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Abstract—Multi-hop wireless networks are emerging as a viable
alternative for building access networks in areas where conventional
solutions (cellular, fiber) are neither feasible nor attractive from
an economical standpoint. The management of multi–hop wireless
networks represents an overly complex task because of the joint
effect of the time-varying nature of the radio channel, the mobility
of users and the customary presence of adaptive, self-configuration
features. Various solutions are currently being researched, whereby
network management functionalities are performed autonomously
at the network nodes themselves. Such approaches require a
monitoring framework able to bring network–level information to
the relevant decision points in an effective and robust manner. In
this paper, we present a distributed network monitoring framework,
specifically developed for wireless multi–hop networks. The system
architecture and the protocols are presented together with results
obtained using a prototypical implementation over a real–world
testbed. Experimental results show that the framework generates a
limited amount of traffic, and that the system is able to consistently
recover from node failures.

Index Terms—wireless networks, network management, network
monitoring, mesh architecture

I. INTRODUCTION

Multi-hop wireless networks, also referred to as Wireless Mesh

Networks (WMNs) [1] represent an alternative to traditional

(cellular-style) architectures for building wireless access net-

works over medium-sized areas. WMNs customarily rely on the

use of wireless technologies operating in unlicensed bands, such

as those specified within the IEEE 802.11 family of standards.

This, coupled with the use of off-the-shelf hardware for building

dedicated devices and with the self-configuration features typical

of IEEE 802.11.x operations, enables the construction of net-

works presenting appealing features in terms of limited initial

capital expenditures (due to low cost of devices and no need

for complex network planning) and potentially low operational

expenditures (due to the self-configuration capabilities of the

devices). At the same time, the monitoring and management

of such networks represents a complex task. The distributed

nature of WMNs, channel fluctuations and the presence of self-

configuration features make it difficult for an operator to apply

conventional network management tools and techniques.

In the last few years, a tendency emerged to distribute network

management functionalities within the network itself [2], [3], [4],

[5], [6]. While such a trend spanned both wired and wireless

domains, it results particularly appealing for multi-hop wireless

networks, as it matches well the inherently distributed nature of

such systems. The effective development of distributed network

management solutions require, as common building block, a

scalable and efficient infrastructure for gathering network status

information and conveying it, properly aggregated whenever

needed, to the relevant decision points, where network manage-

ment tasks are performed.

Conventional network monitoring architectures and solutions,

mostly based on SNMP [7], [8], are not suitable for such a pur-

pose. First, they customarily rely on a centralized architecture1,

whereby the information collected is delivered to one single

decision point, where management decisions are implemented.

Second, they lack flexibility in the assignment of the operations

to be performed at each node. As in wireless networks topology

may change over time (due to, e.g., channel fluctuations, possible

node failure, addition of new nodes etc.) it is necessary to

envision systems where the location of the aggregation, analysis

and decision points may change at run-time without disrupting

system’s operations. Third, redundancy in the storage of moni-

toring data should be envisioned, in order to ensure accessibility

of information and robustness of the overall system in spite of

possible node/link failures.

In this paper we present OBELIX, a distributed network

monitoring framework specifically tailored to multi–hop wireless

networks, such as IEEE 802.11–based Wireless Mesh Networks.

The major contributions of this work are:

• We introduce a distributed architecture for monitoring wire-

less multi–hop networks, able to support run-time changes

in the operations performed by different nodes;

• We define a set of algorithms and corresponding protocols,

able to ensure robustness of the monitoring infrastructure

with respect to nodes failure and to changes in the network

topology.

• We provide a prototypical implementation of the proposed

architecture and protocols and validate it over a real-world

small-scale testbed, demonstrating the viability of the ap-

proach and evaluating its performance in terms of traffic

overhead and resilience.

The remainder of this paper is structured as follows. Sec. II

provides an overview of related work and of the state-of-the-art in

the field. Sec. III describes a number of requirements and presents

how they were turned into a set of design principles. Sec. IV

describes in details the OBELIX system architecture, components

and related protocols. Implementation details and numerical

results, obtained from a small-scale testbed implementation, are

1Albeit in v2 of the standard an interface was specified for enabling commu-
nication among agents, SNMP is inherently centralized in nature.



reported in Sec. V. Sec. VI concludes the paper discussing a

number of open issues and future extensions.

II. RELATED WORK

In [9] the authors aim at optimizing a distributed polling

system by sharing the load among a certain number of monitoring

agents, whose location is chosen in such a way to ensure bounded

link utilization in an IP network. The resulting hierarchical

system exploits an intermediate aggregation layer between the

monitoring agents and a centralized manager, which acts also

as (single) information repository. The work presented in [10],

similarly, proposes a set of techniques and algorithms to measure

links’ delay and to identify faulty links in IP networks. In order

to achieve such a goal, the authors aim at selecting the optimal

location of monitoring agents, able to cover all the links in the

networks in the presence of a bounded number of link failures.

The approach presented in [11] is slightly different, in that

it addresses the concurrent passive monitoring of traffic flows

at multiple locations in an IP network. The objective in such

a context is to sample the packets belonging to the same IP

flow by distributing several monitors within the network and

by controlling their sampling rate. A trade–off exists between

monitoring cost (numbers of monitors and their sampling rate)

and coverage. The authors propose an heuristic for choosing the

location of monitoring nodes and their sampling rate. In [12]

heuristics are used in order to determine the optimal number and

the placement of instrumentation in order to obtain distance maps

of the Internet assuming an unknown yet static network topology.

In all the above mentioned works, the location of active network

monitoring elements is statically selected at deployment time,

using a variety of proposed algorithms and heuristics. In wireless

multi–hop networks, on the other hand, the topology can change

over time because of a number of phenomena, including, e.g.,

node/link failures, channel fluctuations, addition of new nodes

etc. In all such cases, a monitoring framework should be able to

adapt its configuration (including location of aggregation/analysis

nodes) to match the features of the current topology in a trans-

parent way. Further, the above mentioned works do not address

issues related to the communication and transfer of information

among monitoring agents. In this work we aimed at filling such

a gap, by proposing a scalable group communication system

capable of (i) dynamically adapt at run-time the operations

performed by single nodes in the monitoring framework (ii)

marshaling the communication among a group of monitoring

agents, thereby effectively realizing a distributed cache of the

global network state that can exploited in order to implement

distributed/autonomic/in–network management solutions.

A large set of protocols exists to support network and network

devices management. Common solutions include SNMP [8],

ICMP [13], netconf [14], and capwap [15]. Most of these

protocols have been designed around a centralized architecture.

Accordingly, all network nodes run an information gathering

process which responds to queries coming from a centralized

management entities. When a problem is recognized, the running

process may send alerts to some (predefined at deployment

time) management entities. Upon receiving these alerts, the

management entities are programmed to react by taking appro-

priate actions (e.g., operator notification, event logging, system

reboot/shutdown, etc.). A Distributed Architecture for Monitoring

Mobile Networks (DAMON) is introduced in [16]. DAMON

relies on agents within the network to actively monitor network

behaviour and to send this information to data repositories.

DAMON’s generic architecture supports the monitoring of any

protocol, device, or network parameter. In [17], the authors

propose a novel monitoring framework capable of dynamically

tuning the granularity of the data collection procedures according

to some observed events (e.g. threshold crossing). Albeit showing

adaptive characteristics from a data gathering perspective, the

proposed systems still relies on centralized storage and process-

ing of information. In contrast to the aforementioned works, our

approach relies on a fully distributed repository to maintain the

global network state and to make it available to all the nodes

running network management tasks.

An approach similar in spirit to ours is the one presented

in [18]. In this paper, the authors present a decentralized

autonomic network management solution where management

decisions are taken by each node autonomously, based on its

local view of the network and on the knowledge obtained from

its one–hop neighbours. A central authority is used to enforce

global policies and constraints. OBELIX improves the network

monitoring part of this work by delivering a platform where each

node’s participation in the monitoring efforts (i.e. its role) can be

dynamically changed at run–time to adapt to changing conditions

(e.g., addition of new nodes in the network, nodes becoming

unreachable due to faulty links etc.).

III. REQUIREMENTS AND DESIGN PRINCIPLES

A. Monitoring Framework Requirements

The OBELIX framework has been designed around the fol-

lowing set of requirements:

• Flexibility and adaptivity in the allocation of monitor-

ing tasks. Different network scenarios and topologies may

require different setups of the monitoring infrastructure.

Nodes may just provide information on locally measured

variables or, instead, aggregate information gathered from

nearby nodes. This can depend on either the amount of

available resources (storage, computing) or on the node’s

location in the network topology. As in the wireless domain

network conditions and topology may change over time (due

to, e.g., node/links faults, etc.), the monitoring framework

should be able to automatically adapt at run–time the

allocation of tasks to devices.

• Efficient spatial reuse. The monitoring framework should

make an effective use of the available network resources. In

particular, it should avoid overloading certain portion of the

networks and should evenly distribute the signalling traffic.

• Robustness and resilience. The monitoring framework shall

be robust with respect to node or link failures. In particular,

the availability of information with global scope should be

preserved in spite of failures of the nodes holding it. No

single point of failure should be present in the system.

Further, the system should possess self-healing properties,

being able to automatically recover from the failure of

nodes. This means that the monitoring system should be

able to reconfigure itself automatically in order to restore

correct operations once failures have been detected.



• Ubiquitous network management. Network administrators

should be able to both monitor and manage the network

from anywhere using technologies such as an SNMP–

compliant network management software or through a Web

interface. This implies the ability to retrieve from any point

in the network information on the whole network status.

The design principles derived from the above requirements are

presented in the following subsections.

B. Monitoring Roles

OBELIX supports different levels of participation in the mon-

itoring efforts by the nodes in the network. Two main tasks are

envisaged:

• Information gathering. Monitoring agents (referred to also

as Taps in the remainder of the paper) running within a node

gather the local network state either by sniffing the traffic

flow in their neighbourhood (passive information gathering)

as well as by performing on-demand/periodic measurements

(active information gathering).

• Information analysis. The local network state information

gathered by the Taps is periodically sent to a set of man-

agement entities (referred to also as Sinks in the remainder

of the paper), where it is stored to maintain a global view

of the network and analysed in order to assess the arising

of possible risk situations.

Information gathering and information analysis represent sep-

arate yet not mutually exclusive functionalities. Any node in the

network can support a single functionality, both, or none at all.

In the latter case, information about the state of a network device

can only by inferred through passive sniffing from neighbouring

Taps. It is worth noticing that, for the sake of brevity, this last

network configuration has not been analyzed in this work.

C. Node-Level Autonomy

In OBELIX nodes possess autonomy at two levels. First,

nodes running information gathering tasks periodically send the

detected changes in the monitored parameters to the relevant

Sink. This ’push-based’ approach contrasts with the polling-

based mechanisms used in the vast majority of network mon-

itoring solutions (where active delivery of messages by Taps is

considered only for warning/alarm messages).

Second, nodes may autonomously decide which role they

should play in the monitoring framework, i.e., whether they

should act as Sink or Tap. In particular, Taps can “upgrade”

themselves to the Sink role whenever there is no Sink available

within a given distance. Such a mechanism is used to both

obtain efficient spatial reuse as well as to ensure that the overall

monitoring framework configuration matches well changes in the

network topology.

D. Support of Different Monitoring Configurations

OBELIX supports the following configurations:

• Centralized. Collection of the network state is done by a sin-

gle network element. It implements both Information Gath-

ering and Information Analysis functionalities; the other

nodes in the network implement only Information Gathering

functionalities. Such an approach is conceptually equivalent

to an SNMP-based network management architecture, where

a single network element periodically polls network devices

and revives alarms and events.

• Fully distributed. Collection and analysis of the network

state is done by every node in the network. Such an approach

effectively creates a distributed repository holding the global

network state information, where every node has a global

knowledge of the network. While delivering the highest level

of resiliency to network failures, this setup is characterized

by high signaling overhead, as the information collected

must be circulated among all nodes.

• Hybrid. Only a subset of network nodes implement the

information analysis functionality, i.e. the Sinks. Nodes

implementing Information Gathering functionalities, i.e. the

Taps, are organised into clusters. In this configuration, Each

cluster is composed by a variable number of Taps and one

Sink, which acts as cluster head. Sinks have a complete

knowledge about the state of the nodes in their cluster,

while information about other clusters is limited to Global

Managed Objects.

E. Management Dashboard

A management dashboard shall allow network administrators

to both monitor and manage the network from anywhere using

just a Web browser. Such Dashboard provides the network

administrator with a synthetic representation of the network status

in order to enable quick and efficient troubleshooting of critical

situations. Retrieval of information encompass appropriate look-

up and routing functionalities, in order to ensure that, through

the dashboard, information on any node can be accessed (and not

only that directly available on a Sink). In other words, request

for information coming from the dashboard should be resolved

and routed to the Sink where such information is present. In

order to provide backward compatibility with existing network

management systems, an SNMP interface is also supported.

IV. OBELIX SYSTEM ARCHITECTURE AND PROTOCOLS

A. System Model and Architecture

The general model of a wireless mesh network is illustrated

in Fig. 1. We can identify the following logical roles:

• Routers. They build and maintain the multi-hop wireless

backhaul by establishing wireless links between nodes.

• Gateways. They interface the WMN with another network,

typically the Internet.

• Access points. They provide wireless connectivity to the

end-users’ clients.

• Clients. They are used by the end-users to gain access to

the Internet.

OBELIX builds a monitoring overlay in the network, whereby

physical network devices are associated to a role that defines

the monitoring functionalities they perform. The resulting system

architecture is reported in Fig. 2. We define two logical roles

played by nodes in the monitoring framework: Taps and Sinks.2

As described in the previous section, Taps implement information

2With a slight abuse of terminology, we define by Tap (respectively: Sink)
both the software agent performing the information gathering (respectively: in-
formation analysis) functionalities as well as the node running the corresponding
software agent.



Fig. 1: A wireless mesh network: physical topology and logical

roles of devices (clients, routers, gateways).

gathering functionalities, while Sinks implement information

analysis functionalities. At bootstrap, Taps selects one Master

Sink for their normal operations and a number of Slave Sinks

to be used if the Master Sink fails. During its normal operations

each Tap is always associated to at least one Sink.

The network-level parameters and quantities monitored by a

Tap are termed managed objects. Taps periodically send informa-

tion about their managed objects (e.g., routing tables) to the Sink

node(s) they are associated to. Such information is structured as

{key, value} pairs, where:

• the key uniquely identifies the managed object;

• the value holds the actual value of the managed object.

Managed objects are defined as global or local by means

of a configuration file. The latter is used to identify pieces of

information that have limited scope, e.g. the number of bytes

transmitted over an interface. The former identifies pieces of

information that have a network-wide scope, such as, e.g., the

link quality metrics, the characteristics of the radio interfaces

available, the hostname and the geographical position of the

network device (whenever available).

In order to ensure robustness and availability of information

in spite of possible nodes’ failures, two mechanisms are encom-

passed. First, Taps can be associated to more than one Sink

allowing monitoring information to be stored at multiple loca-

tions. Among the Sinks a node is associated to, one is denoted as

Master Sink, while the other ones are termed Slave Sinks. Second,

information on global managed objects is replicated on all Sinks.

The Master Sink is responsible for handling the replication of the

global information coming from the Taps associated to it.

Sinks periodically broadcast a beacon to advertise their pres-

ence. This beacon is flooded across the network by Tap nodes

allowing all nodes to have an updated knowledge on the Sink

nodes available, and on their distance from them (in terms of

number of hops or some other link quality metric supported by

the underlying routing protocol).

In line with the design principles outlined above, decisions on

which role shall be played is chosen at run–time by each node.

By default, nodes play the Tap role only. If no Sink is available

within a given distance, the node may decide to “upgrade” itself

to the Sink role. No explicit downgrade of nodes from Sink to

Tap is foreseen. The details of the association process will be

described in the following subsections.

B. OBELIX Software Architecture

The building blocks of the OBELIX framework and their

relationships are sketched in Fig. 3.

Fig. 2: The OBELIX system architecture: roles played in the

monitoring overlay (Taps, Sinks) and their mapping to the

physical network topology.

The Tap is a software process running in each managed device.

A Tap has knowledge of the local (node-specific) parameters to

be monitored. Domain-specific information (e.g. routing tables,

link status, etc.) is collected by specialized plugins, termed

Backends, and presented to Tap using a protocol agnostic repre-

sentation. In Fig. 3, two possible routing protocols (OLSR and

WING) are illustrated. The Tap process periodically sends the

information collected to the Sink(s) it is associated to. The Tap

also includes means to run measurement campaigns, in the form

of components (in the figure, ping and iperf plugins are

represented), that can be triggered by means of control messages

coming from Sinks for actively monitoring the network status.

The Sink is a software process running in a subset of the

nodes composing the network. As depicted in Fig. 3, Sinks

gather information from the Taps associated to them, store

and analyse it. Information coming from the Taps and marked

as having global scope is replicated across all Sinks in order

to offer robustness against node’s failures. By means of this

replication process, Sinks effectively build a distributed base of

monitoring information.

The following types of messages are used:

• SINK_HELLO: messages broadcasted by Sink nodes to

signal their presence. SINK_HELLO messages are flooded

across the network by Tap nodes. This message also con-

tains the number of Tap currently associated to the Sink

broadcasting the message.

• TAP_UPDATE: messages sent by a Tap to the Sink(s) it

is associated to, containing information on the monitored

object (in the form of changes with respect to the previously

communicated values).

• SINK_UPDATE: messages exchanged among Sinks con-

taining updated values of the global managed objects.

• SINK_ASSOCIATE: association request sent by a Tap to a

Sink node.

• SINK_ASSOCIATE_ACK: positive reply sent by a Sink in

response to an association request.

• SINK_ASSOCIATE_NACK: negative reply sent by a Sink

in response to an association request.

Every sink has an HTTP interface through which a web-based

management dashboard can access network information. This



Fig. 3: System Architecture: Taps, Sinks and their interactions.

feature relies on the ability to retrieve, from any Sink in the

network, information on any device in the system. This implies,

in turn, the ability to look-up information, referring to a given Tap

and having local scope, by redirecting the query (coming from

the dashboard and injected at a given Sink) to the Sink managing

that given Tap. An SNMP interface is provided in order to enable

interoperability with standard network management systems.

C. Algorithms and Protocols

In this subsection we provide a detailed description of the pro-

cedures and algorithms implemented by the OBELIX monitoring

framework. They can be conceptually grouped into three main

areas, namely autonomic role selection, data dissemination, and

data look-up.

1) Autonomic Role Selection: This set of mechanisms covers

the bootstrapping phase of a node, including procedures for sink

discovery, association and upgrade.

As outlined in the previous subsection, nodes in the network

autonomously choose their role in the monitoring task. The goal

is to build a monitoring overlay where Sinks are uniformly

distributed across the network and where any Tap is not too far

from its Master Sink (i.e., no more than a given number of hops).

If more than one Sink satisfies this criteria, the Tap chooses the

Sink with the lowest number of Taps associated to it (improves

load balancing). We denote by DTH the maximum distance from

a Sink.

Two operating modes for sink discovery are supported:

• Proactive. Sink discovery is based on a multi–hop bea-

coning infrastructure. Sink nodes broadcast their presence

via SINK_HELLO messages; Tap nodes receiving such

messages forward them, so that newly arrived nodes can

gather information on the current availability of sinks to

associate to. This approach is robust and works well in

volatile environments.

• Reactive. Sink discovery is initiated by the newly arrived

node. This approach is faster to select the Master Sink, but

could lead to instability in rapidly changing networks.

The two operating modes are not mutually exclusive. In an

OBELIX-managed network, all nodes must support the proac-

tive operating mode. Upon this basic functionality, the reactive

operating mode can be implemented in order to speed-up the

bootstrap procedure.

Upon discovery of a suitable Sink node, a Tap sends a request

for association; once this is acknowledged by the Sink, the Tap

can start transmitting its network state updates. Each Tap also

can also select one (or more) Slave Sink(s) in order to provide

enhanced resiliency to nodes failures. In the latter case, network

state updates are still sent by the Tap to its Master Sink which,

in turn, forwards them to the Slave Sink(s).

When a Tap node dies, no re-configuration is required. When

a Sink node dies, the associated Tap nodes, by noticing that

the update messages sent have not been acknowledged, tries to

associate to the closest available Sink. If none of them is available

within DTH , the node –after a random back-off introduced to

avoid collisions– promotes itself to Sink.

The pseudo–code for the autonomic role selection procedures

is reported in Alg. 1. For the sake of simplicity, the interactions

with Slave Sink(s) are not reported.

Algorithm 1 Autonomic role selection procedure.

1: Node.startTap()
2: Node.broadcastSinkDiscovery()
3: DiscoveryTimeout.start()
4: while DiscoveryTimeout.notExpired() do

5: if Node.receive(SinkHello) then

6: KnownSinks.add(SinkHello)
7: end if
8: end while

9: KnownSinks.sortByMetric()
10: for Sink in KnownSinks do

11: if Sink.getMetricFrom(Node) > DTH then
12: Node.sendSinkAssociate(Sink)
13: SinkAssociateTimeout.start()
14: while SinkAssociateTimeout.notExpired() do
15: if Node.receive(SinkAssociateAck) then

16: Node.setMasterSink(Sink)
17: Break()
18: end if
19: end while

20: if Node.notHasMasterSink() then
21: Sink = Node.startSink()
22: Node.setMasterSink(Sink)
23: end if

24: end if

25: end for

2) Data Dissemination and Replication: In order to improve

both spatial reuse and the resilience of the monitored information,

the global network view maintained by the Sinks shall be prop-

erly disseminated and replicated across the network. In particular:

1) Network state updates generated by a Tap are delivered to

the Sink(s) it is associated to. As Taps tend to associate

to close-by Sinks, efficient spatial reuse is achieved. The

value of managed objects is checked periodically by the

Tap. Upon detection of a change, an update is sent to the

Master Sink.

2) Network state updates received by a Sink and carrying

global managed objects are disseminated to the other Sinks

in the network (improving information availability). This

allows the network administrator to access global managed

objects for any Tap in the network directly from the Sink

it connects to. On the other hand, accessing local managed

objects requires the query to be redirected to the Sink that

is currently managing the information, as described below

(“Data Look-up”).



3) Network state updates received by a Sink and carrying

Local Managed Objects are replicated on Slave Sinks

(improving resilience). The rationale behind this approach

is that if a Sink goes off–line its cluster of Taps is likely

to be re–distributed among the closest Sinks.

The pseudo–code for the data dissemination and replication

procedure is reported in Alg. 2.

Algorithm 2 Data dissemination and replication procedure.

1: if Node.isSink() then
2: Node.connectToAllKnownSinks()
3: end if

{Tap’s control loop}
4: while True do
5: Node.Wait(UpdatePeriod)
6: for Object in ManagedObject do
7: if Object.isChanged() then
8: Node.sendTapUpdate(Node.getMasterSink())
9: end if

10: end for

11: end while
{Sink’s control loop}

12: while True do

13: if Node.receive(TapUpdate) then

14: Node.updateRepository(TapUpdate)
15: if TapUpdate.isGlobal() then
16: Node.sendUpdateToAllKnownSinks()
17: end if
18: else if Node.receive(SinkUpdate) then

19: Node.updateRepository(TapUpdate)
20: end if

21: end while

3) Data Look-up: When asked for the value of a particular

managed object, a Sink shall either query the local repository

or it shall identify the Sink currently managing that object and

route the query accordingly. A managed object can be found in

the local repository of a Sink only in two cases:

1) The managed object is provided by a local Tap, i.e. a Tap

that is associated to the given Sink.

2) The managed object is provided by a remote Tap but is

marked as global, so it is replicated to all the Sink.

Otherwise, the query has to be routed to the appropriate Sink.

As the association of Taps to Sinks is a global information, any

Sink knows to which Sink the required Tap is associated to, and

can therefore forward the request accordingly.

V. PERFORMANCE EVALUATION

In this section we aim at assessing the performance of the pro-

posed architecture and protocols. A prototypical implementation

of OBELIX, including all the features presented in the previous

sections, has been developed and extensively tested in a 15 nodes

wireless network testbed.

A. Implementation Details

The OBELIX framework is implemented in Python, a

lightweight interpreted programming language. Within a single

OBELIX–monitored node, up to three distinct software processes

can be active at any given time: the sink, the tap, and the

communication channel. All nodes in the OBELIX overlay

run the communication channel process. Nodes that are also

publishers and subscribers of monitoring information will also

run the tap and the sink processes, respectively. A node can

implement only data dissemination functionalities by running

just the communication channel process. An SNMP–complaint

interface is made available by communication channel in order

to provide backward compatibility with existing network man-

agement systems. Standard TCP and UDP sockets are used to

enable communications among processes.

B. Experimental Settings and Configuration

The software prototype has been experimentally evaluated

over a real–world IEEE 802.11–based mesh testbed consisting

of 15 multi–radio mesh routers deployed across three floors of

a typical office building. Mesh routers are built around three

different hardware platforms, namely the PCEngines ALIX 2C2,

the PCEngines WRAP 1E and the Gateworks Cambria GW2358-

4. Each node is equipped with two IEEE 802.11a/b/g wireless

interfaces (Atheros chipset) with RTC/CTS disabled. Routers

exploit OpenWRT as operating system. Mesh connectivity is

provided by the WING routing protocol [19].

C. Evaluation Methodology

We run two types of test, aimed at estimating the traffic

generated by the monitoring framework and the resilience of the

system, respectively. In the experiments all messages exchanged

between OBELIX entities were traced by logging the traffic

handled by the communication channel process at each node. Log

files were then collected and centrally merged and subsequently

analysed.

1) Signaling Overhead: In this part we wanted to estimate

the amount of signalling traffic generated by OBELIX. Each run

had a duration of 4000 seconds. Different runs were performed

for different values of the DTH parameter, taken in the set

{0, 1, 2, 3, 4, 10}. The first value corresponds to a situation in

which all nodes run the Sink process. The last value forces the

presence of one single Sink node.

2) Resilience: In order to assess the resilience of the system,

we simulated failures of Sink nodes. At bootstrap, Sink nodes

start a timer, uniformly distributed in the range [180, 240] s.

When the timer expires, all monitoring processes (Tap, Sink

and Communication Channel) are killed. After 90 s, the Tap

and Communication Channel processes are re-started, and the

node enters the bootstrapping procedure. The recovery time

was measured as the interval between the instant at which

the Sink goes down and the instant at which all the Taps are

again associated with another Sink. As the failure patterns are

asynchronous, it may happen that at a given point in time multiple

Sinks are failed.

D. Results and Comments

In order to get a qualitative insight into the behaviour of the

overall system, we first reported the signalling traffic generated

as a function of time for a specific run of our experiments. We

considered the case of DTH = 3 hops. The results are plotted in

Fig. 4. In the plot we can identify the contributions of the various

types of traffic. First, there is an initial traffic burst, which is

due to initial TAP_UPDATE messages. At the beginning, indeed,

Taps send the complete set of data to the Sink they are associated

to. In the subsequent updates, only the values that changed are

sent, leading to a much lower traffic. After the initial burst,
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Fig. 6: Average traffic generated by OBELIX as a function of the DTH parameter value grouped by message type.
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Fig. 4: Traffic generated by the monitoring framework as a

function of time, DTH = 3.
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Fig. 5: Average traffic generated by OBELIX as a function

of DTH . Circles indicate values averaged over 60s intervals,

continuous line indicates the mean value and the 95% confidence

intervals.

the traffic shows a floor, which is mostly due to SINK_HELLO

messages. The spikes that are present are due to the replication

of information among sinks (SINK_UPDATE messages). The

behaviour is similar for all other cases considered. (Of course,

for the runs where only one sink was present no SINK_UPDATE

traffic was present.)

In order to assess the impact of the number of sinks, we

varied theDTH parameter value. The results, reported in terms of

average traffic generated, are reported in Fig. 5. Out of the 4000
s of log files, we removed the first 200 s (in order to get rid of the

initial Tap update traffic) and the last 200 s (to avoid issues related

to the flushing of pending messages). For each run, the traffic

generated over intervals of 60 s was considered. The measured

values are reported in the figure as circles. We also computed the

mean value and the 95% confidence interval, and reported them

in the figure as continuous line. As it may be seen, the average

traffic generated tends to decrease with the value of DTH .

In this case, indeed, the number of sinks decreases, together

with the need for replicating data across sinks. The variation is

hence mostly due to the reduction of the SINK_UPDATE traffic.

With values of DTH ≥ 2, the average traffic generated by the

monitoring framework is below 10 KB/s. This shows the ability

of the proposed solutions to make an efficient use of the wireless

medium by effectively limiting the overhead traffic associated to

the monitoring infrastructure. Further, as the number of sinks

(which inversely relates to the value of DTH ) is an indicator of

the robustness of the system, the graph can be used to understand

the robustness/performance tradeoff offered by our solution.

We further analysed the composition of the traffic generated,

classifying it on the basis of the type of message. Results are

reported in Fig. 6. The vast majority of the traffic is gen-

erated by SINK_UPDATE messages, which are used for data

replication and dissemination. The amount of traffic generated

by TAP_UPDATE messages is not correlated with the DTH

parameter value, in that those messages are always generated

by each Tap and sent to the closest Sink (except in the extreme

case of DTH = 0 where every node is a Sink). Finally, the

traffic carrying SINK_HELLO messages decreases with DTH

parameter. Indeed, the higher the number of hops, the lower

the number of Sinks in the network and thus the amount of

SINK_HELLO messages generated by the beaconing infrastruc-

ture. The conclusion that these results allows us to draw is

twofold. On the one hand, the amount of overhead generated by

the monitoring overlay can be precisely controlled by the network

administrator by appropriately setting the DTH parameter. On

the other hand, the overall amount of traffic generated by the

monitoring overlay ranges from roughly 19 KBytes/s in the worst

case (DTH = 0) down to 2.5 KBytes/s when only one Sink is

present (DTH = 10).

Concerning the resilience tests, we first report in Fig. 7 a plot

of the number of Sinks present in the network at any time instant

for the case DTH = 3. It can be noticed that, with the settings

chosen, in a number of time instants no Sinks are present in

the network. As such, the case represented here could well be

considered a worst-case for a real system, where node’s failures

are expected to be rather rare events.
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time, DTH = 3 hops.
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Fig. 8: Box plot of the recovery time as a function of the DTH

parameter value.

The results in terms of monitoring framework recovery time

are reported, using a box plot3, in Fig. 8 for various values

of the parameter DTH . As it may be seen, the recovery time

turns out to be rather insensitive to the value taken by DTH .

The presence of extremely large values (300 s or more) in some

runs is due to situations in which all the Sinks in the network

go off-line at the same time. In such a case all Taps in the

network try to associate to the other entries in their list of known

Sinks. Each attempt implies the expiration of a timeout of 15 s.

After getting through all known Sinks without getting a positive

reply, a random back-off (uniformly distributed in [0, 80] s) is

generated before promoting to the Sink state. The joint effect

of these timers is the cause of such high values for the recovery

time. The setup of timers’ value clearly represents a critical issue

for OBELIX efficiency. Using lower values would speed up the

recovery process, but may lead to instabilities in the network

bootstrap phase.

VI. CONCLUSION

In this paper we have introduced an architecture and a set of

protocols for building a distributed network monitoring frame-

work. Design choices have been made to accommodate the pe-

culiarities of wireless multi-hop networks, in terms of adaptivity,

robustness and efficiency requirements. The proposed framework

3Bottom and top of the box represent the lower and upper quartile, respectively.
The band within the box represents the median. The ends of the whiskers repre-
sent the most extreme data points not considered outliers. Outliers, represented
with a cross, are identified as points whose distance from the lower/upper quartile
exceeds 1.5 times the inter-quantile range.

has been prototyped and experimentally evaluated on a 15–
nodes wireless mesh network. Results show that the framework

generates a limited amount of traffic, and that the system is able

to consistently recover from node failures. The results can also

be used to gain insight into the traffic overhead/robustness trade-

off inherently present in our design (by means of properly tuning

the DTH parameter).

Directions for future research include the adoption of a more

information–centric approach, whereby the whole monitoring

framework becomes address-agnostic, and the use of optimised

mechanisms for handling the replication of global monitor-

ing information across sinks, leveraging —in a cross-layer

perspective— knowledge on the underlying wireless technology

employed.
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