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Abstract—Connected and automated vehicles currently lever-
age on-board resources to implement autonomous and assisted
driving operations. Such functionalities, which are characterized
by tight latency demands, require significant processing resources
and can generate a considerable amount of data. Cloud comput-
ing is considered the one-stop solution for executing computation-
ally intensive workloads. However, accommodating autonomous
and assisted driving requirements using a centralized cloud
computing platform is not always feasible due to the latency and
reliability constraints they impose. In this paper, we introduce
a multi-access edge computing platform suitable for offloading
certain autonomous and assisted driving tasks to the edges of
the network. We also illustrate how both paradigms (centralized
and edge cloud computing) can coexist complementing each other
in the challenging task of supporting autonomous and assisted
driving, thus opening up new horizons for connected vehicles, for
which service instantiation and migration needs to be seamless
due to its impact on road safety.

Index Terms—5G, MEC, Cloud Computing, Autonomous and
Assisted Driving, Computer Vision.

I. INTRODUCTION

The evolution of the automobile industry is heralding the
dawn of one of the most relevant transformations in our society
in the search for higher safety, efficiency and user experience.
While self-driving vehicles seemed a science-fiction scenario
some years ago, they have currently become a tangible re-
ality. Despite their driverless capabilities, these autonomous
vehicles have introduced the need to interchange information
to cooperate and ensure driving safety in what is known as
Cooperative, Connected, and Automated Mobility (CCAM).

Vehicle to Vehicle (V2V), Vehicle to Infrastructure (V2I)
and Vehicle to Everything (V2X) are just a few examples
of models that enable vehicular intercommunication. While
ITS-G5 is currently the main option for vehicular connectivity,
its short range and low performance makes it unsuitable for
many applications [1]. By contrast, a variety of advanced
features make 5G the key to success of the smart mobility
ecosystem. A prime example is the support for Ultra-Reliable
Low-Latency Communication (URLLC), a crucial condition
for mission-critical applications with stringent performance
and reliability requirements, as is the case of CCAM appli-
cations. As a matter of fact, specifications for Cellular-based
V2X (C-V2X) have been already included in Release 14 [2].

Autonomous vehicles generate enormous amounts of data,
e.g., sensor data and video streams to recognize other vehicles,

road conditions and external elements such as lanes, and
pedestrians [3]. Many other use cases include self-contained
operations such as emergency braking and remote driving,
and cooperative operations such as lane merging or assisted
overtaking, where it is vital to process data from a global
point of view. In this context, computer vision has become
an irreplaceable technology [4]. At present, however, only
high-end vehicles can cope with the significant computing
power required using on-board resources, relegating the net-
work to infotainment applications.

Cloud computing has been envisioned by automotive and
communication industries as an option to offload storage
and compute-intensive applications for battery-constrained de-
vices. However, accommodating automotive services in the
cloud may make latency an unbearable challenge. This is
rather mitigated by Multi-access Edge Computing (MEC) by
offloading such tasks to the edges. Nevertheless, given the lim-
ited resources, both paradigms may coexist and complement
each other, opening up new horizons for connected vehicles,
for which service instantiation and migration needs to be
seamless to ensure road safety. This computing combination
has been analytically studied in the past [5], [6], but the latency
constraints imposed by these services are usually overlooked.

To delve with these limitations, the contribution of the work
is three-fold. First, we present a Software-Defining Network-
ing (SDN) architecture for 5G-enabled vehicular networks
compliant with the European Telecommunications Standards
Institute (ETSI) MEC model. This design allows seamless
application instantiation on either the network edge or a remote
cloud on the basis of low-latency and performance require-
ments. Second, we implement a computer vision application
for autonomous driving enabling capabilities on lane line de-
tection and on-road object recognition. Finally, we perform an
experimental evaluation showing the significant improvements
of combining MEC and cloud computation offloading in the
context of connected vehicles.

The rest of the paper is outlined as follows. Section II
discusses the related work. Section III describes the platform
and the offloading model proposed for 5G vehicular networks.
The predictive model for autonomous driving is presented in
Sec. IV. Section V analyzes the system performance for vari-
ous offloading models. Finally, Sec. VI draws the conclusions.



II. RELATED WORK

In recent years, computation outsourcing has been drawing
increasing attention to reduce data processing time. This
has been proved particularly necessary for resource-limited
mobile devices and networks, where it is difficult to cope
with computationally demanding applications like Augmented
Reality (AR) and automation [7].

In the case of vehicular networks, different solutions on
the integration of connected vehicles within the cloud-assisted
paradigm have been proposed [8]. In this respect, in [9] the
data rate of a car-to-cloud communication model is evaluated
via simulation, where vehicles transfer sensor data to a remote
cloud. However, it does not perform any autonomous driving
operation beyond the data analysis. Similarly, [10] intro-
duces a pricing-based matching algorithm by leveraging fog
computing for computation offloading in low-latency massive
vehicular connectivity. Deeper attention to the automotive
requirements in 5G networks is paid in [11], which relies on
SDN and OpenFlow features in order to associate vehicles to
distributed cloud servers based on mobility patterns, experi-
enced quality and speed.

Despite the benefits of backbone offloading, the main con-
cern resides on the overhead induced. In this respect, MEC is
gaining increasing reputation to solve this problem by placing
resources closer to the vehicles. This fact is reflected in a
huge body of research [12], [13], [14], and standardization
from entities such as ETSI [15] and the 5G Automotive
Association (5GAA) [16]. In the specific scenario of V2X
communications in 5G networks, this approach has been
already discussed in detail, as it is the case of [17], which
presents several MEC models shared among telecommunica-
tions and automotive stakeholders, and outlines the technical
requirements in both access and core network.

Given the importance of ensuring ultra-low latency and fast
response, partial offloading models considering local, MEC
or cloud resources have been also explored. This requires
advanced features in the mobile network control plane in
order to accommodate changes across computing resources
transparently, and an agnostic architecture capable of disposing
the traffic from the data plane regardless of such changes [14].
In this respect, [6] introduces a scheme of compressed of-
floading combining local and MEC computing on the basis of
available resources. A similar idea is analytically presented
in [5], which also considers neighboring vehicles for task
offloading. Nevertheless, most of the current works are still in
an early stage, or have been validated via numerical analysis or
simulation, making it difficult to evaluate on real deployments.

In order to make CCAM a reality, communication technolo-
gies need additional enablers to process the huge amounts of
data generated from the road and the vehicles. In this respect,
computer vision techniques, and mathematical and Machine
Learning (ML) models, are mostly used for this task. How-
ever, research on on-road recognition usually overlooks the
existing complexities in the communication between vehicles
and network infrastructure [18], [19], [20]. Moreover, most of

Fig. 1. High-level network view of the system architecture.

the works are simulation-based, therefore not considering their
applicability to real environments.

This work, in comparison to the aforementioned approaches,
puts together a 5G network architecture with ETSI compliance
capable of offloading compute workloads to the edge or the
cloud, with an experimental computer vision application that
is able to fulfill a significant set of relevant use cases in the
autonomous driving scenario. Moreover, the effectiveness of
the framework is experimentally evaluated and validated.

III. SOFTWARE-DEFINED PLATFORM FOR 5G NETWORKS

A. System Architecture

The system architecture introduced in this work, and shown
in Fig. 1, presents two clear dimensions. Depending on the
elements’ location, Radio Access Network (RAN), network
edge, and core network are differentiated, while regarding the
functionality, two layers are distinguished, namely infrastruc-
ture, and management and orchestration layers.

Infrastructure Layer. Comprises the radio access nodes,
which are connected to an Ettus Research Universal Soft-
ware Radio Peripheral (USRP) b210 using srsLTE, since no
open-source 5G stacks are currently available. Radio nodes
are connected to a Mobile Edge (ME) Host following a
bump-in-the-wire approach [21]. The Evolved Packet Core
(EPC) is implemented using nextEPC, and connected to a
remote cloud. Complex computation tasks can be offloaded
to both the ME Host and the cloud.

Management and Orchestration Layer. Covers the func-
tions of the MEC Platform Manager and the Virtual Infras-
tructure Manager (VIM). LightMANO [22] plays the role
of MEC Platform Manager, which has a global view of the
ME Host, the available resources and the topology. This
entity is responsible for deploying the network services and
for providing orchestration functionalities. It handles requests
from Operational Support Systems (OSS) for instantiating
applications and, upon availability, it asks the VIM to allocate
the virtual infrastructure and deploy the services. Within the
VIM, Kubernetes is the container-based infrastructure man-
ager, while the SD-RAN 5G-EmPOWER controller focuses
on the RAN aspects [23].



Fig. 2. ME Host architecture.

B. ME Host Deployment

The ME Host is based on a lightweight design leveraging
virtualization technologies such as Docker containers and
Click processes [24]. Figure 2 depicts the internal configu-
ration of this entity. As can be observed, the traffic routing
capabilities are provided by Open vSwitch, which is in turn
operated by an OpenFlow controller managed by the SD-RAN
controller through an intent-based interface. Conversely, a
Click-based process, named Light VNF (LVNF) agent, an-
alyzes the traffic between the radio access nodes and the
EPC. The OpenFlow controller and the LVNF agent are
executed as Docker containers, while other applications can
run in additional containers or in external machines connected
physically to the ME Host, thus ensuring scalability.

The traffic between the radio nodes and the EPC is inter-
cepted by Open vSwitch for further processing by the LVNF
agent as follows: (i) control plane traffic, which is encapsulated
using the SCTP protocol, is steered to port vp0, (ii) user plane
traffic, which is encapsulated in GTP packets, is forwarded
to port vp1, and (iii) IP traffic is sent through port vp2.
The SCTP packets in port vp0 are used to gather context
information from the User Equipment (UEs) and the GTP-U
tunnels created to exchange traffic between such UEs and
the core network. Later, these packets follow their path in
the network. Conversely, GTP packets incoming to port vp1,
in turn, are decapsulated using the aforementioned context
information, and the underlying IP packets are delivered from
port vp2. If the packet destination is one of the Apps within
the ME Host, the Open vSwitch steers the IP packet to
the corresponding virtual or physical port of such an App.
Otherwise, they are redirected again to port vp2 of the LVNF
agent along with any other traffic originated. This IP traffic is
then (re-)encapsulated in GTP packets and sent from port vp1,
from which they can reach the mobile network.

As can be seen, the stateful decapsulation and encapsulation
of GTP packets enables seamless communication between UEs
and any service, regardless of whether it is placed as an App in
the ME Host or in a cloud data center. Additionally, the mon-
itoring of the SCTP traffic allows performing efficient session
and mobility management of UEs. Moreover, these operations
can be performed with no modifications to the protocol stack,
making this solution completely vendor-agnostic.

Fig. 3. Signaling for network service instantiation.

C. Network Service Instantiation

Figure 3 sketches the process to instantiate a network
service. Note that for simplicity the signaling for bearers setup
is omitted. In this scenario, the vehicles ask the OSS to deploy
an assisted-driving service. This request is then forwarded to
the MEC Platform Manager (Serv. Req. message).

Unless indicated otherwise, the Manager instantiates the
service on the ME Host as long as there are enough resources
(known from the MEH Status interchange). This decision
is fed to Kubernetes, which prepares the virtual infrastructure
to allocate the App on a given IP address-port. Then, the
SD-RAN controller sets the OpenFlow rule needed to forward
the traffic within the App (ADD OF rule message), and the
MEC Manager provides the response to the OSS. By contrast,
if the ME Host is saturated, an equivalent process is followed
to deploy the service on the remote cloud.

D. Service Communication Model

Once the service is successfully deployed, traffic from
vehicles containing road data is sent to the IP address-port
provided, as shown in Fig. 4. Such traffic (Proc. Req. mes-
sage) is intercepted by the ME Host, which, after inspection,
checks the OpenFlow rules to determine whether the request
must be handled on the ME Host or forwarded to the core
network. In the former case, the traffic is processed by the
corresponding App, and the obtained output is after encap-
sulated and sent back to the vehicle (Processing Resp.
message). In the latter case, the traffic is reencapsulated and
sent to the cloud for processing, which then returns the output
to the radio node.

IV. ME APP FOR AUTONOMOUS DRIVING

Among all CCAM applications, the lane line detection and
the on-road object recognition algorithms represent the basis of



Fig. 4. Signaling for service communication and forwarding.

autonomous driving. With the aim of showing the capabilities
of the presented platform in the V2X ecosystem, we have
developed a simple application comprising the two aforemen-
tioned algorithms. This application processes the video stream
fed by the vehicle using the OpenCV library, and returns the
corresponding driving directions. The following subsections
describe the details of these two algorithms.

A. Lane Line Detection

Lane line detection allows determining the path and the rel-
ative position of vehicles in the road. Therefore, the accuracy
of this algorithm is key to ensure safe vehicle operation, and to
coordinate the traffic in cooperative maneuvers. Nevertheless,
there are many factors that may hinder this accuracy, such as
adverse weather conditions, worn-out roads, or dirt. It is thus
necessary to process the images to minimize errors.

After applying a Gaussian filter to reduce granularity, the
images are transformed to the Hue, Saturation and Lightness
(HSL) color space to extract the tones of the lane. The
binarization of these pictures and the application of gradient
filters, including Canny, results in the highlighting of the areas
in the images that correspond to the lane lines. To determine
the curvature of the lanes, the picture needs to be perspective-
transformed on the basis of the parameters of the camera.
Finally, the interpolation of the points conforming the lane
lines are grouped and interpolated to estimate the curves. The
result of this process can be seen in Fig. 5a.

Once the vehicle has been positioned in the lane, the
problem of determining its path is simplified as the straight
line with slope k equal to the derivative of the lane curves in
the proximity of the vehicle. This straight line, l, is represented
using its general equation:

l (x) = k · x+ b (1)

Let (vx, vy) be the position of the vehicle, and (cx, cy) be
the center of the circular trajectory of the vehicle that passes

(a) Lane line detection. (b) On-road object detection.

Fig. 5. Deployed autonomous driving application.

Fig. 6. Location of the ME Host (green) and the remote clouds (red).

through point (vx, vy), it is satisfied that such a circumference
is tangent to line l if the following condition is met:

(k · cx − cy + b)
2

k2 + 1
= (cx − vx)

2
+ (cy − vy)

2 (2)

On the basis of this equation, it is possible to calculate point
(cx, cy), and thus the radius of the trajectory.

B. On-Road Object Recognition

This algorithm involves the detection of entities within the
view of the vehicle. As in the case of lane line detection,
this algorithm involves some significant challenges, such as
the understanding of text plates and the recognition of non-
regulated signs. For the sake of simplicity, however, the
implemented application only recognizes a limited set of traffic
signs, resulting in the prediction shown in Fig. 5b.

Object classification is performed using the so-called Haar
feature-based cascade classifiers, which have been widely used
due to their ability to detect objects based on the features
extracted from a set of positive and negative images [25]. Once
the model is trained, it can be used off-line. Moreover, due to
the layered modeling of features, the object detection process
can be terminated prematurely, resulting in very low classifi-
cation times. These properties make this classifier suitable for
on-road object recognition.

V. EVALUATION

A. Methodology

To evaluate the scenarios where computation needs to be
offloaded while meeting certain latency requirements, such as
the CCAM scenario, the above autonomous driving application
has been tested under the architecture presented in Sec. III.
In this regard, we measured different performance metrics,
namely latency metrics and application metrics, in three loca-
tions: locally, in the edge, and in the cloud.
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Fig. 7. RTT comparison between MEC and remote cloud in various locations.
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Fig. 8. CPU utilization comparison between local and remote processing for
an increasing number of vehicle requests.

Regarding the latency assessment, we performed ping tests
using ICMP messages to measure the Round-Trip Time (RTT),
i.e., the time taken to receive a response to a vehicle request
without considering any computation time. In this regard,
5 rounds of 1 minute long were performed for each test. In
the case of the cloud, we selected three different locations,
namely Europe, North America, and Asia, as shown in Fig. 6,
while the vehicles and the ME Host were located in Italy.

For the evaluation of the application performance, we used
instances of type c4.4xlarge available at the Amazon EC2
platform, which are composed of 16 virtual CPUs running
on top of Intel Xeon E5-2666 v3 processors at 2.9 GHz, and
30 GB RAM memory. The platform selected as the embedded
controlling system of the vehicle was composed of a quad-core
64-bit ARM Cortex A53 processor running at 1.2 GHz, 1 GB
RAM memory, and LTE connectivity.

The analysis of the scalability of the proposed architecture
in the edge and in the cloud was performed by measuring
the influence of 1, 2, 3, 4, 5 and 10 simultaneous vehicles.
Each vehicle transmitted live video encoded at 1,200 kbps
and 30 frames per second, and received the output from the
application each time a frame was processed.

B. Experimental Results

Figure 7 shows the average results obtained from the latency
evaluation. As can be seen, there is a strong relationship
between the RTT and the distance between the vehicle and
the server. The latency involved by the ME Host is the lowest,
49.2 ms on average, given that it is located at the mobile
edge, midway between the radio access node and the EPC.
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Fig. 9. Computation time per video frame and number of vehicle requests.
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Fig. 10. Total average latency per video frame and number of vehicle requests
in the proposed example scenario.

The latency of the cloud servers, however, is notably larger.
In fact, the RTT is between 2 and 5 times higher. The number
of concurrent vehicle queries also has a small effect on the
latency in those cases in which the server saturates.

Regarding the application performance, Fig. 8 displays the
CPU utilization of the application when executed locally,
and when serviced remotely with respect to the number of
vehicle queries. This utilization has the effect on the per-
frame computation time shown in Fig. 9. As can be seen, the
computation time increases to a larger extent when the CPU re-
sources are exhausted, so the maximum number of concurrent
queries that the server can attend depends on the requirements
of the application. With respect to the memory usage, each
instance uses approximately 162 KB RAM memory, which
is negligible. The most significant conclusion drawn from
these figures is, however, that the remote servers, i.e., the ME
Host and the cloud, provide greater computational horsepower,
and thus significantly lower computation times than the local
processing approach. This highlights the important role of
computation offloading in resource-constrained contexts.

Lastly, Fig. 10 plots the average time required to process
each video frame sent to the application depending on the
number of simultaneous vehicles connected, calculated as the
sum of the RTT and the computation time, in an scenario
where the ME Host and the cloud have different amount
of resources. In particular, in this example we assumed that
the ME Host can allocate 20 c4.4xlarge instances, whereas
the cloud can hold 50 of these instances. With the aim of
presenting a better view of the results, however, the maximum
number of vehicles in the figure has been limited to 250.



As seen in the figure, cloud offloading can result in sig-
nificantly larger delays compared with local processing in
those cases in which the remote servers are located far away
from the vehicles (i.e., USA and Asia). By contrast, cloud
alternatives located closer to the vehicles provide acceptable
latencies (i.e., Europe). It is MEC, however, the only approach
that delivers suitable latencies for delay-sensitive applications,
such as autonomous driving. Nevertheless, it should be noted
that the average latency of the ME Host can be larger than that
of the cloud depending on their respective loads at a given
point in time. In this situation, the MEC Platform Manager
can decide to allocate new requests into the cloud instead of
the ME Host for latency minimization.

VI. CONCLUSIONS

This work aims at lowering the barrier for deploying au-
tonomous and assisted driving applications and services in
MEC environments. To this end, we leverage a lightweight
MEC platform that converges SDN and NFV concepts into
a single solution capable of supporting the tight latency
and reliability requirements of this type of applications. Our
solution builds upon lightweight computing and network-
ing virtualization technologies such as Docker and Click.
A proof-of-concept implementation has been introduced and
validated in a practical use case, namely computer vision
offloading. The results of the evaluation show that it is possible
to use our platform to deploy computer vision applications.
Moreover, this work allows to understand how to distribute
the various elements of an autonomous and assisted driving
application across vehicle, edge, and centralized clouds. As
future work, we aim at extending this architecture by adding
the ability to orchestrate and dynamically offload multiple
service components characterized by different performance
and latency requirements between MEC and cloud.

ACKNOWLEDGEMENTS

This work has been performed in the framework of the Euro-
pean Union’s Horizon 2020 project 5G-CARMEN co-funded
by the EU under grant agreement No 825012. The views
expressed are those of the authors and do not necessarily repre-
sent the project. The Commission is not liable for any use that
may be made of any of the information contained therein. In
addition, this work has been supported by the Spanish Ministry
of Science, Innovation and Universities (RTI2018-098156-B-
C52, FEDER funds), and the Spanish Regional Government
of Castilla-La Mancha (SBPLY/17/180501/000353).

REFERENCES

[1] 5GAA, “An Assessment of LTE-V2X (PC5) and 802.11p Direct Com-
munications Technologies for Improved Road Safety in the EU,” Dec.
2017, White Paper.

[2] 3GPP, “TR 23.711. Enhancements of Dedicated Core Networks Selec-
tion Mechanism (Release 14),” Sep. 2016.
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