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Abstract—Small–cells are rapidly emerging as the mobile oper-
ators' choice to provide additional capacity in current and future
mobile networks. However, in order to fully deliver on their
promises, small–cells need to address severe interference control
and coordination challenges. By centralizing base–band pro-
cessing in large high–volume computing infrastructures, Cloud–
RAN can effectively enable advanced coordination features for
dense small–cells deployments. Unfortunately, Cloud–RAN tight
bandwidth and latency requirements have made optical �ber
the most common solution for the links interconnecting remote
radio heads (RRHs) with the base band units (BBUs), i.e. the
fronthaul. Recent advances in microwave communications are
making wireless fronthauls a viable option especially in dense
urban environments where �ber fronthauls could be too rigid
for accommodating highly dynamic traf�c patterns. In this paper,
we provide a novel formulation for the BBU Placement problem
where BBU pools are placed at the edges of the network, pos-
sibly co–located with macro–cells, and a recon�gurable wireless
fronthaul is used in order to provide RRHs with connectivity. To
the best of our knowledge this is the �rst work to tackle the BBU
placement problem over a recon�gurable substrate network with
mmWave links. We also propose a BBU Placement heuristics, and
we evaluate it using a numerical simulator.

Index Terms—Mobile Networks, Cloud RAN, BBU Placement,
Wireless Fronthaul, mmWave, Mesh Network

I. I NTRODUCTION

Mobile data traf�c has been growing exponentially over the
last few years. Cisco's Visual Network Index shows that the
mobile traf�c increased dramatically in2015, with a growth
ranging from52%(in Western Europe) up to117%(in Middle
East and Africa). Overall mobile data traf�c is expected to
grow to 30:6 exabytes per month by2020, an eight–fold
increase over2015 [1]. This trend is forcing mobile network
operators (MNOs) to perform costly network upgrades in a
time when the average revenue per user is decreasing.

In a traditional mobile network, the radio and base–band
processing units, which compose base stations, are placed
in close proximity. This is done to mitigate the high signal
losses associated with the RF cables that are typically used for
their interconnection. In order to circumvent these limitations
MNOs moved to the Distributed RAN architecture (D–RAN),
where RF cables are replaced with optical �ber and a digital
interface is used to carry the IQ (in–phase/quadrature) signals
between the base–band units (BBU) and the radio elements,
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named Remote Radio Head (RRH). Cloud RAN (C–RAN) has
emerged as a solution capable of reducing the deployment and
operational costs of mobile networks while at the same time
enhancing network capacity, coverage and power consump-
tion. C–RAN [2] achieves such goals by consolidating BBUs
in large high–volume computing infrastructure, named BBU
pools, and by sharing them among multiple sites.

BBU pools can run on a number of general purpose off-the-
shelf servers deployed in one or multiple centralized locations
with virtualization capabilities. This approach seems very
promising to MNOs looking to introduce new services without
impacting all the system components. C–RAN can be used to
cope with spikes in traf�c demand by dynamically deploying
additional BBU pools when and where needed. Furthermore,
C–RAN can improve the experience of users at the edges of
the cell or in dense environment by implementing advanced
Inter-cell interference coordination (ICIC) techniques.

C–RAN main drawbacks lie in the tight bandwidth and
latency requirements imposed on the fronthaul (i.e. the links
interconnecting BBUs with RRHs) where protocols like the
Common Public Radio Interface (CPRI) [3] are typically used
to carry the IQ samples. In fact, being a digital representation
of a very high frequency waveform, this protocol requires very
high data rates; for example a20MHz LTE FDD channel using
a 2x2 MIMO antenna con�guration can result in a CPRI rate
of � 2:5 Gbps. As a result, providing �ber–based CPRI links
for the tens or hundreds of small cells that are expected to be
deployed in dense urban scenarios can simply be not a viable
option for mobile operators. This consideration is made even
more true by the fact that, being characterized by a coverage
radius in the order of hundreds of meters, small cells can suffer
of severe under utilization in case of changing traf�c patterns.

A particularly interesting solutions combining low deploy-
ment and operational costs with the bene�ts of C–RAN
is represented by wireless fronthauling. Recent advances in
microwave communications allow for up to a few Gbps of
bandwidth over short distances (less than one Km) in the E–
band (70� 80 GHz) making it suitable as fronthaul technology
for dense small cells. Moreover due to the short wavelength,
devices operating in the E–band, commonly referred to as
millimeter wave (MMW), can leverage on compact antennas,
allowing to pack several interfaces in a small form factor.

In this paper we formalize and solve a novel BBU Placement
problem where BBU pools are placed at the edges of the net-
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work, possibly co–located with macro–cells and/or distributed
clouds while a recon�gurable MMW fronthaul is used in order
to provide RRHs with CPRI connectivity. The MMW fronthaul
leverages on steerable directional antennas in order to adapt its
topology to different usage scenarios, e.g. to reducing energy
consumption. We formulate the BBU placement problem as an
integer linear programming (ILP) problem and we propose a
placement heuristic namedSWANto solve the problem. To the
best of our knowledge this is the �rst work to tackle the BBU
placement problems over a recon�gurable substrate network
with wireless (MMW) links. Such technology imposes several
constraints that are not found in traditional wired backhauls.
For example, the capacity and the availability of a link depends
on both its length and on previously embedded requests, as
opposed to wired backhauls where the wiring media is the
only constraint to the BBU placement.

The rest of this paper is structured as follows. In Sec. II
we discuss the related work. The substrate network model
and the virtual request model are detailed in Sec. III. The
ILP problem and the heuristic are introduced in Sec. IV. The
numerical results are reported in Sec. V. Finally, Sec. VI draws
the conclusions pointing out future work.

II. RELATED WORK

As mobile networks data traf�c keeps growing, traditional
cellular architectures have become overloaded due to the lack
of core network capacity. Data traf�c growth also substantially
impacts power consumption since most of the power is con-
sumed at evolved Node Bs (around80% as estimated in [4]).
In addition, the baseband resources of current mobile network
operators deployments are not used ef�ciently, since operators
allocate resources to their evolved Node Bs in such a way to be
able to meet peak hour traf�c demand. This means that, due to
variable traf�c pro�les, those resources might be underutilized
across the entire year. One way to overcome these challenges
is to adopt the Cloud–RAN architecture [2], [5], [6], [7].

BBU Placement. Sizeable body of work has been published
on BBU placement and Cloud-RAN technology in recent
years [4], [8], [9], [10], [11]. In [8] the authors propose
a Colony–RAN architecture for cellular systems, which is
able to change the cell layout by dynamically adapting the
connections between BBUs and RRHs according to traf�c
demand, user distributions and user mobility. This architecture
signi�cantly reduces the number of BBUs thanks to statistical
multiplexing effect. An optimization algorithm is presented
in [9] for the BBU Placement problem over Fixed/Mobile
Converged optical networks. The authors formulate an ILP
problem, which ef�ciently calculates the minimum number of
BBU pools taking into account maximum allowed distance
between RRHs and their BBUs. The same authors put forward
an energy ef�cient BBU Placement algorithm in optical net-
works in [4] aiming to minimize the Aggregation Infrastructure
Power. An ILP optimization problem is formalized [10] for
optimizing cells assignment to different BBU pools. Statisti-
cal multiplexing gain and required �ber length are used as
key performance indicators. An analytical model is derived
in [11], which optimizes C-RAN deployments by �nding
the most ef�cient relationship between using optical �ber or

microwave links in fronthaul of mobile networks. In [12] cost
and energy consumption reduction in C–RAN is compared to
the traditional D–RAN. Authors in [13] compare �ber–based
networks to microwave in terms of cost deployments. In Rural
areas, �ber–based fronthauls are more cost effective for over
distances (less than500m) while MMW–based fronthauls take
the advantage at around 1.6 Km and above. However, in urban
areas MMW links deployment are much more effective even
for very short distances.

VNF Placement. The VNF placement problem is con-
ceptually similar to component placement in data–centers
and clouds. The amount of literature in this domain is
thus humbling [14], [15], [16], [17]. A survey on resource
management in cloud computing environments can be found
in [18]. In [14] the authors study the problem of placing
virtual machine instances on physical containers in such a
way to reduce communication overhead and latency. In [15]
the author propose a novel design for a scalable hierarchical
application components placement for cloud resource alloca-
tion. The proposed solution operates in a distributed fashion,
ensuring scalability, while providing performances very close
to that of a centralized algorithm. This work is extended
in [16] where several algorithms for ef�cient data manage-
ment of component-based applications in cloud environments
are proposed. In [17] the elasticity overhead and the trade–
off between bandwidth and host resource consumption are
jointly considered by the authors when formulating the VNF
placement problem. In [19], [20] a joint node and link mapping
algorithm is proposed. While the authors of [21], [22], [23]
tackle the problem of dynamic VNF placement. A VNF place-
ment problem is proposed in [24] for the radio access network.
In [25] an online VNF scheduling and mapping problem is
formulated. The authors propose three greedy algorithms and
a tabu search-based heuristic. These algorithms are compared
using criteria such as cost, revenue and service processing
time without considering links, bandwidth requirements and
the associated transmission delay between VNFs.

Functional Split. Recently, �exible small cell functional
splits has attracted a great deal of attention by MNOs, industry
and academy. There are different possible functional splits
between the Physical (PHY) and the Packet Data Convergence
Protocol (PDCP) layers. A number of factors (e.g., traf�c
demand, energy ef�ciency, and latency constraints) have to be
taken into account to decide the actual split point. For example
LTE's Hybrid Automatic Repeat Request (HARQ) and MAC
scheduling impose strict latency requirements which can be
mitigated at the price of reduced peak data rate and fronthaul
requirements. The latter can be relaxed, at the cost of reduced
centralized processing bene�ts, by moving forward the split
point within PHY layer or towards the upper layers.

A detailed discussion on various functional splits can be
found in [26], [27], [28], [29], [30]. The authors of [26]
propose a novel RAN as a Service (RANaaS) concept in which
centralization of management and processing is �exible (i.e.,
partially centralization of functionalities may be executed)
and can be adapted to the actual service demands. Several
functional splits are introduced and numerical results on the







in the alternative BBU Placement depicted in Fig. 2d, the
constraint on the maximum number of interfaces utilized on
the relaying node is violated (4 would be required to support
this con�guration while only 2 are actually available).

B. ILP Formulation

In order to properly map the location constraint, we need
to modify the substrate network. Every RRHn 2 N 2

v in the
virtual request has a location constraintloc(n), likewise every
substrate RRH/Relayn0 2 N 1

s has both a locationloc(n0) and
a coverage radius� (n). We can then de�ne for each virtual
noden the coverage cluster
( n):


( n) =
n

n0 2 N 2
s jdis(loc(n); loc(n0)) � � (n0)

o
(1)

We can now provide the optimal ILP formulation for the BBU
Placement problem. The overall objective is to compute the
optimal BBU Placement based on the available computational
and fronthaul radio resources under a certain cost function. In
our formulation we chose to minimize the overall number of
substrate links, and thus MMW interfaces, utilized to support
the virtual network requests. The rationale here is to reduce
the number of active MMW interfaces in order to minimize
the overall energy consumption of the MMW fronthaul. Other
objective functions are however possible, optimizing other
aspects of the system. The chosen objective function is:

minimize
X

e2 E s

X

e02 E v

! v
b (e0)� e0

e

where� e0

e 2 0; 1 is a binary variables indicating if the virtual
link e0 2 Ev has been mapped to the substrate linke 2 Es.
Similarly, the binary variable� n 0

n indicates if the virtual node
n0 2 Nv has been mapped to the substrate noden 2 Ns.

A valid solution is the one where the BBU resources utilized
by the virtual request are at most equal to the available
resources on the substrate BBU pools nodes and links:
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Every node in the request shall be mapped only once:
X

n 2 N s

� n 0

n = 1 8n0 2 Nv (5)

Every RRH in the request shall be mapped only on substrate
nodes in its coverage cluster:

X

n 2 N s n
( n 0)

� n 0

n = 0 8n0 2 Nv (6)

The sum of used substrate links originating from, or terminat-
ing to, each substrate node must be equal to, or less than, the
number of MMW interfaces available on that node:

X

eij 2 E v

� eij

enm +
X

eij 2 E v

� eij

emn � ! s
i (n) 8n 2 Ns (7)

Finally, the following constraint enforces that for each link
enm 2 Ev there must be a continuous path allocated between
the pair of physical nodes on top of which the virtual nodes
n; m 2 Nv have been mapped:

j>iX
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C. Heuristic

The ILP formulation, described in the previous sections,
cannot be applied to realistic scenarios due to its limited
scalability. For example, embedding a4–nodes request (1 BBU
and 3 small cells) over ak = 7 grid–size substrate topology
can take up to1 day on Intel Core i7 laptop (3.0 GHz CPU, 16
Gb RAM) using the MatlabR ILP solver (intlinprog). In this
section we present a heuristic, namedSWAN, that can handle
similar requests in less than10 milliseconds.

The proposed greedy heuristic is composed of three steps
implementing a joint nodeand link embedding strategy (see
pseudo code in Alg. 1). Letm1 = jN 1

s j and m2 = jN 2
s j be

the number of, respectively, substrate RRH sites and substrate
BBU pools, withm = m1 + m2. Similarly, let n1 = jN 1

v j and
n2 = jN 2

v j be the number of, respectively, virtual RRH sites
and virtual BBU pools. Finally, letk = jEs j be the number
of edges in the substrate network.

In the �rst step for each virtual noden 2 Nv the heuristic
loops over the substrate nodes and computes the list of
candidate nodescandidates(n). These are the substrate nodes
that can support the virtual nodes in the request given the
input capacity and location constraints. This process takes
O(n1m1 + n2m2) time.

In the second step, the list of virtual BBU nodes is traversed
starting with the virtual BBU nodesn 2 N 1

v with more
embedding opportunities. For each of the candidate substrate
BBU pools p 2 candidates(n), the heuristic considers all
the neighboring nodesm 2 N 2

v of the virtual noden. The
heuristic then computes how much it would cost to embed
each virtual node pairsn; m including the cost to embed the
virtual edgeenm (line 26 through 32 in the pseudocode).
The heuristic then assigns the noden to the substrate node
p 2 candidates(n) with the lowest mapping cost (line35
and 36 in the pseudocode). The rationale here is to place
a BBU node on the BBU pool that can support all of its
RF front-ends at the minimal cost. This process requires
O(n2m2n1(m1 � 1)k log10 m) time.

In the third and �nal step, the list of virtual BBU nodes
is traversed again. For each virtual BBU noden 2 N 1

v , the
heuristic considers its neighbors, i.e. the RF front–ends. Each
front–endm 2 N 2

v is placed on the substrate node with the
lowest mapping cost (line41 through49 in the pseudocode).
Once the RF front–end is placed the heuristic allocates the path
Ps(mapped(n); mapped(m). This results in virtual nodes in
a request to be placed close to each other over the substrate
network, which in time means that less substrate resources are
needed to support a given number of requests. Step 3 takes
O(n2n1(m1 � 1)k log10 m) time.



Algorithm 1 Nodes and links assignment

1: procedure SWAN(Gs , Gv )
2: Step 1: Compute list of candidates.
3: for n 2 N 1

v do . RF front–ends.
4: for p 2 N 1

s do . RRH sites.
5: d  dis(loc(n); loc(p)) . Distance in meters.
6: if d � � (m) and ! v

a (n) � ! s
a (p) then

7: candidates(n)  p
8: end if
9: end for

10: end for
11: for m 2 N 2

v do . Virtual BBUs.
12: for q 2 N 2

s do . Substrate BBU pools.
13: if ! v

c (m) � ! s
c (q) then

14: candidates(m)  q
15: end if
16: end for
17: end for
18: Step 2: Perform BBU Placement.
19: for n 2 N 2

v do . Virtual BBUs.
20: for i 2 Ns do . Initialize mapping cost array.
21: mc(i )  0
22: end for
23: for p 2 candidates(n) do
24: for m 2 neighbors(n) do
25: cost  + 1
26: for q 2 candidates(m) do
27: cnew  

P
e2 Ps ( p;q ) ! v

e (enm )
28: ccurr  min (ccurr ; cnew )
29: end for
30: mc(p)  ccurr . Accumulate mapping cost.
31: end for
32: end for
33: p  argmin (mc(p))
34: mapped(n)  p
35: end for
36: Step 3: Perform RF front–ends embedding.
37: for n 2 N 2

v do . Virtual BBUs.
38: p  mapped(n)
39: for m 2 neighbors(n) do
40: for i 2 Ns do . Initialize mapping cost array.
41: mc(i )  0
42: end for
43: for q 2 candidates(m) do
44: mc(q)  

P
e2 Ps ( p;q ) ! v

e (enm )
45: end for
46: q  argmin (mc(q))
47: mapped(m)  q
48: Allocate pathPs (p; q)
49: end for
50: end for
51: end procedure

Thus, the overall time complexity of theSWANalgorithm
is O(n1m1 + n2m2 + [ n1n2(m1 � 1)k log10 m](1 + m2).

V. EVALUATION

The goal of this section is to compare the performance
of the ILP–based placement algorithm with the performance
of the heuristic using different synthetic substrate networks
and different virtual network requests. We shall �rst describe
the simulation environment and the performance metrics used
in our study. Then we will report on the outcome of the
numerical simulations carried out in a discrete event simulator
implemented in MatlabR .

TABLE III: CPRI link bandwidth per option

CPRI Option CPRI Rate IQ Sampling Rate LTE Conf.

1 600 Mbps 400 Mbps 10 MHz, 1x1
2 1.2 Gbps 0.9 Gbps 20 MHz, 1x1
3 2.4 Gbps 1.8 Gbps 20 MHz, 2x2
5 5 Gbps 3.6 Gbps 20 MHz, 4x4

A. Simulation Environment

The simulation parameters and in particular the choices
made for the substrate network characteristics originate from
a number of works on MMW communications. In [33] the
authors suggest that optimum coverage can be achieved by
having 200 meters as distance between each RRH. In [34]
the authors estimate1 Km to be the typical coverage radius
for MMW links in line–of–sight conditions. Finally, in [35],
[36] the authors rely on empirical measurements to show that
bitrates as high as10 Gbps can be achieved with an outage
probability of � 11%, while 5 Gbps of bitrate can be achieved
with an outage probability of� 3%.

The ILP–based placement algorithm and the proposed
placement heuristic are evaluated in two different scenar-
ios differentiated by the MMW links length and by their
performance (bandwidth). In the �rst scenario, namedshort
links (SL), we assume that the maximum MMW line–of–sight
distance is equal to250m and that at this distance the link
can deliver up to5 Gbps. In the second scenario, named
long links (LL), we assume that the maximum MMW line–
of–sight distance is equal to500m and that at this distance
the link can deliver up to2:5 Gbps. Notice that, the shorter,
high bandwidth links are also available in this second scenario.
Table III summarizes some of the most common CPRI setups
providing some illustrative LTE con�gurations that can be
supported by each option. As it can be seen, theshort links
and long linksscenarios corresponds, respectively, to a CPRI
Option 5 and to a CPRI Option 3 con�guration.

The reference substrate network is a grid–shaped 2D lattice
network with 5 � 5 similar to the one depicted in Fig. 2a.
Nodes spacing is uniform and set to250m. Each node can
be either an RRH site or a BBU pool (they are all however
MMW relays). The number of BBU pool is variable between
1 and 4. BBU pools are randomly deployed. RRH relays at
the edges of the network are equipped with a single MMW
interface. BBU pools are equipped with8 MMW interfaces.
All other MMW relays are equipped with4 MMW interfaces.

Virtual network requests consist of star–shaped networks
like the ones depicted in Fig. 2b. The number of RF front-ends
in each request as well as their characteristics (LTE bandwidth)
are randomly generated for each request. In particular, for each
request we randomly generate between RF front–ends1 and
4. Each of them may require either a CPRI option 3 or a CPRI
option 5 link. Each request also contains a single BBU with
a requested capacity! c set to the number of equivalent CPRI
option 3 in the request (i.e. one CPRI Option 5 link equals to
2 CPRI Option 2 links).

In this study we assume that a �xed number of virtual
requests are embedded sequentially. In particular, in each run
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Fig. 3: Performance of the ILP–based algorithm and of the heuristics with a different number of substrate BBU pools.

the simulator tries to embed10 randomly generated request
using either the ILP–based algorithm or the heuristic. Reported
results are the average of8 simulations.

B. Simulation Results

Figure 3 shows the performance of the ILP–based BBU
placement algorithm and of the heuristic with an increasing
number of substrate BBU pools and for the two scenarios
being considered. As it can be seen the acceptance ratio
(Fig. 3a) increases with the number of available substrate BBU
pools. This is due to the fact that as the number of BBU pools
increases more embedding opportunities become available.

As expected the ILP–based placement algorithm is more
ef�cient than the heuristic in mapping the incoming request.
This can be seen in terms of both an higher number of
accepted requests (Fig. 3a) and a lower average embedding
cost (Fig. 3b). Notice that (Fig. 3a) even though the acceptance
ratio of the ILP–based algorithm in both scenarios is approxi-
mately the same, the average embedding cost is smaller in the
long linksscenario. This means that fewer substrate resources,
i.e. MMW interfaces, are used in thelong linksscenario.

Figure 3c shows that the average amount of time required
to embed asingle request using the ILP–based placement
algorithm is signi�cantly higher than the time required to
embed the same request using the heuristic. The ILP problem
becomes essentially intractable for substrate networks with
more than a few tens of nodes, while the heuristic can
effectively embed complex requests on substrate networks with
hundreds of nodes in a limited amount of time. Although
operators may prefer to wait even several weeks in order to
have a optimal BBU placement, we argue that our heuristic
could allow a faster service on–boarding time while the

ILP–based placement algorithm could not use to periodically
optimize the network con�guration.

Figure 3d plots the �nal RF front–ends utilization. As it can
be seen the utilization of the RF front–ends increases with the
number of BBU pools. However a saturation point around3
substrate BBU pools can be noticed. The same consideration
can also be made for the average MMW interfaces utilization
and for the BBU pool utilization. Notice also how both the
RF front–ends and the MMW interfaces utilization never ap-
proaches100%, this essentially means that the BBU placement
does not fail due to lack of such resources, but rather due to
a non–homogeneous utilization of the available resources. We
leave as future work the task of analyzing how MMW interface
density impacts on the acceptance ratio.

In order to gain an increased insight into how resources are
actually utilized during the embedding process, we will now
analyze in detail a single iteration of the simulator. We remind
the reader that in each iteration the simulator tries to embed
10 randomly generated virtual network requests. Figure 4 plots
the substrate resources utilization for the two scenarios. As it
can be seen the ILP–based algorithm utilizes more substrate
resources irrespective of the number of available substrate
BBU pools. This can be explained by the fact that the ILP–
based placement algorithm is capable of embedding a higher
number of requests than the heuristic.

Notice also that both the RF front–ends as well as the MMW
interfaces utilization increase with the number of BBU pools.
The explanation for this behavior is twofold. On the one hand
when additional BBU pools (which we remind the reader do
not possess any RF front–ends) are added to the network the
overall number of available front–ends decreases. However,
since the BBU placement rarely fails due to unavailability of
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(c) BBU Utilization (3 BBUs).
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(d) BBU Utilization (4 BBUs).
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(e) Antenna Utilization (1 BBU).
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(f) Antenna Utilization (2 BBUs).
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(g) Antenna Utilization (3 BBUs).
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(h) Antenna Utilization (4 BBUs).
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(i) Interfaces Utilization (1 BBU).
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(j) Interfaces Utilization (2 BBUs)..
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(k) Interfaces Utilization (3 BBUs).
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(l) Interfaces Utilization (4 BBUs).

Fig. 4: Performance of the ILP–based algorithm and of the heuristics with a different number of substrate BBU pools.
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Fig. 5: Ratio between the number of requested RF front–ends and
the utilized MMW interfaces.

either RF front–ends or MMW interfaces, when the number
of BBU pools in the network increases also the number of
embedding opportunities increase. This behavior can be seen
also in terms of acceptance ratio in Fig. 3a. Notice in fact that,
the acceptance ratio for the substrate network with4 BBU
pools is higher than the one with only1 BBU pool.

Finally, in Fig. 5 we plot the ratio between the number of
requested RF front–ends and the utilized MMW interfaces.
As it can be expected in thelong links scenario the ratio is
higher than in theshort linksscenario. This is due to the fact
that, when longer links are available the same distance can be
covered in a single hop (using just2 interfaces) rather than in
two hops (using4 interfaces).

VI. CONCLUSIONS

Small–cells are rapidly emerging as a cost–ef�cient solution
to provide additional capacity in current and future mobile
networks. However scalable and �exible fronthaul technolo-
gies are needed in order to make small–cells an economically
viable option for MNOs. Among the many solution available,
wireless front–hauls are one of the most promising.

In this paper we provide a novel formulation for the BBU
Placement problem where BBU pools are placed at the edges
of the network, possibly co–located with macro–cells, and
a recon�gurable MMW wireless fronthaul is used in order
to provide RRHs with connectivity. We introduce an ILP–
based algorithm solving the placement problem for small
networks and a BBU Placement heuristic for larger networks.
We perform extensive numerical simulation in order to better
understand the trade–offs involved in deploying wireless front–
hauls in dense networks scenarios.

As future work we plan to extend the problem formulation
to more complex scenarios. In particular we want to consider
scenarios were the MMW wireless network is used as both
fronhaul for the RRHs and as backhaul for other technologies,
e.g. WiFi, LTE. We want also to develop a better channel
model capable of accounting for both capacity and latency.
Finally, we want to extended the problem formulation in order
to account for different functional splits in the small–cells
covering the full spectrum between D–RAN and C–RAN.
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