
Machine learning-driven Scaling and Placement of
Virtual Network Functions at the Network Edges

Tejas Subramanya and Roberto Riggio
Wireless and Networked Systems

FBK CREATE-NET
Via Alla Cascata 56/C, 38123, Trento, Italy;

Email: {t.subramanya,rriggio}@fbk.eu

Abstract—Network Function Virtualization is a promising
technology that proposes to decouple the network functions from
their underlying hardware and transform them into software
entities called Virtual Network Functions (VNFs). This approach
offers network operators with more flexibility to instantiate,
configure, scale, and migrate VNFs at runtime depending on the
demand. On introducing these VNFs at the network edges (e.g.,
base stations), emerging use cases such as connected cars can
be supported. However, in such an environment, efficient VNF
placement and orchestration mechanisms are needed to address
the challenges of continuously changing network dynamics,
service latency requirements and user mobility patterns.

The purpose of this paper is twofold. Firstly, we propose a
neural-network model (i.e., a subset of machine learning) that can
assist in proactive auto-scaling by predicting the number of VNF
instances required as a function of the network traffic they should
process. Based on the traffic traces collected over a commercial
mobile network, the model achieves a prediction accuracy of
97%. Secondly, we provide an Integer Linear Programming
formulation for placing these VNFs at the edge nodes with a
primary objective of minimizing end-to-end latency from all users
to their respective VNFs. Our results show an improvement in
latency by upto 75% when VNFs are placed at the network edges.

Index Terms—Network Function Virtualization, Machine
learning, Proactive Auto-scaling, Virtual Network Function
Placement, Multi-access Edge Computing

I. INTRODUCTION

Traditionally, network functions, such as firewalls,
gateways, and caches, were deployed as physical devices,
where the software was tightly coupled with the proprietary
hardware. Mobile Network Operators (MNOs) needed to
invest a substantial amount of time to manually deploy,
configure and troubleshoot physical network functions
resulting in increased CAPEX and OPEX. To address
these issues, MNOs have recently started moving towards
virtualized and softwarized network infrastructures, generally
referred to as Network Function Virtualization (NFV) [1].
In an NFV environment, network functions are implemented
as software entities, called as Virtual Network Functions
(VNFs), which can run on Virtual Machines (VMs) or
containers within commercial-of-the-shelf servers rather than
being run on dedicated hardware devices, hence providing
agility, flexibility and cost efficiency.

The current LTE networks built around centralized cloud
computing architecture, where IT resources (compute, storage,
network, etc.) required to host VNFs reside in a few big

data centers, cannot meet the demands of emerging use cases
such as connected vehicles, virtual reality, and Internet of
Things, which requires rapid response, uninterrupted service
continuity, and higher data rates. To support these use cases,
cloud computing is undergoing a radical shift from the
conventional centralized architecture to a rather distributed
Multi-access Edge Computing (MEC) architecture by pushing
IT resources to edge nodes (e.g., base stations) to facilitate
hosting of VNFs closer to end-users [2] [3]. In order to run
VNFs on these resource-constrained edge devices, one can
preferably use lightweight virtualization technologies (e.g.,
docker containers, LXC.) that has a smaller footprint compared
to VMs [4]. Though placing VNFs near end-users reduces
end-to-end latency and alleviates backhaul congestion, due
diligence must be employed by MNOs to carefully manage
the location (either at network providers data center or at edge
nodes) of VNFs by considering edge node capacity constraints,
service latency requirements (real-time, near real-time, and
non real-time), and varying traffic dynamics [5].

In recent times, one of the main NFV research challenges
has been the orchestration and placement of VNFs, mainly due
to the dynamics of the emerging traffic patterns in 5G mobile
networks. Differently from the centralized cloud, where traffic
workload can be fairly predictable, edge clouds will encounter
traffic variations based on user distributions and mobility
patterns, resulting in non-uniform traffic distribution within the
network. Consequently, the number of VNF instances required
to handle load changes, to meet performance guarantees, is
expected to fluctuate frequently. Towards this end, auto-scaling
VNFs is an important mechanism for realizing the promised
reductions in operational cost for MNOs. On the other hand,
while most of the VNF placement solutions have focused on
static VNF placement [6], the problem of placing VNFs in a
distributed MEC-NFV infrastructure has not been addressed
before in the literature.

Contribution and Research Outcome. In this paper, we
first advocate that distributed edge VNFs has to be proactively
scaled in synergy with varying network traffic dynamics to
avoid service disruption. Based on the scaling decisions, we
recommend that VNFs need to be dynamically placed, both at
edge nodes and cloud data centers, to offer low end-to-end
latency as well as to reduce latency violations. The NFV
orchestrator, the VNF Manager (VNFM), and the Virtual
Infrastructure Manager (VIM) functional blocks of ETSI NFV978-1-5386-9376-6/19/$31.00 c©2019 IEEE

414

MANO

NFVI
VNF VNF VNF

NFVI
VNF VNF VNF

Base station Base station

Edge
node

Edge
node

VNFM

VIM

NF
V O

rch
es

tra
tor

Network providers
data center

NFVI
VNF VNF

Core
network

Network Traffic
Statistics

VNF Auto-scaling
Decision

VNF Placement
Decision

VNF

VNF

VNF - Real-time

- Near real-time

- Non real-time

Fig. 1: A high-level distributed MEC-NFV System Architecture.

Management and Orchestration (MANO) [7] are responsible in
executing the aforementioned operations, as shown in Fig. 1.

Our main contributions are: (i) we provide a
neural-network-based machine learning (ML) classifier model,
which estimates the required number of VNF instances at
every edge node as a function of the network traffic they
should process. (ii) we formulate and solve a realistic VNF
placement problem that produces a latency-optimal solution
for placing VNFs in distributed MEC-NFV architecture.

Our neural-network model predicts the required number of
VNFs with 97% accuracy and guides the placement model
to carefully place the VNFs thereby reducing the average
end-to-end latency by upto 75%. To the best of our knowledge,
we are the first to address the combined challenges in
auto-scaling and placement of VNFs within a distributed
MEC-NFV environment, based on the commercial mobile
network traces collected from a private MNO.

The rest of this paper is organized as follows. Section II
describes the related work. Section III describes the proposed
neural-network-based ML classifier model and evaluates its
performance. In Section IV, we formulate the VNF placement
model and perform various experiments in order to evaluate
our proposed placement solution. Finally, we conclude the
paper in Section V.

II. STATE OF THE ART

ETSI NFV Industry Specification Group defines network
service as a composition of one or more VNFs that are
chained together. Each VNF requires a specific amount of
resource to process the traffic flowing through it. To deploy a
network service, the operator needs to find the right placement
of VNFs complying with various resource constraints and
service latency agreements. Once the hosts are selected and
the VNFs deployed, resource requirements for the VNFs may
vary due to traffic fluctuations. To meet these demands, a
resource allocation algorithm is needed that can automatically
allocate/release resources to a VNF (vertical scaling) or
add/remove one or more VNF instances (horizontal scaling).

Moreover, in comparison to the centralized cloud computing
approach, the edge computing framework presents with
additional challenges such as dynamically varying workloads,
resource-limited edge nodes, and applications with various
requirements (e.g., some applications are compute-intensive

while others may be network-intensive) co-located on the
same edge node. Therefore, MNOs need to address these
challenges by introducing proactive, dynamic and efficient
NFV orchestration and placement mechanisms.

A. VNF Scaling.

Previous works on VNF auto-scaling can be divided into
two categories: reactive mode and proactive mode.

In reactive mode, threshold levels can be either statically
pre-defined or dynamically updated. In [8], [9], and [10],
the authors propose scalability mechanisms based on static
thresholds. They define two threshold levels (scaleinthr and
scaleoutthr), to determine if the load reduces below or
exceeds above the respective limits, to trigger the scaling
process. However, such techniques may result in an oscillating
behaviour affecting the overall system performance. On the
other hand, [11] and [12] propose mechanisms such as queuing
theory and reinforcement learning, which allows to improve
the scaling policy based on dynamic or adaptive thresholds.
Although it performs better than static approaches, it remains
a reactive solution with similar weaknesses.

In proactive mode, forecasting techniques (e.g., machine
learning) are applied to allow the systems to automatically
learn and to anticipate future needs, based on which scalability
decisions are taken. For example, the authors in [13] propose
a solution to forecast CPU usage based on a historical dataset
using time series model. Other authors such as Mijumbi et
al. [14] and Mestres et al. [15] addresses the problem of
managing VNF resource fluctuations by predicting resource
requirements using ML techniques and thereby enhancing the
performance of the resource allocation algorithm.

In contrast to these works which targets data centers, our
approach investigates the problem of proactive auto-scaling
in a distributed MEC-NFV deployment. Moreover, we use
real-operator traffic traces to generate training sets required
for predicting auto-scaling decisions, unlike other works that
are based on simulated datasets.

B. VNF Placement.

There exists a significant amount of literature on placing
VNFs in the NFV infrastructure ([16], [17], [18] and [19]).
VNF-P [16] can be considered as one of the most prominent
works on VNF placement, where the authors present a generic
model for efficient placement of VNFs. In [17], the authors
determine the required number of VNFs and their optimal
placement in such a way that minimizes network operational
costs and maximizes network utilization. In [18], the authors
present a real-world implementation of VNF placement on
OpenStack [20] to optimize the overall system performance
and to provision resilience. The authors in [19] formulate the
VNF placement problem as a resource-constrained shortest
path problem to minimize the overall latency.

In contrast to other VNF placement solutions which targets
traditional VMs in cloud data centers, our work formulates
a novel VNF placement model that considers distributed
MEC-NFV deployment with a key objective of minimizing
the end-to-end service latency for users.

415

III. MACHINE LEARNING-DRIVEN PROACTIVE VNF
AUTO-SCALING

In this section, we create an ML classifier model that can
identify and exploit hidden patterns in network traffic load
instances to predict VNF scaling decisions ahead of time.
In particular, we illustrate on the different steps involved in
creating our model and eventually evaluate it based on several
performance metrics [21].

A. Problem Description

We investigate how to map traffic load statistics X to VNF
scaling decisions Y using supervised learning, which involves
learning from a training set of data. The traffic load statistics
X include measurements from a commercial LTE mobile
network. The VNF scaling decisions Y refer to the required
number of VNFs in order to process incoming traffic without
violating QoS Service Level Agreement (SLA). The details on
the composition of X and Y are discussed in Section III-D.

The X and Y metrics evolve over time, influenced mainly
by the mobile network traffic dynamics and the active number
of mobile users. Consequently, the combined evolution of X
and Y metrics is modeled as a time series {(xt, yt)}. Our goal
is to determine the distribution of scaling decision metric Y
constrained on knowing the traffic load metric x ∈ X .

Employing the statistical learning framework, X and Y
are modeled as random variables. We assume that each
sample (xt, yt) in the training set is obtained from the joint
probability distribution of (X,Y). Further, we assume that xt
is multi-dimensional and yt is one-dimensional (univariate).
In this formalism, the inference problem consists of finding a
model F : x ->P (Y |x) for x ∈ X , so as to maximize the
likelihood function L({P (yt|xt)}), which can be attained by
minimizing the loss function E = −log(L) [22].

In this work, a special neural-network called Multilayer
Perceptron (MLP) is used to estimate the parameters of the
model in order to predict the probability distribution P (Y |x).
We select neural-network in our approach for two reasons:

(i) it has proven its potential in identifying traffic patterns
due to its effectiveness in predicting time-series problems,
whether periodic or not [23] [24].

(ii) It can build new customized features through hidden
layers and fit nonlinear activation functions when a definite
mathematical definition is not available.

B. Multilayer Perceptron (MLP)

An MLP is a class of feed-forward artificial neural-network,
consisting of atleast three layers of nodes (neurons): an input
layer, one or more hidden layers and an output layer, as
shown in Fig. 2. These nodes are fully interconnected in
the form of a directed graph, starting from the input to the
output. All nodes except the input nodes have an associated
activation function, which is used to compute the node output
based on the weighted inputs from other nodes. Usually,
relu activation function is used for the hidden layer nodes
and softmax activation function is used for the output layer
nodes [25]. The output is a vector containing the probabilities
that sample x ∈ X belongs to each class, which is equivalent

Input layer Hidden layer Output layer

Activation function
Rectified Linear

Unit

Activation function
Softmax

X Y

Fig. 2: Structure of the proposed MLP Classifier.

to a categorical probability distribution. The final result is the
class with the highest probability.

With a categorical cross-entropy loss function, the network
parameters are chosen to minimize the following:

E = −
C∑
l=1

bx,llog(px,l) (1)

where C is the number of classes, b is the binary indicator
(0 or 1) whether class label l is the correct classification for
input x, and p is the predicted probability that input x belong
to class l. Here, a separate loss is calculated for each class
label per input and the result is the sum of all those losses.

An MLP model is trained through a backpropagation
mechanism using gradient-descent as an optimization
algorithm, where the weights between the nodes are adjusted
iteratively for minimizing the error function.

C. Modeling MLP in Keras

Keras is an open-source neural-network Python library
capable of running on top of Theano [26] or TensorFlow [27].
It is charaterized by a clean, uniform, and streamlined
high-level API, allowing users to rapidly define, train and
evaluate neural-network models [28].

In Keras, the structure of the neural-network model can
be defined in a modular way, as a sequence of standalone
and fully configurable modules, which can be readily plugged
together. Keras offers a number of predefined neural layers
such as a dense layer, a recurrent layer, and a convolutional
layer. A wide range of activation functions are also available
including relu, sigmoid, softmax, tanh, to name a few.
Similarly, a number of predefined loss functions (e.g., mean
squared error, cross entropy) and regularization schemes
(e.g., dropout) are supported. Also, since Keras performs
backpropagation automatically, users do not need to implement
it. Moreover, numerous approaches are available to partition
the dataset into training, validation, and test sets.

To implement an MLP in Keras, we construct a sequential
model with a number of predefined dense layers and their
corresponding activation functions. We then configure the
learning process of the model by chosing an optimizer, a loss
function (equation 1) and a list of metrics to be reported.
Lastly, the model is trained with an objective to minimize
the loss function and then evaluated.

416

D. Collecting Data and Feature Engineering

The different steps involved in creating models using
supervised learning are as follows:

1) Data Collection: The dataset utilized in this work is
generated from a commercial MNO in Armenia by monitoring
the mobile network traffic load on 6 LTE base stations, with
each base station having 10 cells, for a period of 8 consecutive
days. The traces in the dataset are in the form of a time series
{(xt, yt)} and we interpret this time series as a set of samples
{(x1, y1), (x2, y2), ..., (xn, yn)}. The traces are collected on
an hourly timescale.

2) Feature Extraction and Class definition: We now
describe the input feature sets Xdefault and Xconstructed,
which when combined together is referred as X , as well as
the output classes/predictions Y .

The Xdefault feature set includes 8 numeric features that
are already available in the dataset as described in Table I.
In addition to these default features, we construct 9 numeric
features (Xconstructed) from the basic dataset, as shown in
Table II, using a process called feature transformation. These
constructed features contain information or patterns on how the
traffic load evolves over time, therefore assisting in proactive
VNF scaling decisions.

Furthermore, it is necessary to define the desired output
classes of the proposed MLP classifier model. Here, class
refers to the number of VNF instances required per cell at
time t, such that the auto-scaling decision allocates enough
resources to meet the traffic demand until next auto-scaling
decision at time t+ 1, which is defined in equation 2,

No. of V NFs (Y) = min(vnfmax,max(
λ(t)

γ
,
λ(t+ 1)

γ
))

(2)
where λ(t) and λ(t+1) are the traffic load in a cell at time t

and t+1, respectively, γ is the maximum traffic load a single
VNF can handle, and vnfmax is the maximum number of
VNFs per cell that can be hosted at the edge node. Since, there
is a maximum limit on the hosting of VNFs, we model this
as a classification problem rather than a regression problem.

Note, we perform auto-scaling decisions once every hour,
since our traffic traces are collected on hourly time intervals.
However, our model is generic enough to handle lower interval
granularities.

Default features (Xdefault)
1. Base station ID.
2. Date.
3. Time-stamp t.
4. Average number of users between t and t− 1 in each cell.
5. Maximum number of users between t and t− 1 in each cell.
6. Average downlink user throughput in each cell.
7. Average uplink user throughput in each cell.
8. Traffic load measured in each cell at time t, given by λ(t).

TABLE I: Default set of features available in the dataset.

Constructed features (Xconstructed)
9. Traffic load measured in each cell at time t−2, given by λ(t−2).
10. Traffic load measured in each cell at time t−1, given by λ(t−1).
11. Traffic load measured in each cell at time t+1, given by λ(t+1).
12. Traffic load measured in each cell at time t+2, given by λ(t+2).
13. Change in traffic load in each cell from time t− 2 to t− 1.
14. Change in traffic load in each cell from time t− 1 to t.
15. Change in traffic load in each cell from time t to t+ 1.
16. Change in traffic load in each cell from time t+ 1 to t+ 2.
17. Weekday or weekend.

TABLE II: Constructed set of features from the dataset.

3) Feature Subset Selection: This process eliminates the
redundant features from Xdefault and Xconstructed feature sets
in order to reduce the dimensionality of the data and also
to reduce computational overhead. Therefore, to understand
the impact of different features on our ML classifier model,
we use Principal Component Analysis (PCA) and Recursive
Feature Elimination estimator. Based on the ranking of these
features, we use only 12 features (eliminating 2, 4, 5, 6 and 7
from Table I) that provides the best accuracy for our model.

4) Dataset Decomposition: Once data is collected and
features extracted, the dataset is decomposed into training
and test datasets. We use a rule-of-thumb decomposition
conforming to 75%/25% between the training and test
datasets, respectively. During the training phase, the MLP
classifier model learns the relationship between the features
and the classes.

E. Classification using neual networks
Finding the parameters of a neural-network model means

searching for the best hyper-parameters of the MLP that can
make best predictions on the input. We applied grid search
and baby-sitting as search strategies to perform an extensive
search on the space of hyper-parameters in order to find the
most accurate neural-network classifier. This process included
finding the number of hidden layers and nodes, the batch
size, the regularization parameter, the learning rate of the
optimizer, and the number of epochs. We encountered the
process of finding hyper-parameters time-consuming and hard,
which assures that this topic still requires significant research.

We eventually found the architecture of the neural-network
that performs best on our traffic load traces and is described as
follows. The structure includes one input layer with 12 nodes,
three hidden layers with 12, 24 and 12 nodes, respectively, and
an output layer with 10 nodes. The regularization parameter
used is 0.01, the optimizer is based on stochastic gradient
approach with a constant learning rate of 0.001, the batch size
is fixed to 100, and the number of epochs equals 300.

F. MLP model evaluation
We consider that edge nodes in proximity to the

base stations are capable of hosting VNFs on their
NFV infrastructure, similar to containers in data center
deployments [29]. We assume the bandwidth capacity of
each edge node to be 20 Gbps and each VNF can process
a maximum of 200 Mbps traffic without QoS degradation.

417

MLP DT KNN LDA GNB SVM

0.25

0.5

0.75

1
Accuracy Precision Recall F-measure

Fig. 3: Performance comparision of different classification algorithms for VNF auto-scaling.

We consider horizontal VNF auto-scaling with each edge
node capable of hosting 100 (20Gbps/200Mbps) VNFs
and vnfmax = 10, i.e., a maximum of 10 VNFs can be
hosted per cell. These assumptions are derived based on
the evaluations performed by authors in [30]. If traffic load
increases, additional VNF instances are deployed to meet QoS
requirements, whereas if traffic load decreases, VNF instances
are removed to save operational expenses.

Once the MLP model is created as discussed before, a
test dataset is used to assess the performance of the model
in predicting outcomes. The test outcomes can be classified
into four groups: True Positive (TP) and True Negative
(TN) are when the model correctly predicts actual positive
and negative instances, respectively. Whereas, False Positive
(FP) and False Negative (FN) are when the model makes
incorrect predictions for negative and positive actual instances,
respectively. Therefore, we consider four performance metrics
to evaluate our MLP model: accuracy, precision, recall, and
f-measure, as given by equations 3, 4, 5 and 6, respectively.

Accuracy =
1

|C|

|C|∑
i=1

TP + TN

TP + TN + FP + FN
(3)

Precision =
1

|C|

|C|∑
i=1

TPi

TPi + FPi
(4)

Recall =
1

|C|

|C|∑
i=1

TPi

TPi + FNi
(5)

Fmeasure = 2.
P recision.Recall

Precision+Recall
(6)

where C is the number of classes in the MLP model.
Accuracy is the most intuitive performance measure that

gives the proportion of true predictions among the total
number of predictions observed. However, accuracy is a
great measure only if the datasets are completely symmetric
i.e., false positives and false negatives are almost the same.
Therefore, other performance metrics need to be considered
when evaluating a model. Precision is a measure of correctly
predicted positive observations to the total predicted positive
observations. It is a good measure to determine when the cost
of FP is high. In case of VNF auto-scaling, a high number

Class 1 2 3 4 5 6 7 8 9 10
1 1014 1 0 0 0 0 0 0 0 0
2 7 505 8 0 0 0 0 0 0 0
3 0 2 499 0 0 0 0 0 0 0
4 0 0 5 295 2 0 0 0 0 0
5 0 0 0 2 220 8 0 0 0 0
6 0 0 0 0 2 118 5 0 0 0
7 0 0 0 0 0 0 79 0 0 0
8 0 0 0 0 0 0 5 51 1 0
9 0 0 0 0 0 0 0 1 35 0

10 0 0 0 0 0 0 0 0 0 15

TABLE III: Confusion matrix for the proposed MLP classifier model.

of FPs will result in over-provisioning of resources leading
to increased operational costs. On the other hand, Recall is
a measure that calculates how many of the actual positives
are captured in our model by labeling it as positive. It is a
good measure to determine when the cost of FN is high. In
case of VNF auto-scaling, a high number of FNs will result in
under-provisioning of resources leading to QoS degradation.
Finally, F-measure is the weighted average of precision and
recall and it is used when there is an uneven class distribution.

Fig. 3 compares the performance of the proposed MLP
classifier model implemented in Keras with other classification
algorithms implemented in Scikit-learn [31], such as Decision
Tree (DT), K-Nearest Neighbour (KNN), Linear Discriminant
Analysis (LDA), Naive Bayes (NB), and Support Vector
Machine (SVM). We use 6 days of data (i.e., 6 days * 6 base
stations * 10 cells * 24 hours = 8640 samples) for training
and two days of data (i.e., 2880 samples) for testing. The
MLP model outperforms other models in all measures, with
97% accuracy, 96% precision, 97% recall, and 97% f-measure.
The closest to MLPs performance was DT with 96% accuracy,
95% precision, 96% recall, and 96% f-measure.

Table III reports the confusion matrix for the proposed MLP
classifier model with respect to the test data samples. For
example, it can be seen that class 2 has 7 and 8 instances
of misclassification as class 1 and class 3, respectively.

Fig. 4 shows the prediction results of VNF auto-scaling (for
1 full day) using MLP classifier model, where we display the
prediction performance on all six edge nodes, aggregated over
all 10 cells for each base station. In the figure, the blue line
represents the actual output generated from the dataset, and

418

09
:00

12
:00

15
:00

18
:00

21
:00

00
:00

03
:00

06
:00

20

40

60

80

100

Time (HH:MM)

N
um

be
r

of
V

N
Fs

Actual values Predicted values

(a) Edge node 1

09
:00

12
:00

15
:00

18
:00

21
:00

00
:00

03
:00

06
:00

20

40

60

80

100

Time (HH:MM)

N
um

be
r

of
V

N
Fs

Actual values Predicted values

(b) Edge node 2

09
:00

12
:00

15
:00

18
:00

21
:00

00
:00

03
:00

06
:00

20

40

60

80

100

Time (HH:MM)

N
um

be
r

of
V

N
Fs

Actual values Predicted values

(c) Edge node 3

09
:00

12
:00

15
:00

18
:00

21
:00

00
:00

03
:00

06
:00

20

40

60

80

100

Time (HH:MM)

N
um

be
r

of
V

N
Fs

(d) Edge node 4

09
:00

12
:00

15
:00

18
:00

21
:00

00
:00

03
:00

06
:00

20

40

60

80

100

Time (HH:MM)

N
um

be
r

of
V

N
Fs

(e) Edge node 5

09
:00

12
:00

15
:00

18
:00

21
:00

00
:00

03
:00

06
:00

20

40

60

80

100

Time (HH:MM)

N
um

be
r

of
V

N
Fs

(f) Edge node 6

Fig. 4: Prediction results on the number of VNFs required at each edge node based on the proposed MLP model.

Time MAE (CI, 95%)
00:00 0.5 (-0.16 to 1.16)
01:00 0.5 (-0.16 to 1.16)
02:00 3.5 (-1.87 to 8.87)
03:00 2.5 (-2.4 to 7.4)
04:00 3.16 (-0.95 to 7.29)
05:00 2.66 (-1.49 to 6.82)
06:00 2.16 (-2.08 to 6.41)
07:00 1.16 (-0.75 to 3.08)

Time MAE (CI, 95%)
08:00 0.33 (-0.07 to 0.74)
09:00 0 (0)
10:00 0.16 (-0.16 to 0.49)
11:00 0.16 (-0.16 to 0.49)
12:00 0 (0)
13:00 0.33 (-0.07 to 0.74)
14:00 0.16 (-0.16 to 0.49)
15:00 0.66 (0.01 to 1.32)

Time MAE (CI, 95%)
16:00 0.16 (-0.16 to 0.49)
17:00 0 (0)
18:00 0.16 (-0.16 to 0.49)
19:00 1 (-0.6 to 2.6)
20:00 1.16 (-1.12 to 3.45)
21:00 1.5 (-0.69 to 3.69)
22:00 1.33 (-0.91 to 3.57)
23:00 1 (0.28 to 1.71)

TABLE IV: Mean Absolute Error with 95% Confidence Interval for the proposed MLP model.

the red line means the predicted VNF scaling decisions. As
we can observe, the MLP classifier model introduced in this
study can exactly follow the pattern of actual data, which point
out to the strong predicting capability of the model.

Table IV presents the mean absolute error (MAE) between
the actual and predicted values of VNF scaling decisions,
calculated over all six edge nodes for every hour during the
entire day. We also calculate the confidence interval (CI) that
determines the 95% likelihood on the range of classification
errors that can be expected from our model. As shown in the
table, the model can have an upper limit of 8.87 MAE (at
time 02:00) and a lower limit of -2.08 MAE (at time 06:00)
in predicting VNF auto-scaling decisions.

It is worth mentioning that the predicted scaling decisions
from our MLP model is used as an input to evaluate the VNF
placement model presented in Section IV.

IV. LATENCY-OPTIMAL VNF PLACEMENT PROBLEM IN A
DISTRIBUTED MEC-NFV ENVIRONMENT

In this section, we introduce the definition of parameters
used in our system model and formulate a VNF placement
problem as an Integer Linear Program (ILP), with a key
objective of minimizing the end-to-end latency, by calculating
the optimal location for VNFs in MEC-NFV environment.

A. System Model

With the recent advances in cloud computing, any physical
server, for instance edge nodes (e.g. base stations, home
routers etc) or a distant cloud, can host VNFs. To minimize
the end-to-end latency, the MNOs are intending to first place
the VNFs on edge devices that are closer to the end users, and
once they run out of capacity falling back to host VNFs in the
network providers distant cloud data center.

419

Table V summarizes all the parameters used in the problem
formulation. We model the physical network infrastructure as
an unidirected graph G = (N,E,Z), where N denotes the
set of physical nodes, E denotes the set of physical links
connecting these nodes, and Z denotes the users within the
network. We assume that each physical node ni ∈ N can
host one or multiple VNF instances, meaning that all physical
nodes have cpu, memory, network capabilities denoted by θi.
Similarly, each physical link el ∈ E has a physical bandwidth
limit denoted by δl.

Notation Definition
G = (N,E,Z) Graph of the NFVI.

N = {n1, n2, ..., ni} Set of physical nodes (edge and distant
cloud) within the network.

E = {e1, e2, ..., el} Set of physical links in the network.
Z = {z1, z2, ...zq} Set of users associated with VNFs.

θi Hardware capacity (CPU, memory,
network) of the physical node ni ∈ N .

δl Capacity of the physical link el ∈ E.

dl Latency on the physical link el ∈ E.
V = {v11 , v22 , ..., v

q
j } VNFs associated to users (e.g. vqj ∈ V is

associated to user zq ∈ Z).
P = {p1, p2, ..., pk} All paths in the network.

ψj Required capacity (CPU, memory,
network) of the physical node to host VNF
vj ∈ V .

djmax Maximum end-to-end latency threshold
VNF vj ∈ V tolerates from its user.

Xijk Binary variable denoting if VNF vj ∈ V
is hosted by physical node ni ∈ N using
path pk ∈ P .

bijk Required bandwidth between VNF vj ∈ V
to the user, if the VNF is hosted by physical
node ni ∈ N using path pk ∈ P .

dijk Required latency between VNF vj ∈ V to
the user, if the VNF is hosted by physical
node ni ∈ N using path pk ∈ P .

TABLE V: Key notations in our model.

Each VNF vqj ∈ V has its own cpu, memory and network
requirements denoted by ψj . In addition to the compute
requirements, each VNF has an end-to-end delay threshold,
denoted by dj , in order to meet the service providers SLA.
Similarly, each VNF also specifies a bandwidth requirement
along the path pk from their user, denoted by bijk, where
VNF vqj associated with user zq is hosted on physical node ni.
Another important parameter, the latency from a user to a VNF
denoted by dijk, is calculated by summing up all individual
link latency values (dl) along the path pk if VNF vqj associated
with user zq is hosted by node ni. Finally, the binary variable
Xijk ∈ {0, 1} (given by equation 7) represents the decision
variable in our model.

Xijk =

{
1, if we assign vj to node ni using path pk
0, otherwise

(7)

B. Problem Formulation
The problem addressed in this paper can be formulated as

an ILP model that takes as input a set of users U , a set of

VNFs V , a set of VNF hosts N , and a latency array d, and
ouputs the optimal solution for placing all VNFs in the NFVI
by minimizing the total end-to-end latency from all users to
their respective vNFs. The formulated objective function is
given in equation 8.

ILP : minimize
∑
ni∈N

∑
vj∈V

∑
pk∈P

Xijk.dijk (8)

The optimization objective is subject to following four
constraints: ∑

vq
j∈V

∑
pk∈P

Xijk.ψ
j < θi,∀ni ∈ N (9)

∑
ni∈N

∑
pk∈P

Xijk.dijk < djmax.∀v
q
j ∈ V (10)

∑
ni∈N

Xijk = 1,∀vqj ∈ V,∀pk ∈ P (11)

∑
ni∈N

Xijk.bijk < δl,∀el ∈ pk,∀pk ∈ P (12)

Constraint (9) ensures that the amount of hardware
resources allocated to VNFs adheres to the available resource
capabilities on the physical node. Constraint (10) ensures that
the end-to-end delay between the user and the VNF does not
exceed the maximum delay specified by the service. Constraint
(11) guarantees that each VNF is hosted exactly by only one
physical node (either the edge node or the cloud). Constraint
(12) ensures that none of the physical links get overloaded.

Generic applications Expected latency
Real-time (e.g., Virtual Reality) < 5ms

Near real-time (e.g., Video conference call) < 20ms

Non real-time (e.g., Video streaming) < 100ms

TABLE VI: Latency requirements for generic applications.

C. ILP Model Evaluation

The performance of the VNF placement model is evaluated
based on simulation experiments. Real-operator network
topology and realistic latency values are used when modeling
the simulation environment to produce realistic simulation
results, which can better illustrate the benefits of moving VNFs
from distant cloud data centers to the network edges.

Simulation Environment: The network topology used is
based on the backbone network reported by a private MNO.
We introduce the edge nodes at all the base stations of the
network topology, with each node capable of hosting a limited
number of VNFs without degrading the QoS. This approach
of deploying edge nodes to already existing base stations
is recommended by ETSI MEC since it is cost-efficient
and vendor-agnostic [2]. In addition to the edge nodes, we
introduce one cloud data center as part of the network
providers infrastructure capable of hosting numerous VNFs.

Depending on the latency tolerance levels of end-user
applications [32], VNFs are divided into three categories:

420

00
:00

02
:00

04
:00

06
:00

08
:00

10
:00

12
:00

14
:00

16
:00

18
:00

20
:00

22
:00

0

100

200

300

400

Time (HH:MM)

To
ta

l
no

.o
f

V
N

Fs
Edge node 1 Edge node 2 Edge node 3
Edge node 4 Edge node 5 Edge node 6
Cloud data center

00
:00

02
:00

04
:00

06
:00

08
:00

10
:00

12
:00

14
:00

16
:00

18
:00

20
:00

22
:00

0

5

10

15

20

Time (HH:MM)

A
ve

ra
ge

en
d-

to
-e

nd
la

te
nc

y
(m

s)

Edge node 1 Edge node 2 Edge node 3
Edge node 4 Edge node 5 Edge node 6
Cloud data center Edge-cloud deployment Cloud only deployment

Fig. 5: Performance measure of the proposed system model.

real-time, near real-time, and non real-time, as shown in
Table VI. In this experiment, we use equal number of VNFs
distributed across all three categories. However, our findings
below can be generalized for any categorical combination of
VNFs. The latency values for network links are based on the
research conducted by Choi et al. in [33], which reports usual
average packet delays in wide area networks.

Simulation Results: The model presented in this section
was implemented using the commercial IBM ILOG CPLEX
solver [34], since no available open-source solvers outperforms
CPLEX in terms of speed and capability as reported in [35].
The solver determines the latency-optimal placement for
VNFs and calculates the cumulative end-to-end latency (i.e.,
the objective function) for our problem. We conduct two
experiments and compare them to demonstrate the benefits
of hosting VNFs at the edge nodes. In the first scenario, all
the VNFs are assigned to the cloud data center, while in the
second scenario, VNFs are first assigned to the edge nodes
(every edge node has an equal but finite amount of compute
capacity) and once they run out of capacity, VNFs are assigned
to the cloud data center, resulting in higher end-to-end latency.

To perform these experiments, we set a fixed latency of 5ms
from the user to the edge node. Also, we limit the number
of VNFs that can be hosted on each edge node to be 40.
Therefore, with 6 edge nodes/base stations, the total edge
capacity of the considered network is 240 VNFs, while the
rest being assigned to the cloud data center. These numbers are
chosen solely to demonstrate the distribution of VNFs between
edge nodes and the cloud data center according to the proposed
ILP model, which minimizes the end-to-end latency.

Fig. 5, y-axis represents the total number of VNFs predicted
over all 6 edge nodes from our MLP classifier model and
X-axis represents the predicted time of the day, as illustrated
in Section III. In the figure, the line chart compares the average

end-to-end latency from all users to their respective VNFs in
an edge-cloud deployment (blue line) to that of cloud-only
deployment (red line). The cloud-only scenario results in an
average latency of 20ms, whereas running all VNFs at the
network edge gives an average latency of 5ms. Once the
capacity of the edge nodes are exhausted, VNFs are assigned to
the cloud data center, gradually increasing the average latency.
On the other hand, the stacked bar chart in Fig. 5 shows
the distribution of VNFs in all the nodes of the network, as
scheduled by the ILP solver. We observe that once the total
number of VNFs exceed 240, they are automatically assigned
to the cloud data center. The ILP solver took 6.25 seconds in
order to associate 335 VNFs (e.g., at time = 22:00 in Fig. 5) to
the distributed edge-cloud network nodes, so as to minimize
the aggregated user to VNF end-to-end latency.

V. CONCLUSIONS

The first part of the paper aims at applying machine learning
techniques to optimize network management operations.
Towards this end, we proposed a neural-network model to
facilitate proactive auto-scaling of VNFs, based on the traffic
traces obtained from the MNO. We evaluated the proposed
model for its effectiveness in accurately predicting the amount
of VNF instances required as a function of the network traffic
it should process. Moreover, we compared the performance
of the neural-network model with five other classification
learning methods, and the performance metrics show that the
neural-network model can achieve higher prediction accuracy
(97%) than other methods. Thereby, allowing MNOs to
minimize service downtime and reduce operational costs.

In the second part of the paper, we argue that in order to
achieve low end-to-end latency from users to their respective
VNFs, it is necessary to host VNFs at the network edges
rather than hosting them on the distant cloud data center.
We therefore proposed an optimal placement model that

421

carefully chooses the location of the VNFs to reduce user
to VNF latency. We evaluated the proposed model using
simulations based on real-operator network topology and
real-world latency values. Our results show that the average
end-to-end latency reduces by 75% when all VNFs are placed
at the network edges. Therefore, it is possible for MNOs to
provision low-latency services for end users in their network.

Limitations and Future Work: The proposed MLP model
is developed on the assumption that distributed edge nodes can
send all its collected data to a centralized location, to facilitate
detection, classification, and prediction of forthcoming events.
However, due to the limited computational and communication
resources available in the edge computing framework, it is not
practical to send all the data to a centralized location. Thus,
it is imperative to determine the model parameters from data
scattered across numerous edge nodes, without sending the
raw data to a consolidated place. This can be achieved from
the federation of edge nodes through a distributed machine
learning approach known as Federated Learning [36], which
is the main focus of our future work.

Furthermore, in addition to finding the latency-optimal
solution to place VNFs in a distributed MEC-NFV
architecture, we plan to extend our ILP model with an added
goal of optimizing the overall resource utilization (e.g., CPU,
RAM, network) in the distributed edge nodes.

ACKNOWLEDGEMENTS

This work has been performed in the framework of
the European Unions Horizon 2020 project 5G-CARMEN
co-funded by the EU under grant agreement No 825012. The
views expressed are those of the authors and do not necessarily
represent the project. The Commission is not liable for any use
that may be made of any of the information contained therein.

REFERENCES

[1] R. Mijumbi, J. Serrat, J. Gorricho, N. Bouten, F. D. Turck, and
R. Boutaba, “Network function virtualization: State-of-the-art and
research challenges,” IEEE Communications Surveys & Tutorials,
vol. 18, no. 1, 2016.

[2] T. Subramanya, G. Baggio and R. Riggio, “lightMEC: A
Vendor-Agnostic Platform for Multi-access Edge Computing,” in
Proc. of 14th International Conference on Network and Service
Management, Rome, Italy, 2018.

[3] A. Manzalini, R. Minerva, F. Callegati, W. Cerroni, and A. Campi,
“Clouds of virtual machines in edge networks,” IEEE Communications
Magazine, vol. 51, no. 7, 2013.

[4] R. Riggio, S. N. Khan, T. Subramanya, I. G. R. Yahia, D. Lopez,
“LightMANO: Converging NFV and SDN at the Edges of the Network,”
in IEEE/IFIP Network Operations and Management Symposium (NOMS
2018), Taipei, Taiwan, 2018.

[5] J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. Soong,
and J. C. Zhang, “What will 5g be?” IEEE Journal on selected areas
in communications, vol. 32, no. 6, 2014.

[6] M. F. Bari, S. R. Chowdhury, R. Ahmed and R. Boutaba, “On
orchestrating virtual network functions,” in Proc. of 11th International
Conference on Network and Service Management, Barcelona, Spain,
2015.

[7] ETSI, “Network Functions Virtualisation (NFV); Management and
Orchestration,” , ETSI GS NFV-MAN 001, 2014.

[8] S. Dutta, T. Taleb, and A. Ksentini, “Qoe-aware elasticity support
in cloud-native 5g systems,” in Proc. of International Conference on
Communication, Kuala Lumpur,Malaysia, 2016.

[9] G. A. Carella, M. Pauls, L. Grebe, and T. Magedanz, “An extensible
autoscaling engine (ae) for software-based network functions,” in Proc.
of International Conference on Network Function Virtualization and
Software Defined Networks, California,USA, 2016.

[10] M. K. Mohan Murthy, H. A. Sanjay and J. Anand, “Threshold Based
Auto Scaling of Virtual Machines in Cloud Environment,” in Proc.
of IFIP International Conference on Network and Parallel Computing,
Berlin, Germany, 2014.

[11] C. H. T. Arteaga, F. Rissoi, and O. M. C. Rendon, “An adaptive
scaling mechanism for managing performance variations in network
functions virtualization: A case study in an nfv-based epc,” in Proc. of
13th International Conference on on Network and Service Management,
Tokyo, Japan, 2017.

[12] T. Lorido-Botran, J. Miguel-Alonso, and J. A. Lozano, “A review of
auto-scaling techniques for elastic applications in cloud environments,”
Journal of Grid Computing, vol. 12, no. 4, 2014.

[13] A. Bilal, T. Tarik, A. Vajda, and B. Miloud, “Dynamic cloud resource
scheduling in virtualized 5g mobile systems,” in Proc. of IEEE
GLOBECOM, Washington, USA, 2016.

[14] R. Mijumbi, S. Hasija, S. Davy, A. Davy, B. Jennings, and R. Boutaba,
“Topology-aware prediction of virtual network function resource
requirements,” IEEE Transactions on Network and Service Management,
vol. 14, no. 1, 2017.

[15] A. Mestres and et. al, “Knowledge-Defined Networking,” ACM
SIGCOMM Computer Communication Review, vol. 47, no. 3, 2017.

[16] H. Moens and F. D. Turck, “VNF-P: A model for efficient placement
of virtualized network functions.” Proceedigs of the 10th International
Conference on Network and Service Management (CNSM), 2014.

[17] M. F. Bari, S. R. Chowdhury, R. Ahmed, R. Boutaba, O. C. Muniz
and B. Duarte, “Orchestrating virtualized network functions.” IEEE
Transactions on Network and Service Management, 2016.

[18] S. Oechsner and A. Ripke, “Flexible support of VNF placement
functions in OpenStack,” in Proc. of 1st IEEE Conference on Network
Softwarization (NetSoft), London, United Kingdom, 2015.

[19] B. Martini, F. Paganelli, P. Cappanera, S. Turchi and P. Castoldi,
“Latency-aware composition of virtual functions in 5g,” in Proc. of 1st
IEEE Conference on Network Softwarization (NetSoft), London, United
Kingdom, 2015.

[20] “Openstack.” [Online]. Available: https://www.openstack.org/
[21] R. Boutaba, M. A. Salahuddin, N. Limam, S. Ayoubi, N. Shahriar,

F. Estrada-Solano, and O. M. Caicedo, “A comprehensive survey on
machine learning for networking: evolution, applications and research
opportunities,” Journal of Internet Services and Applications, vol. 9,
no. 1, p. 16, 2018.

[22] N. M. Nasrabadi, “Pattern recognition and machine learning,” Journal
of electronic imaging, vol. 16, no. 4, p. 049901, 2007.

[23] S. Basterrech, G. Rubino, and V. Snášel, “Sensitivity analysis of echo
state networks for forecasting pseudo-periodic time series,” in 2015 7th
International Conference of Soft Computing and Pattern Recognition
(SoCPaR). IEEE, 2015, pp. 328–333.

[24] F. A. Gers, D. Eck, and J. Schmidhuber, “Applying lstm to time series
predictable through time-window approaches,” in Neural Nets WIRN
Vietri-01. Springer, 2002, pp. 193–200.

[25] A. K. Jain, J. Mao, and K. M. Mohiuddin, “Artificial neural networks:
A tutorial,” Computer, vol. 29, no. 3, 1996.

[26] “Theano.” [Online]. Available: http://deeplearning.net/software/theano/
[27] “Tensorflow.” [Online]. Available: https://www.tensorflow.org/
[28] “Keras 2018.” [Online]. Available: https://keras.io/
[29] S. F. Piraghaj, A. V. Dastjerdi, R. N. Calheiros, and R. Buyya, “A

framework and algorithm for energy efficient container consolidation
in cloud data centers,” in 2015 IEEE International Conference on Data
Science and Data Intensive Systems. IEEE, 2015, pp. 368–375.

[30] S. Rahman, T. Ahmed, M. Huynh, M. Tornatore, and B. Mukherjee,
“Auto-scaling network resources using machine learning to improve qos
and reduce cost,” arXiv preprint arXiv:1808.02975, 2018.

[31] “Scikit-learn.” [Online]. Available: https://scikit-learn.org/
[32] GSMA-Intelligence, “Understanding 5G: Perspectives on future

technological advancements in mobile,” Technical Report, 2014.
[33] B. Y. Choi, S. Moon, Z. L. Zhang, K. Papagiannaki, and C. Diot,

“Analysis of point-to-point packet delay in an operational network,”
Computer Networks: The International Journal of Computer and
Telecommunications Networking, vol. 51, no. 13, 2007.

[34] “IBM ILOG CPLEX Optimizer.” [Online]. Available:
https://www.ibm.com/analytics/cplex-optimizer

[35] S. N. Laboratories, “Comparison of Open-Source Linear Programming
Solvers,” Technical Report, 2013.

[36] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and
D. Bacon, “Federated learning: Strategies for improving communication
efficiency,” arXiv preprint arXiv:1610.05492, 2016.

422

