbed shows that this
approach can deliver an improvement of up to 80% in terms of
UDP goodput and up to 60% of TCP throughput. We release the
entire implementation including the controller and the data–path
under a permissive license for academic use.

Index Terms—Software Defined Networking, IEEE 802.11,
WLANs, load–balancing, resiliency

I. INTRODUCTION

Wi–Fi networks are already vastly popular and their usage
is only set increase in the coming years. As a matter, of
fact rather than being marginalized by 5G systems, Wi–Fi is
expected to play a key role as traffic offloading technology.
Nevertheless, while so far wireless, and in particular mobile
networks, have been designed around the requirements of the
downlink (i.e., cell or access point selection is performed
using downlink signal strength), in the recent years we have
witnessed a mushrooming of new uplink–centric applications
such as Machine Type Communications (MTC) and Internet
of Things (IoT), and Vehicle to Infrastructure (V2I).

This calls for a paradigm shift where the traffic originated
from a mobile terminal is received by one node while the
traffic destined to the same mobile terminal is transmitted by
another node. This kind of network setup is usually referred
to as uplink/downlink decoupling and, in its most general
form, can consist of two possibly non overlapping sets of
transmitting and receiving nodes. On the other hand, the
802.11 protocol has turned a naturally broadcast medium, i.e.
the wireless medium, into an unicast media. Mobile terminals
have to select one and only one point of attachment, i.e. the
Access Point (AP) to the network, and use only that in both the

downlink and uplink direction. Furthermore, the wireless link
is asymmetrical so it can be beneficial to relying on multiple
attachment points in the uplink direction.

Software Defined Networking (SDN) has recently emerged
as a new way of refactoring network functions. By clearly
separating data–plane from control–plane and by providing
high–level programming abstractions, SDN allows to imple-
ment traditional network control and management tasks on
top of a logically centralized controller. However, albeit SDN
is already an established technology in the wired domain, with
OpenFlow playing the role of de–facto standard [1], equivalent
solutions for wireless and mobile networks have only recently
started to appear [2], [3].

The contribution of this paper is twofold: (i) we introduce
Wi–Not, an SDN–based solution capable of exploiting uplink
radio diversity in 802.11 WLANs, and (ii) we propose an
algorithm that dynamically selects which AP must generate
the L2 acknowledgement. In fact, if multiple attachment points
are selected it is fundamental to make sure that only one of
them generates the acknowledgement for each frame. Based
on a real–world testbed evaluation we have been able to
demonstrate an improvement of up to 80% in terms of UDP
goodput and up to 60% of TCP throughput. Wi–Not does not
require changes to the mobile terminals and can be easily
deployed with minimal changes to the network infrastructure.
We release the entire implementation under a permissive
APACHE 2.0 license1 for academic use.

The rest of this paper is structured as follows. In Sec. II
we discuss the related work. We delve into the Wi–Not design
in Sec. III, whereas in Sec. IV the implementation details are
presented. Section V describes the evaluation methodology and
discusses the results of the measurements. Finally, Sec. VI
draws the conclusions pointing out future work.

II. RELATED WORK

The authors of [4] exploits rate adaptation and partial
packet recovery to enhance the network efficiency in terms of
robustness and performance. The partial retransmission of the
erroneous frames is also used in Wireless Sensor Networks [5].
Alternatively, in [6] the receiver computes the checksum of
the corrupt packets and generates negative acknowledgements.

1http://empower.create-net.org/978-1-5386-3416-5/18/$31.00 c© 2018 IEEE

Wi-Fi AP Wi-Fi AP

Switching
Fabric

Controller Duplicate
Filter

Mobile
Terminals

Internet

Fig. 1: Wi–Not System Architecture.

In this way, the sender only retransmits the incorrect blocks
indicated in the checksum. The approach presented in [7] relies
on the buffering of several copies of the same corrupt packet
to recover the original frame. Multi–radio diversity is used
in [8] to coordinate the reception of multiple erroneous copies
of a given frame through several links to recover it without
retransmissions. Lastly, authors in [9] introduce a link–layer
protocol that selects relay nodes based on the notion that the
relays with the best link quality have a higher chance than the
source of successfully delivering a packet.

III. SYSTEM DESIGN

A. Overview

SDN has emerged as a new paradigm capable of addressing
the limitations of current networking technologies by introduc-
ing a fully programmable network architecture, and allowing
to implement control and management tasks on top of a (log-
ically) centralized controller. Figure 1 depicts the high–level
reference system architecture used by Wi–Not. As can be seen,
it consists of three main elements: the SDN controller, the
duplicate filtering module, and data–plane (i.e. switches and
APs). The SDN controller is in charge of configuring the
switching fabric and the Wi–Fi APs. The Wi–Fi APs serve
the mobile terminals while the switching fabric delivers the
traffic originating at the mobile clients to the duplicate filtering
element where redundant frames are eliminated. Notice how,
our solution does not depend on a particular controller im-
plementation and can be effectively deployed using platforms
such as 5G–EmPOWER [2] or Odin [3]

B. Data–plane

In Wi–Not each mobile terminal is attached to one and only
one AP in the downlink direction and to one or more APs
in the uplink direction. We name the AP providing downlink
connectivity to the mobile terminals Master AP, while we
name the APs providing uplink connectivity to the mobile
terminals Slave APs. Notice that the Master AP also support
uplink connectivity and is the AP in charge of generating
ACKs. Slave APs on the other hand do not generate ACKs.
Downlink connectivity in Wi–Not is no different from the

standard single radio case, i.e. frames addressed to mobile
terminals are dispatched by the switching fabric to the Master
AP where they are regularly transmitted. Conversely, uplink
frames are received at possibly multiple APs.

Figure 2 illustrates, by using a sequence diagram, an
example of a frame exchange among the various Wi–Not
components in the uplink direction. As can be seen the
single uplink packet transmitted by the mobile terminal is
successfully received by two Wi–Fi APs. Only the Master
AP however generates the L2 ACK. The uplink traffic is then
dispatched by the switching fabric (pre–configured by the
SDN controller) to the duplicate filtering element. Here the
redundant frames are eliminated and the unique frames are
delivered to their intended destination.

C. Duplicate Filtering

The duplicate Filtering module must have access to the
sequence number in the Wi-Fi header. However, Wi-Fi frames
cannot be directly transported over the backhaul, since their
format would not be recognized by the OpenFlow switches.
Instead, before entering the wired backhaul, Wi-Fi frames must
be first encapsulated into a suitable transport protocol such as
the Lightweight Access Point Protocol (LWAPP) [10]. LWAPP
frames can then be carried over Ethernet. This process of
encapsulation is transparently performed by the AP.

For each mobile terminal active in the network, the duplicate
filtering module maintains a simple data structure, named
duplicates table, consisting of: the MAC address of the mobile
terminal, a circular buffer storing the last N sequence numbers
transmitted by the mobile terminal, and the number of dupli-
cates filtered so far (for statistical purposes). The size of the
circular buffer for our implementation has been set to N = 3.
The trade–off here is between fast lookup and probability of
letting a duplicate frame pass without detecting it. We have
empirically found that storing the last 3 sequence numbers is
enough in order to avoid duplicates in all our tests.

Frames delivered to the duplicate filtering module are
first decapsulated from the LWAPP header, then the module
lookups for the mobile station MAC address in the duplicates
table. If an entry is found, then the duplicate filter checks
if the sequence number is present in the circular buffer. If
the check is positive, the frame is dropped and the duplicates
counter is increased. Otherwise, the frame sequence number is
pushed into the circular buffer and the frame is sent back to the
backhaul. Notice that, before being delivered to the backhaul,
the Wi–Fi frame is first converted into an Ethernet frame.

From the execution complexity standpoint the duplicate
filtering module performs just a lookup operation, which is
typically very fast if hash tables are used, and then a linear
search over the circular buffer. Moreover, centralizing the
duplicates filtering function means that the Wi–Fi APs do
not have to perform it any more. We remind the reader that
regular Wi–Fi APs do implement a similar duplicate filtering
functionality in that, due to lost acks, it is possible that a
mobile terminals sends the same frame twice.

Mobile
Terminals

Wi-Fi AP
(master)

Wi-Fi AP
(slave)

Switching
Fabric

Duplicate
Filter Internet

Frame (1)

Ack

Frame (1)

Frame (1)

Frame (1)

Frame (1)

Frame (1)

Frame (1)

Fig. 2: Frame exchange among the Wi–Not components.

Finally, we would like to notice that, albeit in the current
implementation only a single duplicate filtering module is
present in the network, in principle multiple instances can be
deployed for load balancing purpose.

D. Master AP Selection

The Wi–Fi medium is intrinsically broadcast, i.e. frame are
received and processed by all APs within decoding range of a
given mobile terminal. After decoding it, a Wi–Fi APs verifies
if the frame checksum is valid and only then it checks if the
frame destination address matches its own address. If any of
those checks fails the frame is dropped. Conversely, if the
checks are passed the AP replies with a L2 ACK and forwards
the frame to the backhaul (as an Ethernet frame typically). In
order to avoid collisions, in Wi–Not only one AP generates
the L2 ACK. The selection of such an AP is performed
by exploiting the global network view exposed by the SDN
controller. In particular, the SDN controller polls all the APs
in the network in order to retrieve the list of mobile stations in
their neighbourhood together with their signal strength levels2.
A graphical representation of the network channel quality map
built using this information can be found in Fig. 3 where for
each pair mobile terminal and AP a measure of the signal
strength is reported. The AP with the best signal strength is
selected as Master AP. The reason for this choice is that the
AP with the highest signal strength is likely to successfully
received the highest fraction of uplink frames.

IV. IMPLEMENTATION DETAILS

To validate the usefulness of Wi–Not in real–world settings,
we implemented it over the 5G–EmPOWER [2] platform.

A. Data–path Implementation

APs are composed of one OpenvSwitch [11] instance for the
wired backhaul and one Click modular router instance [12] for
the 802.11 data–path implementation. Click is used to handle
the clients/APs frame exchange, while the remaining network
intelligence is managed by the 5G–EmPOWER controller.

2In this work we use the RSSI as a measure of the signal strength.

Wi-Fi AP

Wi-Fi AP

Mobile
Terminals

Wi-Fi AP

-65 dBm

-85 dBm

-79 dBm

Fig. 3: Channel quality map used to select the Master AP.

The AP data–path needs to ensure that an ACK is generated
for each frame that the mobile terminal delivers to the AP.
ACK frames are handled by the hardware because they have
a strict real time constraint. In our APs we use wireless
cards based on the Atheros (now Qualcomm) chipset. More
specifically we use cards which are supported by the ath9k
driver [13]. ath9k–based cards use a hardware register called
BSSID mask. This mask is used by the hardware to decide
when incoming frames should be acknowledged. The value
that this mask holds is equal to the common bits of all
addresses that for which a L2 ACK must be generated.

Being based on Odin [3], 5G–EmPOWER creates a virtual
AP, named Light Virtual Access Point (LVAP), for each mobile
terminal attached to an AP. In this work, we extended then
the 5G–EmPOWER platforms in order to allow an application
running on top of the controller to create an LVAP at multiple
APs and to specify which AP should generate the L2 ACK
(by setting the BSSID mask only for that AP).

B. Statistics gathering

The 5G–EmPOWER platform provides a full set of pro-
gramming primitives to network developers trough a Python–
based SDK [2]. Such primitives are used by Wi–Not to

Single uplink 2 uplinks 3 uplinks
0

5

10

15

20
B

an
dw

id
th

[M
bp

s]

10% Packet drop 20% Packet drop 30% Packet drop

Fig. 4: Maximum bandwidth for TCP traffic and different
packet loss ratios: single vs multiple uplinks.

collect the Exponentially Weighted Moving Average of the
signal strength between mobile terminals and all APs within
decoding range in the network. This information is then
used by the Wi–Not application implemented on top of the
5G–EmPOWER to select the Master AP.

V. PERFORMANCE EVALUATION

In order to evaluate the performance of Wi–Not we have
conducted a set of experiments in a real testbed based on the
5G–EmPOWER platform. The testbed is composed of 3 APs,
an OpenFlow switch, and a central controller. All the APs are
based on the PCEngines ALIX 2D (x86) processing board with
Atheros AR9220 Wi–Fi cards and run OpenWRT 15.05.01. We
have introduced in the 802.11 data–path a Click element that
drops packet according to a certain probability in [0, 1]. For
these tests, probabilities of 0.1, 0.2 and 0.3 have been used. A
Dell laptop with Ubuntu 16.10 transmits uplink traffic to the
machine running the controller using Iperf, which has been run
in both TCP and UDP modes with trials of 30 seconds. The
maximum bandwidth obtained by a single uplink is compared
to the one achieved when involving 2 and 3 uplinks. Each
experiment has been repeated 6 times.

The average bandwidth achieved by a single uplink when
performing TCP transmissions is compared to the one obtained
in the case of multiple uplinks in Fig. 4. This Figure plots how
the system behaves upon an increasing packet drop probability.
It is shown how the use of multiple uplinks not only leads to an
increase in the bandwidth, but also to an improvement in the
network reliability. In fact, the inclusion of several uplinks has
more than doubles the bandwidth for each additional uplink.
This scenario is replicated in Fig. 5 for UDP traffic. As was
previously the case, it is demonstrated that the use of multiple
links significantly outperforms the use of a single one.

VI. CONCLUSIONS

In this paper we presented an SDN–based solution for ex-
ploiting wireless links diversity in software–defined WLANs.
The proposed solution has been implemented and tested over
a real–world wireless SDN platform. Results show that the
proposed approach can deliver an improvement of up to 80%
in terms of UDP goodput and up to 60% of TCP throughput.

Single uplink 2 uplinks 3 uplinks
0

5

10

15

20

B
an

dw
id

th
[M

bp
s]

10% Packet drop 20% Packet drop 30% Packet drop

Fig. 5: Maximum bandwidth for UDP traffic and different
packet loss ratios: single vs multiple uplinks.

ACKNOWLEDGEMENTS

This work has been supported by the Spanish Minis-
try of Economy under Grant Agreement BES-2013-065457,
by the European Union’s MINECO/FEDER funds un-
der project TIN2015-66972-C5-2-R, and by the H2020
Research and Innovation Action under Grant Agreement
H2020-ICT-671639 (COHERENT).

REFERENCES

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling Innovation
in Campus Networks,” ACM Computer Communication Review, vol. 38,
no. 2, pp. 69–74, 2008.

[2] R. Riggio, M. K. Marina, J. Schulz-Zander, S. Kuklinski, and
T. Rasheed, “Programming abstractions for software-defined wireless
networks,” IEEE Transactions on Network and Service Management,
vol. 12, no. 2, pp. 146–162, 2015.

[3] L. Suresh, J. Schulz-Zander, R. Merz, A. Feldmann, and T. Vazao,
“Towards Programmable Enterprise WLANS with Odin,” in Proc. of
ACM Workshop on Hot Topics in Networks, New York, 2012.

[4] A. P. Iyer, G. Deshpande, E. Rozner, A. Bhartia, and L. Qiu, “Fast
resilient jumbo frames in wireless lans,” in 2009 17th International
Workshop on Quality of Service, July 2009, pp. 1–9.

[5] R. K. Ganti, P. Jayachandran, H. Luo, and T. F. Abdelzaher, “Datalink
streaming in wireless sensor networks,” in Proc. of ACM SenSys,
Boulder, Colorado, USA, 2006.

[6] B. Han, A. Schulman, F. Gringoli, N. Spring, B. Bhattacharjee, L. Nava,
L. Ji, S. Lee, and R. Miller, “Maranello: Practical partial packet recovery
for 802.11,” in Proc. of USENIX NSDI, San Jose, California, 2010.

[7] H. Dubois-Ferrière, D. Estrin, and M. Vetterli, “Packet combining in
sensor networks,” in Proc. of ACM SenSys, San Diego, California, USA,
2005.

[8] A. Miu, H. Balakrishnan, and C. E. Koksal, “Improving loss resilience
with multi-radio diversity in wireless networks,” in Proc. of ACM
MobiCom, Cologne, Germany, 2005.

[9] M.-H. Lu, P. Steenkiste, and T. Chen, “Design, implementation and
evaluation of an efficient opportunistic retransmission protocol,” in Proc.
of ACM MobiCom, Beijing, China, 2009.

[10] “Lightweight Access Point Protocol,” Internet Requests for
Comments, RFC Editor, RFC 5412, 2010. [Online]. Available:
https://www.ietf.org/rfc/rfc5412.txt

[11] B. Pfaff, J. Pettit, K. Amidon, M. Casado, T. Koponen, and S. Shenker,
“Extending Networking into the Virtualization Layer,” in Proc. of ACM
Workshop on Hot Topics in Networks, New York, 2009.

[12] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek,
“The Click Modular Router,” ACM Transactions on Computer Systems,
vol. 18, no. 3, pp. 263–297, 2000.

[13] “ath9k linux wireless driver,” 2012. [Online]. Available:
http://linuxwireless.org/en/users/Drivers/ath9k

